
Internet &
World Wide Web

 H o w t o P r o g r a m

Fifth Edition

Paul Deitel • Harvey Deitel • Abbey Deitel

INTERNATIONAL
EDITION

INTERNATIONAL EDITION

Deitel
Deitel
Deitel

Internet & W
orld W

ide W
eb

Fifth Edition
ISBN-13:
ISBN-10:

978-0-273-76402-1
0-273-76402-0

9 7 8 0 2 7 3 7 6 4 0 2 1

9 0 0 0 0

IN
T

ER
N

A
T

IO
N

A
L

ED
IT

IO
N

The editorial team at Pearson has worked closely with educators
around the globe to inform students of the ever-changing world in a
broad variety of disciplines. Pearson Education offers this product to
the international market, which may or may not include alterations
from the United States version.

This is a special edition of an
established title widely used by
colleges and universities throughout
the world. Pearson published this
exclusive edition for the benefit of
students outside the United States
and Canada. If you purchased this
book within the United States or
Canada you should be aware that
it has been imported without
the approval of the Publisher or
the Author.

Pearson International Edition

FMTOC.book Page 1 Wednesday, November 16, 2011 1:09 PM

Deitel Ser ies Page
How To Program Series
C++ How to Program, 8/E
C How to Program, 6/E
Java™ How to Program, 9/E
Java™ How to Program, Late Objects Version, 8/E
Internet & World Wide Web How to Program, 5/E
Visual C++® 2008 How to Program, 2/E
Visual Basic® 2010 How to Program
Visual C#® 2010 How to Program, 3/E
Small Java™ How to Program, 6/E
Small C++ How to Program, 5/E

Simply Series
Simply C++: An App-Driven Tutorial Approach
Simply Java™ Programming: An App-Driven

Tutorial Approach
Simply C#: An App-Driven Tutorial Approach
Simply Visual Basic® 2008, 3/E: An App-Driven

Tutorial Approach

CourseSmart Web Books
www.deitel.com/books/CourseSmart/

C++ How to Program, 5/E, 6/E, 7/E & 8/E
Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 6/E, 7/E, 8/E & 9/E
Simply Visual Basic 2008: An App-Driven Tutorial

Approach, 3/E
(continued next column)

(continued)
Visual Basic® 2010 How to Program
Visual Basic® 2008 How to Program
Visual C#® 2010 How to Program, 4/E
Visual C#® 2008 How to Program, 3/E

Deitel® Developer Series
AJAX, Rich Internet Applications and Web

Development for Programmers
Android for Programmers: An App-Driven

Approach
C++ for Programmers
C# 2010 for Programmers, 3/E
iPhone® for Programmers: An App-Driven Approach
Java™ for Programmers, 2/e
JavaScript for Programmers

LiveLessons Video Learning Products
www.deitel.com/books/LiveLessons/

Android App Development Fundamentals
C++ Fundamentals
Java™ Fundamentals
C# Fundamentals
iPhone® App Development Fundamentals
JavaScript Fundamentals
Visual Basic Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more,
please register for the free Deitel Buzz Online e-mail newsletter at:
 www.deitel.com/newsletter/subscribe.html

and join the Deitel communities on Twitter®

 @deitel

and Facebook®

 facebook.com/DeitelFan/

To communicate with the authors, send e-mail to:
 deitel@deitel.com

For information on government and corporate Dive-Into Series on-site seminars offered by Deitel &
Associates, Inc. worldwide, visit:
 www.deitel.com/training/

or write to
 deitel@deitel.com

For continuing updates on Prentice Hall/Deitel publications visit:
www.deitel.com
www.pearsoninternationaleditions.com/deitel/

Visit the Deitel Resource Centers that will help you master programming languages, software develop-
ment, Android and iPhone/iPad app development, and Internet- and web-related topics:
 www.deitel.com/ResourceCenters.html

FMTOC.book Page 2 Wednesday, November 16, 2011 1:09 PM

Paul Deitel
Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

Abbey Deitel
Deitel & Associates, Inc.

International Edition contributions by

Soumen Mukherjee ✦ Arup Kumar Bhattacharjee

Boston Columbus Indianpolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

FMTOC.book Page 3 Wednesday, November 16, 2011 1:09 PM

Editorial Director: Marcia J. Horton
Editor-in-Chief: Michael Hirsch
Associate Editor: Carole Snyder
Vice President, Marketing: Patrice Jones
Marketing Manager: Yezan Alayan
Marketing Coordinator: Kathryn Ferranti
Vice President, Production: Vince O’Brien
Managing Editor: Jeff Holcomb
Associate Managing Editor: Robert Engelhardt
Publisher, International Edition: Angshuman Chakraborty
Acquisitions Editor, International Edition: Somnath Basu
Publishing Assistant, International Edition: Shokhi Shah
Print and Media Editor, International Edition: Ashwitha Jayakumar
Project Editor, International Edition: Jayashree Arunachalam
Operations Specialist: Lisa McDowell
Art Director: Anthony Gemmellaro
Media Editor: Daniel Sandin

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsoninternationaleditions.com

© Pearson Education Limited 2012

The rights of Paul Deitel, Harvey Deitel and Abbey Deitel to be identified as authors of this work have been asserted
by them in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Internet & World Wide Web, How to Program, 5th edi-
tion, ISBN 978-0-13-215100-9by Paul Deitel, Harvey Deitel and Abbey Deitel published by Pearson Education © 2012.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written
permission of the publisher or a licence permitting restricted copying in the United Kingdom issued by the Copyright
Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not
vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks
imply any affiliation with or endorsement of this book by such owners.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries.
Screen shots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored or
endorsed by or affiliated with the Microsoft Corporation.

ISBN 10: 0-273-76402-0
ISBN 13: 978-0-273-76402-1

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1
14 13 12 11 10

Typeset in AGaramond-Regular by GEX Publishing Services
Printed and bound by Courier, Westford in The United States of America

The publisher's policy is to use paper manufactured from sustainable forests.

FMTOC.book Page 4 Wednesday, November 16, 2011 1:09 PM

In memory of Paul Baran,
designer of a survivable distributed communications
network and packet switching, which are the basis
for the protocols used on the Internet today.

Paul, Harvey and Abbey Deitel

FMTOC.book Page 5 Wednesday, November 16, 2011 1:09 PM

Trademarks
Apache is a trademark of The Apache Software Foundation.

Apple, iPhone, iPad, iOS and Safari are registered trademarks of Apple, Inc.

CSS, DOM, XHTML and XML are trademarks of the World Wide Web Consortium.

Firefox is a registered trademark of the Mozilla Foundation.

Google is a trademark of Google, Inc.

JavaScript, Java and all Java-based marks are trademarks or registered trademarks of Oracle in the United
States and other countries.

Microsoft, Internet Explorer, Silverlight and the Windows logo are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

Opera is a trademark of Opera Software.

FMTOC.book Page 6 Wednesday, November 16, 2011 1:09 PM

Preface 19

Before You Begin 31

1 Introduction to Computers and the Internet 33
1.1 Introduction 34
1.2 The Internet in Industry and Research 35
1.3 HTML5, CSS3, JavaScript, Canvas and jQuery 38
1.4 Demos 41
1.5 Evolution of the Internet and World Wide Web 42
1.6 Web Basics 44
1.7 Multitier Application Architecture 48
1.8 Client-Side Scripting versus Server-Side Scripting 49
1.9 World Wide Web Consortium (W3C) 50
1.10 Web 2.0: Going Social 50
1.11 Data Hierarchy 55
1.12 Operating Systems 57

1.12.1 Desktop and Notebook Operating Systems 57
1.12.2 Mobile Operating Systems 58

1.13 Types of Programming Languages 59
1.14 Object Technology 61
1.15 Keeping Up-to-Date with Information Technologies 63

2 Introduction to HTML5: Part 1 69
2.1 Introduction 70
2.2 Editing HTML5 70
2.3 First HTML5 Example 70
2.4 W3C HTML5 Validation Service 73
2.5 Headings 73
2.6 Linking 74
2.7 Images 77

2.7.1 alt Attribute 79
2.7.2 Void Elements 79
2.7.3 Using Images as Hyperlinks 79

2.8 Special Characters and Horizontal Rules 81
2.9 Lists 83

Contents

FMTOC.book Page 7 Wednesday, November 16, 2011 1:09 PM

8 Contents

2.10 Tables 86
2.11 Forms 90
2.12 Internal Linking 97
2.13 meta Elements 99
2.14 Web Resources 101

3 Introduction to HTML5: Part 2 108
3.1 Introduction 109
3.2 New HTML5 Form input Types 109

3.2.1 input Type color 112
3.2.2 input Type date 114
3.2.3 input Type datetime 114
3.2.4 input Type datetime-local 114
3.2.5 input Type email 115
3.2.6 input Type month 116
3.2.7 input Type number 116
3.2.8 input Type range 117
3.2.9 input Type search 117
3.2.10 input Type tel 118
3.2.11 input Type time 118
3.2.12 input Type url 119
3.2.13 input Type week 119

3.3 input and datalist Elements and autocomplete Attribute 119
3.3.1 input Element autocomplete Attribute 119
3.3.2 datalist Element 122

3.4 Page-Structure Elements 122
3.4.1 header Element 128
3.4.2 nav Element 128
3.4.3 figure Element and figcaption Element 128
3.4.4 article Element 128
3.4.5 summary Element and details Element 128
3.4.6 section Element 128
3.4.7 aside Element 128
3.4.8 meter Element 129
3.4.9 footer Element 130
3.4.10 Text-Level Semantics: mark Element and wbr Element 130

4 Introduction to Cascading Style Sheets™
(CSS): Part 1 137

4.1 Introduction 138
4.2 Inline Styles 138
4.3 Embedded Style Sheets 140
4.4 Conflicting Styles 143
4.5 Linking External Style Sheets 146

FMTOC.book Page 8 Wednesday, November 16, 2011 1:09 PM

Contents 9

4.6 Positioning Elements: Absolute Positioning, z-index 148
4.7 Positioning Elements: Relative Positioning, span 150
4.8 Backgrounds 152
4.9 Element Dimensions 154
4.10 Box Model and Text Flow 155
4.11 Media Types and Media Queries 159
4.12 Drop-Down Menus 162
4.13 (Optional) User Style Sheets 164
4.14 Web Resources 168

5 Introduction to Cascading Style Sheets™
(CSS): Part 2 174

5.1 Introduction 175
5.2 Text Shadows 175
5.3 Rounded Corners 176
5.4 Color 177
5.5 Box Shadows 178
5.6 Linear Gradients; Introducing Vendor Prefixes 180
5.7 Radial Gradients 183
5.8 (Optional: WebKit Only) Text Stroke 185
5.9 Multiple Background Images 185
5.10 (Optional: WebKit Only) Reflections 187
5.11 Image Borders 188
5.12 Animation; Selectors 191
5.13 Transitions and Transformations 194

5.13.1 transition and transform Properties 194
5.13.2 Skew 196
5.13.3 Transitioning Between Images 197

5.14 Downloading Web Fonts and the @font-face Rule 198
5.15 Flexible Box Layout Module and :nth-child Selectors 200
5.16 Multicolumn Layout 203
5.17 Media Queries 205
5.18 Web Resources 209

6 JavaScript: Introduction to Scripting 217
6.1 Introduction 218
6.2 Your First Script: Displaying a Line of Text with JavaScript in a Web Page 218
6.3 Modifying Your First Script 221
6.4 Obtaining User Input with prompt Dialogs 224

6.4.1 Dynamic Welcome Page 224
6.4.2 Adding Integers 228

6.5 Memory Concepts 231
6.6 Arithmetic 232
6.7 Decision Making: Equality and Relational Operators 234
6.8 Web Resources 239

FMTOC.book Page 9 Wednesday, November 16, 2011 1:09 PM

10 Contents

7 JavaScript: Control Statements I 246
7.1 Introduction 247
7.2 Algorithms 247
7.3 Pseudocode 247
7.4 Control Statements 247
7.5 if Selection Statement 250
7.6 if…else Selection Statement 251
7.7 while Repetition Statement 255
7.8 Formulating Algorithms: Counter-Controlled Repetition 257
7.9 Formulating Algorithms: Sentinel-Controlled Repetition 260
7.10 Formulating Algorithms: Nested Control Statements 266
7.11 Assignment Operators 270
7.12 Increment and Decrement Operators 271
7.13 Web Resources 274

8 JavaScript: Control Statements II 283
8.1 Introduction 284
8.2 Essentials of Counter-Controlled Repetition 284
8.3 for Repetition Statement 285
8.4 Examples Using the for Statement 288
8.5 switch Multiple-Selection Statement 293
8.6 do…while Repetition Statement 296
8.7 break and continue Statements 298
8.8 Logical Operators 300
8.9 Web Resources 303

9 JavaScript: Functions 310
9.1 Introduction 311
9.2 Program Modules in JavaScript 311
9.3 Function Definitions 312

9.3.1 Programmer-Defined Function square 313
9.3.2 Programmer-Defined Function maximum 315

9.4 Notes on Programmer-Defined Functions 317
9.5 Random Number Generation 318

9.5.1 Scaling and Shifting Random Numbers 318
9.5.2 Displaying Random Images 319
9.5.3 Rolling Dice Repeatedly and Displaying Statistics 323

9.6 Example: Game of Chance; Introducing the HTML5
audio and video Elements 328

9.7 Scope Rules 338
9.8 JavaScript Global Functions 340
9.9 Recursion 341
9.10 Recursion vs. Iteration 345

FMTOC.book Page 10 Wednesday, November 16, 2011 1:09 PM

Contents 11

10 JavaScript: Arrays 356
10.1 Introduction 357
10.2 Arrays 357
10.3 Declaring and Allocating Arrays 359
10.4 Examples Using Arrays 359

10.4.1 Creating, Initializing and Growing Arrays 359
10.4.2 Initializing Arrays with Initializer Lists 363
10.4.3 Summing the Elements of an Array with for and for…in 364
10.4.4 Using the Elements of an Array as Counters 366

10.5 Random Image Generator Using Arrays 369
10.6 References and Reference Parameters 371
10.7 Passing Arrays to Functions 372
10.8 Sorting Arrays with Array Method sort 375
10.9 Searching Arrays with Array Method indexOf 376
10.10 Multidimensional Arrays 379

11 JavaScript: Objects 392
11.1 Introduction 393
11.2 Math Object 393
11.3 String Object 395

11.3.1 Fundamentals of Characters and Strings 395
11.3.2 Methods of the String Object 395
11.3.3 Character-Processing Methods 397
11.3.4 Searching Methods 398
11.3.5 Splitting Strings and Obtaining Substrings 401

11.4 Date Object 403
11.5 Boolean and Number Objects 408
11.6 document Object 409
11.7 Favorite Twitter Searches: HTML5 Web Storage 410
11.8 Using JSON to Represent Objects 417

12 Document Object Model (DOM):
Objects and Collections 427

12.1 Introduction 428
12.2 Modeling a Document: DOM Nodes and Trees 428
12.3 Traversing and Modifying a DOM Tree 431
12.4 DOM Collections 441
12.5 Dynamic Styles 443
12.6 Using a Timer and Dynamic Styles to Create Animated Effects 445

13 JavaScript Event Handling: A Deeper Look 454
13.1 Introduction 455

FMTOC.book Page 11 Wednesday, November 16, 2011 1:09 PM

12 Contents

13.2 Reviewing the load Event 455
13.3 Event mousemove and the event Object 457
13.4 Rollovers with mouseover and mouseout 461
13.5 Form Processing with focus and blur 465
13.6 More Form Processing with submit and reset 468
13.7 Event Bubbling 470
13.8 More Events 472
13.9 Web Resource 472

14 HTML5: Introduction to canvas 476
14.1 Introduction 477
14.2 canvas Coordinate System 477
14.3 Rectangles 478
14.4 Using Paths to Draw Lines 480
14.5 Drawing Arcs and Circles 482
14.6 Shadows 484
14.7 Quadratic Curves 486
14.8 Bezier Curves 488
14.9 Linear Gradients 489
14.10 Radial Gradients 491
14.11 Images 493
14.12 Image Manipulation: Processing the Individual Pixels of a canvas 495
14.13 Patterns 499
14.14 Transformations 500

14.14.1 scale and translate Methods: Drawing Ellipses 500
14.14.2 rotate Method: Creating an Animation 502
14.14.3 transform Method: Drawing Skewed Rectangles 504

14.15 Text 506
14.16 Resizing the canvas to Fill the Browser Window 508
14.17 Alpha Transparency 509
14.18 Compositing 511
14.19 Cannon Game 514

14.19.1 HTML5 Document 516
14.19.2 Instance Variables and Constants 516
14.19.3 Function setupGame 518
14.19.4 Functions startTimer and stopTimer 519
14.19.5 Function resetElements 519
14.19.6 Function newGame 520
14.19.7 Function updatePositions: Manual Frame-by-Frame

Animation and Simple Collision Detection 521
14.19.8 Function fireCannonball 524
14.19.9 Function alignCannon 525
14.19.10Function draw 526
14.19.11Function showGameOverDialog 528

14.20 save and restore Methods 528

FMTOC.book Page 12 Wednesday, November 16, 2011 1:09 PM

Contents 13

14.21 A Note on SVG 530
14.22 A Note on canvas35D 531

15 XML 543
15.1 Introduction 544
15.2 XML Basics 544
15.3 Structuring Data 547
15.4 XML Namespaces 553
15.5 Document Type Definitions (DTDs) 555
15.6 W3C XML Schema Documents 558
15.7 XML Vocabularies 566

15.7.1 MathML™ 566
15.7.2 Other Markup Languages 569

15.8 Extensible Stylesheet Language and XSL Transformations 570
15.9 Document Object Model (DOM) 579
15.10 Web Resources 597

16 Ajax-Enabled Rich Internet Applications
with XML and JSON 603

16.1 Introduction 604
16.1.1 Traditional Web Applications vs. Ajax Applications 605
16.1.2 Traditional Web Applications 605
16.1.3 Ajax Web Applications 606

16.2 Rich Internet Applications (RIAs) with Ajax 606
16.3 History of Ajax 609
16.4 “Raw” Ajax Example Using the XMLHttpRequest Object 609

16.4.1 Asynchronous Requests 610
16.4.2 Exception Handling 613
16.4.3 Callback Functions 614
16.4.4 XMLHttpRequest Object Event, Properties and Methods 614

16.5 Using XML and the DOM 615
16.6 Creating a Full-Scale Ajax-Enabled Application 619

16.6.1 Using JSON 619
16.6.2 Rich Functionality 620
16.6.3 Interacting with a Web Service on the Server 629
16.6.4 Parsing JSON Data 629
16.6.5 Creating HTML5 Elements and Setting Event Handlers on the Fly 630
16.6.6 Implementing Type-Ahead 630
16.6.7 Implementing a Form with Asynchronous Validation 631

17 Web Servers (Apache and IIS) 637
17.1 Introduction 638
17.2 HTTP Transactions 638

FMTOC.book Page 13 Wednesday, November 16, 2011 1:09 PM

14 Contents

17.3 Multitier Application Architecture 642
17.4 Client-Side Scripting versus Server-Side Scripting 643
17.5 Accessing Web Servers 643
17.6 Apache, MySQL and PHP Installation 643

17.6.1 XAMPP Installation 644
17.6.2 Running XAMPP 644
17.6.3 Testing Your Setup 645
17.6.4 Running the Examples Using Apache HTTP Server 645

17.7 Microsoft IIS Express and WebMatrix 646
17.7.1 Installing and Running IIS Express 646
17.7.2 Installing and Running WebMatrix 646
17.7.3 Running the Client-Side Examples Using IIS Express 646
17.7.4 Running the PHP Examples Using IIS Express 647

18 Database: SQL, MySQL, LINQ and Java DB 649
18.1 Introduction 650
18.2 Relational Databases 650
18.3 Relational Database Overview: A books Database 652
18.4 SQL 655

18.4.1 Basic SELECT Query 656
18.4.2 WHERE Clause 656
18.4.3 ORDER BY Clause 658
18.4.4 Merging Data from Multiple Tables: INNER JOIN 660
18.4.5 INSERT Statement 661
18.4.6 UPDATE Statement 663
18.4.7 DELETE Statement 663

18.5 MySQL 664
18.5.1 Instructions for Setting Up a MySQL User Account 665
18.5.2 Creating Databases in MySQL 666

18.6 (Optional) Microsoft Language Integrate Query (LINQ) 666
18.6.1 Querying an Array of int Values Using LINQ 667
18.6.2 Querying an Array of Employee Objects Using LINQ 669
18.6.3 Querying a Generic Collection Using LINQ 674

18.7 (Optional) LINQ to SQL 676
18.8 (Optional) Querying a Database with LINQ 677

18.8.1 Creating LINQ to SQL Classes 677
18.8.2 Data Bindings Between Controls and the LINQ to SQL Classes 680

18.9 (Optional) Dynamically Binding LINQ to SQL Query Results 684
18.9.1 Creating the Display Query Results GUI 684
18.9.2 Coding the Display Query Results Application 686

18.10 Java DB/Apache Derby 688

19 PHP 696
19.1 Introduction 697
19.2 Simple PHP Program 698

FMTOC.book Page 14 Wednesday, November 16, 2011 1:09 PM

Contents 15

19.3 Converting Between Data Types 699
19.4 Arithmetic Operators 702
19.5 Initializing and Manipulating Arrays 706
19.6 String Comparisons 709
19.7 String Processing with Regular Expressions 710

19.7.1 Searching for Expressions 712
19.7.2 Representing Patterns 712
19.7.3 Finding Matches 713
19.7.4 Character Classes 713
19.7.5 Finding Multiple Instances of a Pattern 714

19.8 Form Processing and Business Logic 714
19.8.1 Superglobal Arrays 714
19.8.2 Using PHP to Process HTML5 Forms 715

19.9 Reading from a Database 719
19.10 Using Cookies 723
19.11 Dynamic Content 726
19.12 Web Resources 734

20 Web App Development with ASP.NET in C# 740
20.1 Introduction 741
20.2 Web Basics 742
20.3 Multitier Application Architecture 743
20.4 Your First ASP.NET Application 745

20.4.1 Building the WebTime Application 747
20.4.2 Examining WebTime.aspx’s Code-Behind File 756

20.5 Standard Web Controls: Designing a Form 756
20.6 Validation Controls 761
20.7 Session Tracking 767

20.7.1 Cookies 768
20.7.2 Session Tracking with HttpSessionState 769
20.7.3 Options.aspx: Selecting a Programming Language 772
20.7.4 Recommendations.aspx: Displaying Recommendations Based

on Session Values 775
20.8 Case Study: Database-Driven ASP.NET Guestbook 777

20.8.1 Building a Web Form that Displays Data from a Database 779
20.8.2 Modifying the Code-Behind File for the Guestbook Application 782

20.9 Case Study Introduction: ASP.NET AJAX 784
20.10 Case Study Introduction: Password-Protected Books Database Application 784

21 Web App Development with ASP.NET in C#:
A Deeper Look 790

21.1 Introduction 791
21.2 Case Study: Password-Protected Books Database Application 791

21.2.1 Examining the ASP.NET Web Site Template 792
21.2.2 Test-Driving the Completed Application 794

FMTOC.book Page 15 Wednesday, November 16, 2011 1:09 PM

16 Contents

21.2.3 Configuring the Website 796
21.2.4 Modifying the Default.aspx and About.aspx Pages 799
21.2.5 Creating a Content Page That Only Authenticated Users Can Access 800
21.2.6 Linking from the Default.aspx Page to the Books.aspx Page 801
21.2.7 Modifying the Master Page (Site.master) 802
21.2.8 Customizing the Password-Protected Books.aspx Page 804

21.3 ASP.NET Ajax 809
21.3.1 Traditional Web Applications 809
21.3.2 Ajax Web Applications 810
21.3.3 Testing an ASP.NET Ajax Application 811
21.3.4 The ASP.NET Ajax Control Toolkit 812
21.3.5 Using Controls from the Ajax Control Toolkit 813

22 Web Services in C# 821
22.1 Introduction 822
22.2 WCF Services Basics 823
22.3 Simple Object Access Protocol (SOAP) 823
22.4 Representational State Transfer (REST) 824
22.5 JavaScript Object Notation (JSON) 824
22.6 Publishing and Consuming SOAP-Based WCF Web Services 825

22.6.1 Creating a WCF Web Service 825
22.6.2 Code for the WelcomeSOAPXMLService 825
22.6.3 Building a SOAP WCF Web Service 826
22.6.4 Deploying the WelcomeSOAPXMLService 828
22.6.5 Creating a Client to Consume the WelcomeSOAPXMLService 829
22.6.6 Consuming the WelcomeSOAPXMLService 831

22.7 Publishing and Consuming REST-Based XML Web Services 833
22.7.1 HTTP get and post Requests 833
22.7.2 Creating a REST-Based XML WCF Web Service 833
22.7.3 Consuming a REST-Based XML WCF Web Service 836

22.8 Publishing and Consuming REST-Based JSON Web Services 837
22.8.1 Creating a REST-Based JSON WCF Web Service 837
22.8.2 Consuming a REST-Based JSON WCF Web Service 839

22.9 Blackjack Web Service: Using Session Tracking in a SOAP-Based
WCF Web Service 841
22.9.1 Creating a Blackjack Web Service 841
22.9.2 Consuming the Blackjack Web Service 846

22.10 Airline Reservation Web Service: Database Access and Invoking a
Service from ASP.NET 855

22.11 Equation Generator: Returning User-Defined Types 859
22.11.1 Creating the REST-Based XML EquationGenerator Web Service 862
22.11.2 Consuming the REST-Based XML EquationGenerator

Web Service 863
22.11.3 Creating the REST-Based JSON WCF EquationGenerator

Web Service 867

FMTOC.book Page 16 Wednesday, November 16, 2011 1:09 PM

Contents 17

22.11.4 Consuming the REST-Based JSON WCF EquationGenerator
Web Service 867

22.12 Web Resources 871

23 Web App Development with ASP.NET in
Visual Basic 879

23.1 Introduction 880
23.2 Web Basics 881
23.3 Multitier Application Architecture 882
23.4 Your First ASP.NET Application 884

23.4.1 Building the WebTime Application 886
23.4.2 Examining WebTime.aspx’s Code-Behind File 895

23.5 Standard Web Controls: Designing a Form 896
23.6 Validation Controls 901
23.7 Session Tracking 907

23.7.1 Cookies 908
23.7.2 Session Tracking with HttpSessionState 909
23.7.3 Options.aspx: Selecting a Programming Language 911
23.7.4 Recommendations.aspx: Displaying Recommendations Based

on Session Values 915
23.8 Case Study: Database-Driven ASP.NET Guestbook 917

23.8.1 Building a Web Form that Displays Data from a Database 919
23.8.2 Modifying the Code-Behind File for the Guestbook Application 923

23.9 Online Case Study: ASP.NET AJAX 924
23.10 Online Case Study: Password-Protected Books Database Application 924

A HTML Special Characters 930

B HTML Colors 931

C JavaScript Operator Precedence Chart 934

D ASCII Character Set 936

Index 937

Chapters 24–29 and Appendices E–F are PDF documents posted online at the book’s
Companion Website (located at www.pearsoninternationaleditions.com/deitel/).

24 Web App Development with ASP.NET in VB:
A Deeper Look

FMTOC.book Page 17 Wednesday, November 16, 2011 1:09 PM

18 Contents

25 Web Services in Visual Basic

26 JavaServer™ Faces Web Apps: Part 1

27 JavaServer™ Faces Web Apps: Part 2

28 Web Services in Java

29 HTML5 WebSockets and Web Workers

E Number Systems

F Unicode®

FMTOC.book Page 18 Wednesday, November 16, 2011 1:09 PM

Science and technology and the various forms of art,
all unite humanity in a single and interconnected system.

—Zhores Aleksandrovich Medvede

Welcome to Internet and web programming with Internet & World Wide Web How to Pro-
gram, Fifth Edition! This book presents leading-edge computing technologies for students,
instructors and software developers.

The world of computing—and Internet and web programming in particular—has
changed dramatically since the last edition. This new edition focuses on HTML5 and the
related technologies in its ecosystem, diving into the exciting new features of HTML5,
CSS3, the latest edition of JavaScript (ECMAScript 5) and HTML5 canvas. We focus on
popular key technologies that will help you build Internet- and web-based applications
that interact with other applications and with databases. These form the basis of the kinds
of enterprise-level, networked applications that are popular in industry today.

Internet & World Wide Web How to Program, 5/e is appropriate for both introductory
and intermediate-level client-side and server-side programming courses. The book is also
suitable for professionals who want to update their skills with the latest Internet and web
programming technologies.

At the heart of the book is the Deitel signature “live-code approach”—concepts are
presented in the context of complete working HTML5 documents, CSS3 stylesheets,
JavaScript scripts, XML documents, programs and database files, rather than in code snip-
pets. Each complete code example is accompanied by live sample executions. The source
code is available at www.deitel.com/books/iw3htp5/ and at the book’s Companion Web-
site www.pearsoninternationaleditions.com/deitel/.

As you read the book, if you have questions, send an e-mail to deitel@deitel.com;
we’ll respond promptly. For updates on this book, visit www.deitel.com/books/iw3htp5/,
join our communities on Facebook (www.facebook.com/deitelfan) and Twitter
(@deitel), and subscribe to the Deitel® Buzz Online newsletter (www.deitel.com/news-
letter/subscribe.html).

New and Updated Features
Here are the updates we’ve made for Internet & World Wide Web How to Program, 5/e:

• New Chapter 1. The new Chapter 1 engages students with intriguing facts and
figures to get them excited about studying Internet and web applications devel-
opment. The chapter includes a table of some of the research made possible by

Preface

FMTOC.book Page 19 Wednesday, November 16, 2011 1:09 PM

20 Preface

computers and the Internet, current technology trends and hardware discussion,
the data hierarchy, a new section on social networking, a table of popular web ser-
vices, a table of business and technology publications and websites that will help
you stay up to date with the latest technology news and trends, and updated ex-
ercises.

• New HTML5 features. Chapter 3 introduces the latest features of HTML5
including the new HTML5 form input types and page structure elements
(Fig. 1). The new HTML5 features are not universally implemented in all of the web
browsers. This is changing as the browser vendors release new versions. We discuss
many additional HTML5 features throughout the book.

• New CSS3 features. Chapter 5 introduces the latest features of CSS3 (Fig. 2).
The new CSS3 features are not universally implemented in all of the web browsers.
This is changing as the browser vendors release new versions.

New HTML5 features

Form Input Types

color date datetime datetime-local

email month number range

search tel time url

week input element datalist element autocomplete attribute

Page Structure Elements

header nav figure figcaption

article summary section aside

meter footer text-level semantics (marking potential line breaks)

Fig. 1 | New HTML5 form input types and page structure elements

New CSS3 features

text shadows rounded corners color

box shadows linear gradients radial gradients

multiple background images image borders animations

transitions transformations @font-face rule

Flexible Box Layout Module :nth-child selectors multicolumn layouts

media queries

Non-standard features

text stroke reflection

Fig. 2 | New CSS3 features.

FMTOC.book Page 20 Wednesday, November 16, 2011 1:09 PM

 New and Updated Features 21

• Updated treatment of JavaScript. We’ve strengthened the JavaScript coverage in
Chapters 6–16. JavaScript has become the de facto standard client-side scripting
language for web-based applications due to its highly portable nature. Our treat-
ment, which is appropriate for novices, serves two purposes—it introduces client-
side scripting (Chapters 6–16), which makes web pages more dynamic and inter-
active, and it provides the programming foundation for the server-side scripting
in PHP presented in Chapter 19. JavaScript looks similar to basic core language
features in C, C++, C# and Java. Once you learn JavaScript, you’ve got a foothold
on learning these other popular programming languages.

• New HTML5 canvas. Chapter 14 replaces the Flash and Silverlight chapters
from the previous edition with the new HTML5 canvas element for 2D graphics
(Fig. 3). canvas is built into the browser, eliminating the need for plug-ins like
Flash and Silverlight, and helping you improve performance and convenience,
and reduce costs. At the end of the chapter, you’ll use canvas to build a fun, an-
imated Cannon Game with audio effects, which we built in Flash in previous edi-
tions of this book.

• New and updated multimedia exercises. Chapter 14 includes several new and up-
dated multimedia exercises (Fig. 4).

HTML5 canvas features

rectangles lines arcs and circles

shadows quadratic curves Bezier curves

linear gradients radial gradients image manipulation

images patterns transformations

alpha transparency compositing

Fig. 3 | HTML5 canvas features.

New and updated multimedia exercises

Cannon Game Enhance-
ments

Animation
Scrolling Marquee Sign
Dynamic Audio and

Graphical Kaleidoscope
One-Armed Bandit
Game of Pool
Crossword Puzzle
Rotating Images

Random Interimage
Transition

Scrolling Image Marquee
Automatic Jigsaw Puzzle

Generator
Horse Race
Fireworks Designer
15 Puzzle
Coloring Black-and-White

Photographs and Images

Digital Clock
Background Audio
Analog Clock
Maze Generator and

Walker
Shuffleboard
Floor Planner
Reaction Time Tester
Vacuuming Robot
Eyesight Tester

Fig. 4 | New and updated multimedia exercises.

FMTOC.book Page 21 Wednesday, November 16, 2011 1:09 PM

22 Preface

• Tested on seven browsers. For the last edition of this book, we tested all the code
on two desktop browsers—Internet Explorer and Firefox. For this new edition, we
tested all of the code in the most current versions of seven popular browsers—five
for the desktop (Chrome, Internet Explorer, Firefox, Opera and Safari) and two
for mobile devices (iPhone/iPad and Android). HTML5 and CSS3 are evolving
and the final standards have not been approved yet. The browser vendors are selec-
tively implementing features that are likely to be standardized. Some vendors have
higher levels of feature compliance than others. With each new version of the
browsers, the trend has been to significantly increase the amount of functionality
that’s been implemented. The HTML5 test site (html5test.com) measures how
well each browser supports the pending standards and specifications. You can view
test scores and see which features are supported by each browser. You can also
check sites such as http://caniuse.com/ for a list of features covered by each
browser. Not every document in this book will render properly in each browser. Instead
of choosing only capabilities that exist universally, we demonstrate exciting new
features in whatever browser handles the new functionality best. As you read this
book, run each example in multiple web browsers so you can view and interact
with it as it was originally intended. And remember, things are changing quickly,
so a browser that did not support a feature when we wrote the book could support
it when you read the book.

• Validated HTML5, CSS3 and JavaScript code. All of the HTML5, CSS3 and
JavaScript code in the book was validated using validator.w3.org/ for
HTML5, jigsaw.w3.org/css-validator for CSS3 and javascriptlint.com
for JavaScript. Not every script fully validates but most do. Although all of the code
works properly, you may receive warnings (or possibly errors) when validating
code with some of the new features.

• Smartphone and tablet apps. You’re probably familiar with the explosion of apps
available for the iPhone/iPad and Android platforms. There’s almost a million
apps between the two. Previously, writing apps for these platforms required de-
tailed knowledge of each, and in the case of iPhone/iPad, was strictly controlled
by Apple; Android is more open. With the techniques you’ll learn in this book,
you’ll be able to write apps that are portable between a great variety of desktop
and mobile platforms, including iPhone/iPad and Android. You’ll even be able
to sell those apps on your own terms (or through certain app stores as well). This
is an exciting possibility! It’s one of the true virtues of developing with HTML5,
CSS3 and JavaScript in general, and HTML5 canvas in particular. Running an
HTML5 app on your smartphone or tablet is as simple as opening it in your com-
pliant web browser. You may still encounter some portability issues.

• New HTML5 web storage capabilities. In Chapter 11, we use HTML5’s new
web storage capabilities to create a web application that stores a user’s favorite
Twitter searches on the computer for easy access at a later time. Web storage re-
places the controversial cookie technology, offering lots more storage space.
Chapter 11 also briefly introduces JSON, a means for creating JavaScript ob-
jects—typically for transferring data over the Internet between client-side and
server-side programs.

FMTOC.book Page 22 Wednesday, November 16, 2011 1:09 PM

 New and Updated Features 23

• Enhanced Craps game featuring HTML5 audio and video elements. The Craps
game in Chapter 9 now includes an HTML5 audio element that plays a dice-roll-
ing sound each time the user rolls the dice. Also, we link to a page with an embed-
ded HTML5 video element that plays a video explaining the rules of the game.

• jQuery Ajax case study. The previous edition of this book included a calendar ap-
plication that used the Dojo libraries—which were popular at the time—to create
the user interface, communicate with the server asynchronously, handle events
and manipulate the DOM. Since then, jQuery has become the most popular
JavaScript library. For this edition, we’ve updated the calendar application
(Chapter 16) using jQuery and placed it online as a jQuery Ajax case study.

• New HTML5 WebSockets and Web Workers capabilities. We’ve added an online
treatment of two new technologies—WebSockets, which provides a simple
model for networking, and Web Workers which provides multithreading on a
web page.

• Ajax-enabled web applications. We’ve updated the chapter on building Ajax-en-
abled web applications, with applications that demonstrate partial-page updates
and type-ahead capabilities—each of these are key capabilities of Rich Internet
Applications.

• HTML DOM and XML DOM. We’ve enhanced the treatments of HTML
DOM manipulation, JavaScript events and XML DOM manipulation with
JavaScript.

• LINQ. Since the last edition of the book, Microsoft introduced LINQ (Lan-
guage-Integrated Query) to replace SQL for database access. Chapter 18 provides
an introduction to LINQ basics and an introduction to LINQ to SQL (the tech-
nology that replaces SQL).

• Updated PHP coverage. Chapter 19 has been updated to the latest version of PHP.
If you start this book as a novice and study the JavaScript in Chapters 6–13, you’ll
have the programming experience needed to understand server-side programming
in PHP. [Our treatment of server-side programming in ASP.NET requires knowl-
edge of C# or Visual Basic, and in JSF requires knowledge of Java.]

• ASP.NET, ASP.NET Ajax and web services. This updated three-chapter se-
quence is now provided for each of Microsoft’s two key applications development
languages—C# and Visual Basic. The C# chapters and the first VB chapter are
in the print book and the remaining Visual Basic chapters are available online at
the book’s Companion Website (see the inside front cover).

• JavaServer Faces (JSF), JSF Ajax and web services. This updated three-chapter
sequence, available online, emphasizes building Ajax-enabled JSF applications.

• Web services. We now provide chapters on building both SOAP-based web ser-
vices and REST-based web services with ASP.NET in Visual Basic, ASP.NET in
C# and JSF in Java.

• Client/Server applications. Several client-side case studies now enable students to
interact with preimplemented web services that we host at test.deitel.com.

FMTOC.book Page 23 Wednesday, November 16, 2011 1:09 PM

24 Preface

• New and updated case studies. The book includes rich case studies using various
technologies—Deitel Cover Viewer (JavaScript/DOM), Address Book (Ajax),
Cannon Game (HTML5 Canvas), Mailing List (PHP/MySQL), Guest Book
and Password-Protected Books Database (ASP.NET), Address Book (JavaServer
Faces) and Blackjack (JAX-WS web services).

New Pedagogic Features
• Making a Difference exercises in Chapter 1. We encourage you to use computers

and the Internet to research and solve significant social problems. These exercises
are meant to increase awareness and discussion of important issues the world is fac-
ing. We hope you’ll approach them with your own values, politics and beliefs.
Check out the many Making a Difference resources we provide, including our new
Making a Difference Resource Center at www.deitel.com/MakingADifference for
additional ideas you may want to investigate further.

• Page numbers for key terms in chapter summaries. For key terms that appear in
the Chapters 1–19 summaries, we include the page number of the key term’s de-
fining occurrence in the text.

Dependency Chart
The chart in Fig. 5 shows the book’s modular organization and the dependencies among
the chapters to help instructors plan their syllabi. Internet & World Wide Web How to Pro-
gram, 5/e, is appropriate for a variety of introductory and intermediate -level programming
courses, most notably client-side programming and server-side programming.
Chapters 1–23 are in the printed book; Chapters 24–29 and some appendices are online.

We recommend that you study all of a given chapter’s dependencies before studying
that chapter, though other orders are certainly possible. Some of the dependencies apply
only to sections of chapters, so we advise instructors to browse the material before
designing a course of study. This book is intended for courses that teach pure client-side
web programming, courses that teach pure server-side web programming, and courses that
mix and match some of each. Readers interested in studying server-side technologies
should understand how to build web pages using HTML5 and CSS3, and object-based
programming in JavaScript. Chapters 15 and 16 can be taught as part of a client-side unit,
at the beginning of a server-side unit or split between the two.

HTML5 Accessibility Online Appendix
According to the W3C Web Accessibility Initiative, your web pages and applications should
be accessible so that “people with disabilities can perceive, understand, navigate, and interact
with the web, and that they can contribute to the web.”1 In an online appendix, we enumer-
ate accessibility issues you should consider when designing web pages and web-based appli-
cations. We also provide resources that show you how to use HTML5, CSS3, JavaScript and
various design techniques to create accessible web pages and applications. As appropriate, we
tie the information in this appendix back to the appropriate chapters and sections so that you
can see how the applications may be enhanced to improve web accessibility.

1. http://www.w3.org/WAI/intro/accessibility.php.

FMTOC.book Page 24 Wednesday, November 16, 2011 1:09 PM

 HTML5 Accessibility Online Appendix 25

Fig. 5 | Internet & World Wide Web How to Program, 5/e chapter dependency chart.

Intro to HTML5 and CSS3
2 Introduction to HTML5: Part 1

3 Introduction to HTML5: Part 2

4 Introduction to Cascading Style Sheets™
(CSS): Part 1

5 Introduction to Cascading Style Sheets™
(CSS): Part 2

1 Intro to Computers and the Internet

1. Chapter 19 assumes only that you’re familiar with the programming fundamentals presented in Chapters 6–13.
2. The C# chapters require knowledge of C# and the Microsoft .NET class libraries.
3. The Visual Basic chapters require knowledge of Visual Basic and the Microsoft .NET class libraries.
4. The Java chapters require knowledge of Java and the Java class libraries.

Introduction

6 JavaScript: Introduction to Scripting

7 JavaScript: Control Statements I

8 JavaScript: Control Statements II

9 JavaScript Functions

10 JavaScript: Arrays

11 JavaScript: Objects

12 Document Object Model (DOM): Objects
and Collections

13 JavaScript Event Handling: A Deeper Look

14 HTML5: Introduction to Canvas

Programming Fundamentals
in JavaScript

Foundations of Ajax
15 XML

16 Ajax-Enabled Rich Internet Applications

17 Web Servers (Apache and IIS)

18 Database: SQL, MySQL,
LINQ to SQL and Java DB

19 PHP1

Introduction to Server-Side
Development

20 Web App Development
with ASP.NET in C#

21 Web App Development
with ASP.NET in C#: A Deeper Look

22 Web Services in C#

Server-Side Development
with ASP.NET and C#2

23 Web App Development
with ASP.NET in Visual Basic

24 Web App Development
with ASP.NET in VB: A Deeper Look

25 Web Services in Visual Basic

Server-Side Development
with ASP.NET and VB3

26 JavaServer™ Faces Web Apps: Part 1

27 JavaServer™ Faces Web Apps: Part 2

28 Web Services in Java

Server-Side Development with
JavaServer Faces and Java4

29 HTML5 WebSockets and Web Workers

WebSockets and Web Workers

FMTOC.book Page 25 Wednesday, November 16, 2011 1:09 PM

26 Preface

HTML5 Geolocation Online Appendix
The HTML5 Geolocation API allows you to build web applications that gather location
information (i.e,. latitude and longitude coordinates) using technologies like GPS, IP
addresses, WiFi connections or cellular tower connections. It’s supported by the seven
desktop and mobile browsers we used to test the code throughout the book.

The Geolocation API specification lists several use cases,2 including:

• finding points of interest in the user's area

• annotating content with location information

• showing the user's position on a map

• providing route navigation

• alerting the user when points of interest are nearby

• providing up-to-date local information

• tagging locations in status updates on social networking sites

For example, you could create a location-based mobile web app that uses GPS location in-
formation from a smartphone to track a runner’s route on a map, calculate the distance
traveled and the average speed. Similarly, you could create an app that returns a list of
nearby businesses. In this online appendix, we build a mobile location-based app.

Teaching Approach
Internet & World Wide Web How to Program, 5/e, contains hundreds of complete working
examples across a wide variety of markup, styling, scripting and programming languages.
We stress clarity and concentrate on building well-engineered software.

Syntax Shading. For readability, we syntax shade the code, similar to the way most inte-
grated-development environments and code editors syntax color the code. Our syntax-
shading conventions are:

Code Highlighting. We place gray rectangles around key code segments.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold text for easy reference. We emphasize on-screen components
in the bold Helvetica font (for example, the File menu) and program text in the Lucida font
(for example, int count = 5).

Web Access. All of the source-code examples can be downloaded from:

Objectives. The opening quotes are followed by a list of chapter objectives.

2. http://www.w3.org/TR/geolocation-API/#usecases_section.

comments appear like this
keywords appear like this
constants and literal values appear like this
all other code appears in black

www.deitel.com/books/iw3htp5
www.pearsoninternationaleditions.com/deitel

FMTOC.book Page 26 Wednesday, November 16, 2011 1:09 PM

 Teaching Approach 27

Illustrations/Figures. Abundant tables, line drawings, documents, scripts, programs and
program outputs are included.

Programming Tips. We include programming tips to help you focus on important aspects
of software development. These tips and practices represent the best we’ve gleaned from a
combined seven decades of programming and teaching experience.

Summary Bullets. We present a section-by-section bullet-list summary of the chapter for
rapid review of key points. For ease of reference, we include the page number of each key
term’s defining occurrence in the text.

Self-Review Exercises and Answers. Extensive self-review exercises and answers are includ-
ed for self study.

Exercises. The chapter exercises include:

• simple recall of important terminology and concepts

• What’s wrong with this code?

• writing individual statements

• writing complete functions and scripts

• major projects

Index. We’ve included an extensive index. Defining occurrences of key terms are high-
lighted with a bold page number.

Good Programming Practices
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Errors
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make them.

Error-Prevention Tips
These tips contain suggestions for exposing and removing bugs from your programs; many
of the tips describe aspects of programming that prevent bugs from getting into programs.

Performance Tips
These tips highlight opportunities for making your scripts and programs run faster or min-
imizing the amount of memory that they occupy.

Portability Tips
The Portability Tips help you write code that will run on a variety of platforms.

Software Engineering Observations
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

FMTOC.book Page 27 Wednesday, November 16, 2011 1:09 PM

28 Preface

Instructor Resources
The following supplements are available to qualified instructors only through Pearson
Education’s Instructor Resource Center (www.pearsoninternationaleditions.com/deitel):

• PowerPoint® slides containing all the code and figures in the text, plus bulleted
items that summarize key points.

• Solutions Manual with solutions to many of the end-of-chapter exercises. Please
check the Instructor Resource Center to determine which exercises have solu-
tions.

Please do not write to us requesting access to the Pearson Instructor’s Resource Center.
Access is restricted to college instructors teaching from the book. Instructors may obtain
access only through their Pearson representatives. If you’re not a registered faculty mem-
ber, contact your Pearson representative.

Solutions are not provided for “project” exercises. Check out our Programming Proj-
ects Resource Center for lots of additional exercise and project possibilities
(www.deitel.com/ProgrammingProjects/).

Acknowledgments
We’d like to thank Barbara Deitel for long hours devoted to this project. We’re fortunate
to have worked with the dedicated team of publishing professionals at Pearson. We appre-
ciate the guidance, savvy and energy of Michael Hirsch, Editor-in-Chief of Computer Sci-
ence. Carole Snyder recruited the book’s reviewers and managed the review process. Bob
Engelhardt managed the book’s production.

Reviewers
We wish to acknowledge the efforts of our fourth and fifth edition reviewers. They scru-
tinized the text and the programs and provided countless suggestions for improving the
presentation: Timothy Boronczyk (Consultant), Roland Bouman (MySQL AB), Chris
Bowen (Microsoft), Peter Brandano (KoolConnect Technologies, Inc.), Matt Chotin
(Adobe), Chris Cornutt (PHPDeveloper.org), Phil Costa (Adobe), Umachitra Damo-
daran (Sun Microsystems), Vadiraj Deshpande (Sun Microsystems), Justin Erenkrantz
(The Apache Software Foundation), Christopher Finke (Netscape), Jesse James Garrett
(Adaptive Path), Mike Harsh (Microsoft), Chris Heilmann (Mozilla), Kevin Henrikson
(Zimbra.com), Tim Heuer (Microsoft), Molly E. Holtzschlag (W3C), Ralph Hooper
(University of Alabama, Tuscaloosa), Chris Horton (University of Alabama), John Hrva-
tin (Microsoft), Johnvey Hwang (Splunk, Inc.), Joe Kromer (New Perspective and the
Pittsburgh Adobe Flash Users Group), Jennifer Kyrnin (Web Design Guide at
About.com), Eric Lawrence (Microsoft), Pete LePage (Microsoft), Dr. Roy Levow (Flori-
da Atlantic University), Billy B. L. Lim (Illinois State University), Shobana Mahadevan
(Sun Microsystems), Patrick Mineault (Freelance Flash Programmer), Anand Narayanas-
wamy (Microsoft), John Peterson (Insync and V.I.O., Inc.), Jennifer Powers (University
of Albany), Ignacio Ricci (Ignacioricci.com), Jake Rutter (onerutter.com), Robin Schu-
macher (MySQL AB), José Antonio González Seco (Parlamento de Andalucia), Dr.
George Semeczko (Royal & SunAlliance Insurance Canada), Steven Shaffer (Penn State
University), Michael Smith (W3C), Karen Tegtmeyer (Model Technologies, Inc.), Paul
Vencill (MITRE), Raymond Wen (Microsoft), Eric M. Wendelin (Auto-trol Technology

FMTOC.book Page 28 Wednesday, November 16, 2011 1:09 PM

 About the Authors 29

Corporation), Raymond F. Wisman (Indiana University), Keith Wood (Hyro, Ltd.) and
Daniel Zappala (Brigham Young University).

As you read the book, we’d appreciate your comments, criticisms, corrections and
suggestions for improvement. Please address all correspondence to:

We’ll respond promptly. We hope you enjoy working with Internet & World Wide Web
How to Program, 5/e.

Paul, Harvey and Abbey Deitel

About the Authors
Paul J. Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. Through Deitel & Associates, Inc.,
he has delivered hundreds of Java, C++, C, C#, Visual Basic and Internet programming
courses to industry clients, including Cisco, IBM, Siemens, Sun Microsystems, Dell, Lu-
cent Technologies, Fidelity, NASA at the Kennedy Space Center, the National Severe
Storm Laboratory, White Sands Missile Range, Rogue Wave Software, Boeing, SunGard
Higher Education, Stratus, Cambridge Technology Partners, One Wave, Hyperion Soft-
ware, Adra Systems, Entergy, CableData Systems, Nortel Networks, Puma, iRobot, In-
vensys and many more. He and his co-author, Dr. Harvey M. Deitel, are the world’s best-
selling programming-language textbook authors.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associates,
Inc., has 50 years of experience in the computer field. Dr. Deitel earned B.S. and M.S.
degrees from MIT and a Ph.D. from Boston University. He has extensive college teaching
experience, including earning tenure and serving as the Chairman of the Computer Sci-
ence Department at Boston College before founding Deitel & Associates, Inc., with his
son, Paul J. Deitel. He and Paul are the co-authors of dozens of books and LiveLessons
video packages and they are writing many more. The Deitels’ texts have earned interna-
tional recognition, with translations published in Japanese, German, Russian, Chinese,
Spanish, Korean, French, Polish, Italian, Portuguese, Greek, Urdu and Turkish. Dr.
Deitel has delivered hundreds of professional programming seminars to major corpora-
tions, academic institutions, government organizations and the military.

Abbey Deitel, President of Deitel & Associates, Inc., is a graduate of Carnegie Mellon
University's Tepper School of Management where she received a B.S. in Industrial Man-
agement. Abbey has been managing the business operations of Deitel & Associates, Inc.
for 14 years. She has contributed to numerous Deitel & Associates publications and is the
co-author of iPhone for Programmers: An App-Driven Approach and Android for Program-
mers: An App-Driven Approach.

Corporate Training from Deitel & Associates, Inc.
Deitel & Associates, Inc., is an internationally recognized corporate training and authoring or-
ganization. The company provides instructor-led courses delivered at client sites worldwide on
major programming languages and platforms, such as Java™, C++, Visual C++®, C, Visual
C#®, Visual Basic®, XML®, Python®, object technology, Internet and web programming,

deitel@deitel.com

FMTOC.book Page 29 Wednesday, November 16, 2011 1:09 PM

30 Preface

Android™ and iPhone® app development, and a growing list of additional programming and
software-development courses. The founders of Deitel & Associates, Inc., are Paul J. Deitel
and Dr. Harvey M. Deitel. The company’s clients include many of the world’s largest compa-
nies, government agencies, branches of the military, and academic institutions. Through its
36-year publishing partnership with Prentice Hall/Pearson, Deitel & Associates publishes lead-
ing-edge programming textbooks, professional books and LiveLessons video courses. Deitel &
Associates, Inc., and the authors can be reached via e-mail at:

To learn more about the company, its publications and its Dive Into® Series Corporate
Training curriculum delivered at client locations worldwide, visit:

subscribe to the Deitel® Buzz Online e-mail newsletter at:

and join the authors’ communities on Facebook (www.facebook.com/DeitelFan) and Twit-
ter (@deitel).

Individuals wishing to purchase Deitel books, and LiveLessons video training courses
can do so through www.deitel.com. Bulk orders by corporations, the government, the
military and academic institutions should be placed directly with Pearson. For more infor-
mation, visit

deitel@deitel.com

www.deitel.com/training/

www.deitel.com/newsletter/subscribe.html

www.pearsoninternationaleditions.com/deitel

FMTOC.book Page 30 Wednesday, November 16, 2011 1:09 PM

Please follow these instructions to download the book’s examples and ensure you have a
current web browser before you begin using this book.

Obtaining the Source Code
The examples for Internet & World Wide Web How To Program, 5/e are available for down-
load at

If you’re not already registered at our website, go to www.deitel.com and click the Register
link below our logo in the upper-left corner of the page. Fill in your information. There’s no
charge to register, and we do not share your information with anyone. We send you only
account-management e-mails unless you register separately for our free Deitel® Buzz Online
e-mail newsletter at www.deitel.com/newsletter/subscribe.html. After registering for
the site, you’ll receive a confirmation e-mail with your verification code. Click the link in the
confirmation e-mail to complete your registration. Configure your e-mail client to allow e-mails
from deitel.com to ensure that the confirmation email is not filtered as junk mail.

Next, go to www.deitel.com and sign in using the Login link below our logo in the
upper-left corner of the page. Go to www.deitel.com/books/iw3htp5/. You’ll find the
link to download the examples under the heading Download Code Examples and Other Pre-
mium Content for Registered Users. Write down the location where you choose to save the
ZIP file on your computer. Extract the example files to your hard disk using a ZIP file
extractor program. If you are working in a computer lab, ask your instructor where you
can save the example code.

Web Browsers Used in This Book
We tested all of the code in the most current versions of seven popular browsers—five for
the desktop (Chrome, Internet Explorer, Firefox, Opera and Safari) and two for mobile
devices (iPhone and Android). HTML5 and CSS3 are evolving and the final standards
have not been approved yet. The browser vendors are selectively implementing features
that are likely to become a part of the standards. Some vendors have higher levels of feature
compliance than others. With each new version of the browsers, the trend has been to sig-
nificantly increase the amount of functionality that’s been implemented. The HTML5
test site (html5test.com) measures how well each browser supports the pending standards
and specifications. You can view test scores and see which features are supported by each
browser. You can also check sites such as http://caniuse.com/ for a list of features cov-
ered by each browser. Not every document in this book will render properly in each brows-
er. Instead of choosing only capabilities that exist universally, we demonstrate exciting new

www.deitel.com/books/iw3htp5/

Before You
Begin

FMTOC.book Page 31 Wednesday, November 16, 2011 1:09 PM

32 Before You Begin

features in whatever browser handles the new functionality best. As you read this book,
run each example in multiple web browsers so you can view and interact with it as it was
originally intended. And remember, things are changing quickly, so a browser that did not
support a feature when we wrote the book could support it when you read the book.

Web Browser Download Links
You can download the desktop browsers from the following locations:

• Google Chrome: http://www.google.com/chrome

• Mozilla Firefox: http://www.mozilla.org/firefox/new/

• Microsoft Internet Explorer (Windows only): http://www.microsoft.com/ie

• Apple Safari: http://www.apple.com/safari/

• Opera: http://www.opera.com/

We recommend that you install all the browsers that are available for your platform.

Software for the C# and Visual Basic ASP.NET Chapters
The C# (Chapters 20–22) and Visual Basic (Chapters 23–25) ASP.NET and web services
chapters require Visual Web Developer 2010 Express and SQL Server 2008 Express.
These tools are downloadable from www.microsoft.com/express. You should follow the
default installation instructions for each.

Software for the JavaServer Faces and Java Web Services Chapters
The software required for the JavaServer Faces and Java Web Services chapters (Chapters
26–28) is discussed at the beginning of Chapter 26.

You’re now ready to begin your web programming studies with Internet & World Wide
Web How to Program, 5/e. We hope you enjoy the book! If you have any questions, please
feel free to email us at deitel@deitel.com. We’ll respond promptly.

FMTOC.book Page 32 Wednesday, November 16, 2011 1:09 PM

1Introduction to Computers
and the Internet

People are using the web to
build things they have not built
or written or drawn or
communicated anywhere else.
—Tim Berners-Lee

How wonderful it is that
nobody need wait a single
moment before starting to
improve the world.
—Anne Frank

Man is still the most
extraordinary computer of all.
—John F. Kennedy

O b j e c t i v e s
In this chapter you’ll learn:

■ Computer hardware, soft-
ware and Internet basics.

■ The evolution of the Internet
and the World Wide Web.

■ How HTML5, CSS3 and
JavaScript are improving web-
application development.

■ The data hierarchy.

■ The different types of
programming languages.

■ Object-technology concepts.

■ And you’ll see demos of
interesting and fun Internet
applications you can build
with the technologies you’ll
learn in this book.

iw3htp5_01_Intro.fm Page 33 Wednesday, November 16, 2011 1:06 PM

34 Chapter 1 Introduction to Computers and the Internet

1.1 Introduction
Welcome to the exciting and rapidly evolving world of Internet and web programming!
There are more than two billion Internet users worldwide—that’s approximately 30% of
the Earth’s population.1 In use today are more than a billion general-purpose computers,
and billions more embedded computers are used in cell phones, smartphones, tablet com-
puters, home appliances, automobiles and more—and many of these devices are connect-
ed to the Internet. According to a study by Cisco Internet Business Solutions Group, there
were 12.5 billion Internet-enabled devices in 2010, and the number is predicted to reach
25 billion by 2015 and 50 billion by 2020.2 The Internet and web programming technol-
ogies you’ll learn in this book are designed to be portable, allowing you to design web pages
and applications that run across an enormous range of Internet-enabled devices.

You’ll begin by learning the client-side programming technologies used to build web
pages and applications that are run on the client (i.e., in the browser on the user’s device).
You’ll use HyperText Markup Language 5 (HTML5) and Cascading Style Sheets 3
(CSS3)—the recent releases of HTML and CSS technologies—to add powerful, dynamic
and fun features and effects to web pages and web applications, such as audio, video, ani-
mation, drawing, image manipulation, designing pages for multiple screen sizes, access to
web storage and more.

You’ll learn JavaScript—the language of choice for implementing the client side of
Internet-based applications (we discuss JavaScript in more detail in Section 1.3).
Chapters 6–13 present rich coverage of JavaScript and its capabilities. You’ll also learn
about jQuery—the JavaScript library that’s dramatically reshaping the world of web devel-
opment. Throughout the book there’s also an emphasis on Ajax development, which helps
you create better-performing, more usable applications.

Later in the book, you’ll learn server-side programming—the applications that respond
to requests from client-side web browsers, such as searching the Internet, checking your

1.1 Introduction
1.2 The Internet in Industry and Research
1.3 HTML5, CSS3, JavaScript, Canvas

and jQuery
1.4 Demos
1.5 Evolution of the Internet and World

Wide Web
1.6 Web Basics
1.7 Multitier Application Architecture
1.8 Client-Side Scripting versus Server-

Side Scripting
1.9 World Wide Web Consortium (W3C)

1.10 Web 2.0: Going Social
1.11 Data Hierarchy
1.12 Operating Systems

1.12.1 Desktop and Notebook Operating
Systems

1.12.2 Mobile Operating Systems

1.13 Types of Programming Languages
1.14 Object Technology
1.15 Keeping Up-to-Date with

Information Technologies

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1. www.internetworldstats.com/stats.htm.
2. www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf.

iw3htp5_01_Intro.fm Page 34 Wednesday, November 16, 2011 1:06 PM

1.2 The Internet in Industry and Research 35

bank-account balance, ordering a book from Amazon, bidding on an eBay auction and
ordering concert tickets. We present condensed treatments of four popular Internet/web
programming languages for building the server side of Internet- and web-based client/
server applications. Chapters 19–22 and 23–28 present three popular server-side technol-
ogies, including PHP, ASP.NET (in both C# and Visual Basic) and JavaServer Faces.

Be sure to read both the Preface and the Before You Begin section to learn about the
book’s coverage and how to set up your computer to run the hundreds of code examples.
The code is available at www.deitel.com/books/iw3htp5 and www.pearsonhighered.com/
deitel. Use the source code we provide to run every program and script as you study it. Try
each example in multiple browsers. If you’re interested in smartphones and tablet computers,
be sure to run the examples in your browsers on iPhones, iPads, Android smartphones and
tablets, and others. The technologies covered in this book and browser support for them are
evolving rapidly. Not every feature of every page we build will render properly in every browser.
All seven of the browsers we use are free.

Moore’s Law
Every year, you probably expect to pay at least a little more for most products and services.
The opposite has been the case in the computer and communications fields, especially
with regard to the costs of hardware supporting these technologies. For many decades,
hardware costs have fallen rapidly. Every year or two, the capacities of computers have ap-
proximately doubled inexpensively. This remarkable trend often is called Moore’s Law,
named for the person who identified it, Gordon Moore, co-founder of Intel—the leading
manufacturer of the processors in today’s computers and embedded systems. Moore’s Law
and related observations apply especially to the amount of memory that computers have
for programs, the amount of secondary storage (such as disk storage) they have to hold pro-
grams and data over longer periods of time, and their processor speeds—the speeds at
which computers execute their programs (i.e., do their work). Similar growth has occurred
in the communications field, in which costs have plummeted as enormous demand for
communications bandwidth (i.e., information-carrying capacity) has attracted intense
competition. We know of no other fields in which technology improves so quickly and
costs fall so rapidly. Such phenomenal improvement is truly fostering the Information Rev-
olution.

1.2 The Internet in Industry and Research
These are exciting times in the computer field. Many of the most influential and successful
businesses of the last two decades are technology companies, including Apple, IBM, Hew-
lett Packard, Dell, Intel, Motorola, Cisco, Microsoft, Google, Amazon, Facebook, Twit-
ter, Groupon, Foursquare, Yahoo!, eBay and many more. These companies are major
employers of people who study computer science, information systems or related disci-
plines. At the time of this writing, Apple was the most valuable company in the world.

In the past, most computer applications ran on computers that were not connected to
one another, whereas today’s Internet applications can be written to communicate among
computers throughout the world.

Figures 1.1–1.4 provide a few examples of how computers and the Internet are being
used in industry and research. Figure 1.1 lists two examples of how computers and the
Internet are being used to improve health care.

iw3htp5_01_Intro.fm Page 35 Wednesday, November 16, 2011 1:06 PM

36 Chapter 1 Introduction to Computers and the Internet

Figure 1.2 provides a sample of some of the exciting ways in which computers and the
Internet are being used for social good. In the exercises at the end of this chapter, you’ll be
asked to propose other projects that would use computers and the Internet to “make a dif-
ference.”

We rely on computers and the Internet to communicate, navigate, collaborate and
more. Figure 1.3 gives some examples of how computers and the Internet provide the
infrastructure for these tasks.

Name Description

Electronic health
records

These might include a patient's medical history, prescriptions, immuni-
zations, lab results, allergies, insurance information and more. Making
this information available to health care providers across a secure net-
work improves patient care, reduces the probability of error and
increases overall efficiency of the health care system.

Human Genome
Project

The Human Genome Project was founded to identify and analyze the
20,000+ genes in human DNA. The project used computer programs
to analyze complex genetic data, determine the sequences of the bil-
lions of chemical base pairs that make up human DNA and store the
information in databases which have been made available over the
Internet to researchers in many fields.

Fig. 1.1 | Computers and the Internet in health care.

Name Description

AMBER™ Alert The AMBER (America’s Missing: Broadcast Emergency Response)
Alert System is used to find abducted children. Law enforcement
notifies TV and radio broadcasters and state transportation officials,
who then broadcast alerts on TV, radio, computerized highway signs,
the Internet and wireless devices. AMBER Alert recently partnered
with Facebook, whose users can “Like” AMBER Alert pages by location
to receive alerts in their news feeds.

World
Community Grid

People worldwide can donate their unused computer processing power
by installing a free secure software program that allows the World
Community Grid (www.worldcommunitygrid.org) to harness unused
capacity. This computing power, accessed over the Internet, is used in
place of expensive supercomputers to conduct scientific research
projects that are making a difference, providing clean water to third-
world countries, fighting cancer, growing more nutritious rice for
regions fighting hunger and more.

One Laptop Per
Child (OLPC)

One Laptop Per Child (one.laptop.org) is providing low-power, inex-
pensive, Internet-enabled laptops to poor children worldwide—
enabling learning and reducing the digital divide.

Fig. 1.2 | Projects that use computers and the Internet for social good.

iw3htp5_01_Intro.fm Page 36 Wednesday, November 16, 2011 1:06 PM

1.2 The Internet in Industry and Research 37

Figure 1.4 lists a few of the exciting ways in which computers and the Internet are
used in entertainment.

Name Description

Cloud
computing

Cloud computing allows you to use software, hardware and information
stored in the “cloud”—i.e., accessed on remote computers via the Internet
and available on demand—rather than having it stored on your personal
computer. Amazon is one of the leading providers of public cloud comput-
ing services. You can rent extra storage capacity using the Amazon Simple
Storage Service (Amazon S3), or augment processing capabilities with Ama-
zon’s EC2 (Amazon Elastic Compute Cloud). These services, allowing you
to increase or decrease resources to meet your needs at any given time, are
generally more cost effective than purchasing expensive hardware to ensure
that you have enough storage and processing power to meet your needs at
their peak levels. Business applications (such as CRM software) are often
expensive, require significant hardware to run them and knowledgeable sup-
port staff to ensure that they’re running properly and securely. Using cloud
computing services shifts the burden of managing these applications from
the business to the service provider, saving businesses money.

GPS Global Positioning System (GPS) devices use a network of satellites to
retrieve location-based information. Multiple satellites send time-stamped
signals to the GPS device, which calculates the distance to each satellite
based on the time the signal left the satellite and the time the signal arrived.
This information is used to determine the exact location of the device. GPS
devices can provide step-by-step directions and help you easily find nearby
businesses (restaurants, gas stations, etc.) and points of interest. GPS is used
in numerous location-based Internet services such as check-in apps to help
you find your friends (e.g., Foursquare and Facebook), exercise apps such as
RunKeeper that track the time, distance and average speed of your outdoor
jog, dating apps that help you find a match nearby and apps that dynami-
cally update changing traffic conditions.

Robots Robots can be used for day-to-day tasks (e.g., iRobot’s Roomba vacuum),
entertainment (e.g., robotic pets), military combat, deep sea and space
exploration (e.g., NASA’s Mars rover) and more. RoboEarth
(www.roboearth.org) is “a World Wide Web for robots.” It allows robots to
learn from each other by sharing information and thus improving their abil-
ities to perform tasks, navigate, recognize objects and more.

E-mail, Instant
Messaging,
Video Chat
and FTP

Internet-based servers support all of your online messaging. E-mail messages
go through a mail server that also stores the messages. Instant messaging
(IM) and Video Chat apps, such as AIM, Skype, Yahoo! Messenger and oth-
ers allow you to communicate with others in real time by sending your mes-
sages and live video through servers. FTP (file transfer protocol) allows you
to exchange files between multiple computers (e.g., a client computer such
as your desktop and a file server) over the Internet using the TCP/IP proto-
cols for transferring data.

Fig. 1.3 | Examples of computers and the Internet in infrastructure.

iw3htp5_01_Intro.fm Page 37 Wednesday, November 16, 2011 1:06 PM

38 Chapter 1 Introduction to Computers and the Internet

1.3 HTML5, CSS3, JavaScript, Canvas and jQuery
You’ll be learning the latest versions of several key client-side, web-application develop-
ment technologies in this book. This section provides a brief overview of each.

HTML5
Chapters 2–3 introduce HTML (HyperText Markup Language)—a special type of comput-
er language called a markup language designed to specify the content and structure of web pag-
es (also called documents) in a portable manner. HTML5, now under development, is the
emerging version of HTML. HTML enables you to create content that will render appro-
priately across the extraordinary range of devices connected to the Internet—including
smartphones, tablet computers, notebook computers, desktop computers, special-purpose
devices such as large-screen displays at concert arenas and sports stadiums, and more.

You’ll learn the basics of HTML5, then cover more sophisticated techniques such as
creating tables, creating forms for collecting user input and using new features in HTML5,
including page-structure elements that enable you to give meaning to the parts of a page
(e.g., headers, navigation areas, footers, sections, figures, figure captions and more).

Name Description

iTunes and the
App Store

iTunes is Apple’s media store where you can buy and download digital
music, movies, television shows, e-books, ringtones and apps (for
iPhone, iPod and iPad) over the Internet. Apple’s iCloud service allows
you to store your media purchases “in the cloud” and access them from
any iOS (Apple’s mobile operating system) device. In June 2011, Apple
announced at their World Wide Developer Conference (WWDC) that
15 billion songs had been downloaded through iTunes, making Apple
the leading music retailer. As of July 2011, 15 billion apps had been
downloaded from the App Store (www.apple.com/pr/library/2011/
07/07Apples-App-Store-Downloads-Top-15-Billion.html).

Internet TV Internet TV set-top boxes (such as Apple TV and Google TV) allow
you to access an enormous amount of content on demand, such as
games, news, movies, television shows and more.

Game
programming

Global video game revenues are expected to reach $65 billion in 2011
(uk.reuters.com/article/2011/06/06/us-videogames-factbox-
idUKTRE75552I20110606). The most sophisticated games can cost as
much as $100 million to develop. Activision’s Call of Duty 2: Modern
Warfare, released in 2009, earned $310 million in just one day in North
America and the U.K. (news.cnet.com/8301-13772_3-10396593-
52.html?tag=mncol;txt)! Online social gaming, which enables users
worldwide to compete with one another over the Internet, is growing
rapidly. Zynga—creator of popular online games such as Farmville and
Mafia Wars—was founded in 2007 and already has over 265 million
monthly users. To accommodate the growth in traffic, Zynga is adding
nearly 1,000 servers each week (techcrunch.com/2010/09/22/zynga-
moves-1-petabyte-of-data-daily-adds-1000-servers-a-week/)!

Fig. 1.4 | Examples of computers and the Internet in entertainment.

iw3htp5_01_Intro.fm Page 38 Wednesday, November 16, 2011 1:06 PM

1.3 HTML5, CSS3, JavaScript, Canvas and jQuery 39

A “stricter” version of HTML called XHTML (Extensible HyperText Markup Language),
which is based on XML (eXtensible Markup Language, introduced in Chapter 15), is still
used frequently today. Many of the server-side technologies we cover later in the book pro-
duce web pages as XHTML documents, by default, but the trend is clearly to HTML5.

Cascading Style Sheets (CSS)
Although HTML5 provides some capabilities for controlling a document’s presentation,
it’s better not to mix presentation with content. HTML5 should be used only to specify a doc-
ument’s structure and content.

Chapters 4–5 use Cascading Style Sheets (CSS) to specify the presentation, or styling,
of elements on a web page (e.g., fonts, spacing, sizes, colors, positioning). CSS was
designed to style portable web pages independently of their content and structure. By sep-
arating page styling from page content and structure, you can easily change the look and
feel of the pages on an entire website, or a portion of a website, simply by swapping out
one style sheet for another. CSS3 is the current version of CSS under development.
Chapter 5 introduces many new features in CSS3.

JavaScript
JavaScript is a language that helps you build dynamic web pages (i.e., pages that can be
modified “on the fly” in response to events, such as user input, time changes and more) and
computer applications. It enables you to do the client-side programming of web applica-
tions. In addition, there are now several projects dedicated to server-side JavaScript, includ-
ing CommonJS (www.commonjs.org), Node.js (nodejs.org) and Jaxer (jaxer.org).

JavaScript was created by Netscape, the company that built the first wildly successful
web browser. Both Netscape and Microsoft have been instrumental in the standardization
of JavaScript by ECMA International (formerly the European Computer Manufacturers
Association) as ECMAScript. ECMAScript 5, the latest version of the standard, corre-
sponds to the version of JavaScript we use in this book.

The JavaScript chapters of the book are more than just an introduction to the lan-
guage. They also present computer-programming fundamentals, including control struc-
tures, functions, arrays, recursion, strings and objects. You’ll see that JavaScript is a
portable scripting language and that programs written in JavaScript can run in web
browsers across a wide range of devices.

Web Browsers and Web-Browser Portability
Ensuring a consistent look and feel on client-side browsers is one of the great challenges
of developing web-based applications. Currently, a standard does not exist to which soft-
ware vendors must adhere when creating web browsers. Although browsers share a com-
mon set of features, each browser might render pages differently. Browsers are available in
many versions and on many different platforms (Microsoft Windows, Apple Macintosh,
Linux, UNIX, etc.). Vendors add features to each new version that sometimes result in
cross-platform incompatibility issues. It’s difficult to develop web pages that render cor-
rectly on all versions of each browser.

All of the code examples in the book were tested in the five most popular desktop
browsers and the two most popular mobile browsers (Fig. 1.5). Support for HTML5,
CSS3 and JavaScript features varies by browser. The HTML5 Test website (http://
html5test.com/) scores each browser based on its support for the latest features of these

iw3htp5_01_Intro.fm Page 39 Wednesday, November 16, 2011 1:06 PM

40 Chapter 1 Introduction to Computers and the Internet

evolving standards. Figure 1.5 lists the five desktop browsers we use in reverse order of
their HTML5 Test scores from most compliant to least compliant at the time of this
writing. Internet Explorer 10 (IE10) is expected to have a much higher compliance rating
than IE9. You can also check sites such as http://caniuse.com/ for a list of features cov-
ered by each browser.

jQuery
jQuery (jQuery.org) is currently the most popular of hundreds of JavaScript libraries.3

jQuery simplifies JavaScript programming by making it easier to manipulate a web page’s
elements and interact with servers in a portable manner across various web browsers. It pro-
vides a library of custom graphical user interface (GUI) controls (beyond the basic GUI con-
trols provided by HTML5) that can be used to enhance the look and feel of your web pages.

Validating Your HTML5, CSS3 and JavaScript Code
As you’ll see, JavaScript programs typically have HTML5 and CSS3 portions as well. You
must use proper HTML5, CSS3 and JavaScript syntax to ensure that browsers process
your documents properly. Figure 1.6 lists the validators we used to validate the code in this
book. Where possible, we eliminated validation errors.

Portability Tip 1.1
The web is populated with many different browsers, including many older, less-capable
versions, which makes it difficult for authors and web-application developers to create
universal solutions. The W3C is working toward the goal of a universal client-side plat-
form (http://www.w3.org/2006/webapi/admin/charter).

Browser

Approximate market share
as of August 2011
(http://gs.statcounter.com)

Score out of 450 from
html5test.com

Desktop browsers Market share
Google Chrome 13 17% 330

Mozilla Firefox 6 27% 298

Apple Safari 5.1 7% 293

Opera 11.5 2% 286

Internet Explorer 9 40% 141

Mobile browsers Mobile market share
iPhone 15% (of mobile browsers) 217

Android 18% (of mobile browsers) 184

Fig. 1.5 | HTML5 Test scores for the browsers used to test the examples.

3. www.activoinc.com/blog/2008/11/03/jquery-emerges-as-most-popular-javascript-
library-for-web-development/.

iw3htp5_01_Intro.fm Page 40 Wednesday, November 16, 2011 1:06 PM

1.4 Demos 41

1.4 Demos
Browse the web pages in Fig. 1.7 to get a sense of some of the things you’ll be able to create
using the technologies you’ll learn in this book, including HTML5, CSS3, JavaScript,
canvas and jQuery. Many of these sites provide links to the corresponding source code, or
you can view the page’s source code in your browser.

Technology Validator URL

HTML5 http://validator.w3.org/

http://html5.validator.nu/

CSS3 http://jigsaw.w3.org/css-validator/

JavaScript http://www.javascriptlint.com/

http://www.jslint.com/

Fig. 1.6 | HTML5, CSS3 and JavaScript validators.

URL Description

https://developer.mozilla.org/en-US/

demos/

Mozilla’s DemoStudio contains numerous
HTML5, canvas, CSS3 and JavaScript demos
that use audio, video, animation and more.

http://js-fireworks.appspot.com/ Enter your name or message, and this JavaScript
animation then writes it using a fireworks effect
over the London skyline.

http://9elements.com/io/projects/

html5/canvas/
Uses HTML5 canvas and audio elements to
create interesting effects, and ties in tweets that
include the words “HTML5” and “love” (click
anywhere on the screen to see the next tweet).

http://www.zachstronaut.com/lab/

text-shadow-box/text-shadow-

box.html

Animated demo of the CSS3 text-shadow
effect. Use the mouse to shine a light on the text
and dynamically change the direction and size
of the shadow.

http://clublime.com/lab/html5/

sphere/
Uses an HTML5 canvas to create a sphere that
rotates and changes direction as you move the
mouse cursor.

http://spielzeugz.de/html5/

liquid-particles.html
The Liquid Particles demo uses an HTML5
canvas. Move the mouse around the screen and
the “particles” (dots or letters) follow.

http://www.paulbrunt.co.uk/bert/ Bert’s Breakdown is a fun video game built
using an HTML5 canvas.

http://www.openrise.com/lab/

FlowerPower/
Canvas app that allows you to draw flowers on
the page, adjust their colors, change the shapes
of the petals and more.

Fig. 1.7 | HTML5, CSS3, JavaScript, canvas and jQuery demos. (Part 1 of 2.)

iw3htp5_01_Intro.fm Page 41 Wednesday, November 16, 2011 1:06 PM

42 Chapter 1 Introduction to Computers and the Internet

1.5 Evolution of the Internet and World Wide Web
The Internet—a global network of computers—was made possible by the convergence of
computing and communications technologies. In the late 1960s, ARPA (the Advanced Re-
search Projects Agency) rolled out blueprints for networking the main computer systems
of about a dozen ARPA-funded universities and research institutions. They were to be
connected with communications lines operating at a then-stunning 56 Kbps (i.e., 56,000
bits per second)—this at a time when most people (of the few who could) were connecting
over telephone lines to computers at a rate of 110 bits per second. A bit (short for “binary
digit”) is the smallest data item in a computer; it can assume the value 0 or 1.

There was great excitement. Researchers at Harvard talked about communicating
with the powerful Univac computer at the University of Utah to handle the intensive cal-

http://alteredqualia.com/canvasmol/ Uses canvas to display a 3D molecule that can
be viewed from any desired angle (0–360
degrees).

http://pasjans-online.pl/ The game of Solitaire built using HTML5.

http://andrew-hoyer.com/experiments/

cloth/
Uses canvas to simulate of the movement of a
piece of cloth. Click and drag the mouse to
move the fabric.

http://www.paulrhayes.com/

experiments/cube-3d/
CSS3 demo allows you to use the mouse to tilt
and rotate the 3D cube. Includes a tutorial.

http://www.effectgames.com/demos/

canvascycle/
Animated waterfall provides a nice demo of
using color in HTML5 canvas.

http://macek.github.com/

google_pacman/
The Google PAC-MAN® game (a Google Doo-
dle) built in HTML5.

http://www.benjoffe.com/code/games/

torus/
A 3D game similar to Tetris® built with
JavaScript and canvas.

http://code.almeros.com/

code-examples/water-effect-canvas/
Uses canvas and JavaScript to create a water rip-
pling effect. Hover the cursor over the canvas to
see the effect. The site includes a tutorial.

http://jqueryui.com/demos/ Numerous jQuery demos, including anima-
tions, transitions, color, interactions and more.

http://lab.smashup.it/flip/ Demonstrates a flip box using jQuery.

http://tutorialzine.com/2010/09/

html5-canvas-slideshow-jquery/
Slideshow built with HTML5 canvas and
jQuery (includes a tutorial).

http://css-tricks.com/examples/

Circulate/
Learn how to create an animated circulation
effect using jQuery.

http://demo.tutorialzine.com/2010/

02/photo-shoot-css-jquery/

demo.html

Uses jQuery and CSS to create a photoshoot
effect, allowing you to focus on an area of the
page and snap a picture (includes a tutorial).

URL Description

Fig. 1.7 | HTML5, CSS3, JavaScript, canvas and jQuery demos. (Part 2 of 2.)

iw3htp5_01_Intro.fm Page 42 Wednesday, November 16, 2011 1:06 PM

1.5 Evolution of the Internet and World Wide Web 43

culations related to their computer graphics research. Many other intriguing possibilities
were raised. Academic research was about to take a giant leap forward. ARPA proceeded
to implement the ARPANET, which eventually evolved into today’s Internet.

Things worked out differently from what was originally planned. Rather than
enabling researchers to share each other’s computers, it rapidly became clear that commu-
nicating quickly and easily via electronic mail was the key early benefit of the ARPANET.
This is true even today on the Internet, which facilitates communications of all kinds
among the world’s Internet users.

Packet Switching
One of the primary goals for ARPANET was to allow multiple users to send and receive
information simultaneously over the same communications paths (e.g., phone lines). The
network operated with a technique called packet switching, in which digital data was sent
in small bundles called packets. The packets contained address, error-control and sequencing
information. The address information allowed packets to be routed to their destinations.
The sequencing information helped in reassembling the packets—which, because of com-
plex routing mechanisms, could actually arrive out of order—into their original order for
presentation to the recipient. Packets from different senders were intermixed on the same
lines to efficiently use the available bandwidth. This packet-switching technique greatly re-
duced transmission costs, as compared with the cost of dedicated communications lines.

The network was designed to operate without centralized control. If a portion of the
network failed, the remaining working portions would still route packets from senders to
receivers over alternative paths for reliability.

TCP/IP
The protocol (i.e., set of rules) for communicating over the ARPANET became known as
TCP—the Transmission Control Protocol. TCP ensured that messages were properly
routed from sender to receiver and that they arrived intact.

As the Internet evolved, organizations worldwide were implementing their own net-
works for both intraorganization (i.e., within the organization) and interorganization (i.e.,
between organizations) communications. A wide variety of networking hardware and soft-
ware appeared. One challenge was to get these different networks to communicate. ARPA
accomplished this with the development of IP—the Internet Protocol, truly creating a
network of networks, the current architecture of the Internet. The combined set of pro-
tocols is now commonly called TCP/IP. Each computer on the Internet has a unique IP
address. The current IP standard, Internet Protocol version 4 (IPv4), has been in use since
1984 and will soon run out of possible addresses. The next-generation Internet Protocol,
IPv6, is just starting to be deployed. It features enhanced security and a new addressing
scheme, hugely expanding the number of IP addresses available so that we will not run out
of IP addresses in the forseeable future.

Explosive Growth
Initially, Internet use was limited to universities and research institutions; then the mili-
tary began using it intensively. Eventually, the government decided to allow access to the
Internet for commercial purposes. The research and military communities were concerned
that response times would become poor as the Internet became saturated with users.

iw3htp5_01_Intro.fm Page 43 Wednesday, November 16, 2011 1:06 PM

44 Chapter 1 Introduction to Computers and the Internet

In fact, the opposite has occurred. Businesses realized that they could tune their oper-
ations and offer new and better services to their clients, so they started spending vast
amounts of money to develop and enhance the Internet. This generated fierce competition
among communications carriers and hardware and software suppliers to meet this
demand. The result is that bandwidth (i.e., the information-carrying capacity) on the
Internet’s is increasing rapidly as costs dramatically decline.

World Wide Web, HTML, HTTP
The World Wide Web allows computer users to execute web-based applications and to
locate and view multimedia-based documents on almost any subject over the Internet. The
web is a relatively recent creation. In 1989, Tim Berners-Lee of CERN (the European Or-
ganization for Nuclear Research) began to develop a technology for sharing information
via hyperlinked text documents. Berners-Lee called his invention the HyperText Markup
Language (HTML). He also wrote communication protocols to form the backbone of his
new information system, which he called the World Wide Web. In particular, he wrote
the Hypertext Transfer Protocol (HTTP)—a communications protocol used to send in-
formation over the web. The URL (Uniform Resource Locator) specifies the address (i.e.,
location) of the web page displayed in the browser window. Each web page on the Internet
is associated with a unique URL. URLs usually begin with http://.

HTTPS
URLs of websites that handle private information, such as credit card numbers, often be-
gin with https://, the abbreviation for Hypertext Transfer Protocol Secure (HTTPS).
HTTPS is the standard for transferring encrypted data on the web. It combines HTTP
with the Secure Sockets Layer (SSL) and the more recent Transport Layer Security (TLS)
cryptographic schemes for securing communications and identification information over
the web. Although there are many benefits to using HTTPS, there are a few drawbacks,
most notably some performance issues because encryption and decryption consume sig-
nificant computer processing resources.

Mosaic, Netscape, Emergence of Web 2.0
Web use exploded with the availability in 1993 of the Mosaic browser, which featured a
user-friendly graphical interface. Marc Andreessen, whose team at the National Center for
Supercomputing Applications (NCSA) developed Mosaic, went on to found Netscape,
the company that many people credit with igniting the explosive Internet economy of the
late 1990s. But the “dot com” economic bust brought hard times in the early 2000s. The
resurgence that began in 2004 or so has been named Web 2.0. Google is widely regarded
as the signature company of Web 2.0. Some other companies with Web 2.0 characteristics
are YouTube (video sharing), Facebook (social networking), Twitter (microblogging),
Groupon (social commerce), Foursquare (mobile check-in), Salesforce (business software
offered as online services “in the cloud”), Craigslist (mostly free classified listings), Flickr
(photo sharing), Skype (Internet telephony and video calling and conferencing, now
owned by Microsoft) and Wikipedia (a free online encyclopedia).

1.6 Web Basics
In this section, we discuss the fundamentals of web-based interactions between a client
web browser and a web server. In its simplest form, a web page is nothing more than an

iw3htp5_01_Intro.fm Page 44 Wednesday, November 16, 2011 1:06 PM

1.6 Web Basics 45

HTML (HyperText Markup Language) document (with the extension .html or .htm)
that describes to a web browser the document’s content and structure.

Hyperlinks
HTML documents normally contain hyperlinks, which, when clicked, load a specified
web document. Both images and text may be hyperlinked. When the mouse pointer hov-
ers over a hyperlink, the default arrow pointer changes into a hand with the index finger
pointing upward. Often hyperlinked text appears underlined and in a different color from
regular text in a web page.

Originally employed as a publishing tool for scientific research, hyperlinks are widely
used to reference sources, or sites that have more information on a particular topic. The
paths created by hyperlinking create the effect of the “web.”

When the user clicks a hyperlink, a web server locates the requested web page and
sends it to the user’s web browser. Similarly, the user can type the address of a web page into
the browser’s address field and press Enter to view the specified page.

Hyperlinks can reference other web pages, e-mail addresses, files and more. If a hyper-
link’s URL is in the form mailto:emailAddress, clicking the link loads your default e-mail
program and opens a message window addressed to the specified e-mail address. If a
hyperlink references a file that the browser is incapable of displaying, the browser prepares
to download the file, and generally prompts the user for information about how the file
should be stored. When a file is downloaded, it’s copied onto the user’s computer. Pro-
grams, documents, images, sound and video files are all examples of downloadable files.

URIs and URLs
URIs (Uniform Resource Identifiers) identify resources on the Internet. URIs that start with
http:// are called URLs (Uniform Resource Locators). Common URLs refer to files, direc-
tories or server-side code that performs tasks such as database lookups, Internet searches
and business-application processing. If you know the URL of a publicly available resource
anywhere on the web, you can enter that URL into a web browser’s address field and the
browser can access that resource.

Parts of a URL
A URL contains information that directs a browser to the resource that the user wishes to
access. Web servers make such resources available to web clients. Popular web servers in-
clude Apache’s HTTP Server and Microsoft’s Internet Information Services (IIS).

Let’s examine the components of the URL

The text http:// indicates that the HyperText Transfer Protocol (HTTP) should be used
to obtain the resource. Next in the URL is the server’s fully qualified hostname (for exam-
ple, www.deitel.com)—the name of the web-server computer on which the resource re-
sides. This computer is referred to as the host, because it houses and maintains resources.
The hostname www.deitel.com is translated into an IP (Internet Protocol) address—a
numerical value that uniquely identifies the server on the Internet. An Internet Domain
Name System (DNS) server maintains a database of hostnames and their corresponding
IP addresses and performs the translations automatically.

http://www.deitel.com/books/downloads.html

iw3htp5_01_Intro.fm Page 45 Wednesday, November 16, 2011 1:06 PM

46 Chapter 1 Introduction to Computers and the Internet

The remainder of the URL (/books/downloads.html) specifies the resource’s loca-
tion (/books) and name (downloads.html) on the web server. The location could repre-
sent an actual directory on the web server’s file system. For security reasons, however, the
location is typically a virtual directory. The web server translates the virtual directory into
a real location on the server, thus hiding the resource’s true location.

Making a Request and Receiving a Response
When given a web page URL, a web browser uses HTTP to request the web page found
at that address. Figure 1.8 shows a web browser sending a request to a web server.

In Fig. 1.8, the web browser sends an HTTP request to the server. The request (in its
simplest form) is

The word GET is an HTTP method indicating that the client wishes to obtain a resource
from the server. The remainder of the request provides the path name of the resource (e.g.,
an HTML5 document) and the protocol’s name and version number (HTTP/1.1). The cli-
ent’s request also contains some required and optional headers.

Any server that understands HTTP (version 1.1) can translate this request and
respond appropriately. Figure 1.9 shows the web server responding to a request.

Fig. 1.8 | Client requesting a resource from a web server.

GET /books/downloads.html HTTP/1.1

Fig. 1.9 | Client receiving a response from the web server.

After it receives
the request, the
web server
searches its
system for the
resource

b)

The request is
sent from the
web client to the
web server

a)

Web server

Internet

Web client

The server
responds to the
request with
the resource's
contents

Web server

Internet

Web client

iw3htp5_01_Intro.fm Page 46 Wednesday, November 16, 2011 1:06 PM

1.6 Web Basics 47

The server first sends a line of text that indicates the HTTP version, followed by a
numeric code and a phrase describing the status of the transaction. For example,

indicates success, whereas

informs the client that the web server could not locate the requested resource. A complete
list of numeric codes indicating the status of an HTTP transaction can be found at
www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

HTTP Headers
Next, the server sends one or more HTTP headers, which provide additional information
about the data that will be sent. In this case, the server is sending an HTML5 text docu-
ment, so one HTTP header for this example would read:

The information provided in this header specifies the Multipurpose Internet Mail Exten-
sions (MIME) type of the content that the server is transmitting to the browser. The MIME
standard specifies data formats, which programs can use to interpret data correctly. For ex-
ample, the MIME type text/plain indicates that the sent information is text that can be
displayed directly. Similarly, the MIME type image/jpeg indicates that the content is a
JPEG image. When the browser receives this MIME type, it attempts to display the image.

The header or set of headers is followed by a blank line, which indicates to the client
browser that the server is finished sending HTTP headers. Finally, the server sends the
contents of the requested document (downloads.html). The client-side browser then ren-
ders (or displays) the document, which may involve additional HTTP requests to obtain
associated CSS and images.

HTTP get and post Requests
The two most common HTTP request types (also known as request methods) are get
and post. A get request typically gets (or retrieves) information from a server, such as an
HTML document, an image or search results based on a user-submitted search term. A
post request typically posts (or sends) data to a server. Common uses of post requests are
to send form data or documents to a server.

An HTTP request often posts data to a server-side form handler that processes the
data. For example, when a user performs a search or participates in a web-based survey, the
web server receives the information specified in the HTML form as part of the request.
Get requests and post requests can both be used to send data to a web server, but each
request type sends the information differently.

A get request appends data to the URL, e.g., www.google.com/search?q=deitel. In
this case search is the name of Google’s server-side form handler, q is the name of a variable
in Google’s search form and deitel is the search term. The ? in the preceding URL separates
the query string from the rest of the URL in a request. A name/value pair is passed to the
server with the name and the value separated by an equals sign (=). If more than one name/
value pair is submitted, each pair is separated by an ampersand (&). The server uses data
passed in a query string to retrieve an appropriate resource from the server. The server then

HTTP/1.1 200 OK

HTTP/1.1 404 Not found

Content-type: text/html

iw3htp5_01_Intro.fm Page 47 Wednesday, November 16, 2011 1:06 PM

48 Chapter 1 Introduction to Computers and the Internet

sends a response to the client. A get request may be initiated by submitting an HTML form
whose method attribute is set to "get", or by typing the URL (possibly containing a query
string) directly into the browser’s address bar. We discuss HTML forms in Chapters 2–3.

A post request sends form data as part of the HTTP message, not as part of the URL.
A get request typically limits the query string (i.e., everything to the right of the ?) to a
specific number of characters, so it’s often necessary to send large amounts of information
using the post method. The post method is also sometimes preferred because it hides the
submitted data from the user by embedding it in an HTTP message. If a form submits
several hidden input values along with user-submitted data, the post method might gen-
erate a URL like www.searchengine.com/search. The form data still reaches the server
and is processed in a similar fashion to a get request, but the user does not see the exact
information sent.

Client-Side Caching
Browsers often cache (save on disk) recently viewed web pages for quick reloading. If there
are no changes between the version stored in the cache and the current version on the web,
this speeds up your browsing experience. An HTTP response can indicate the length of
time for which the content remains “fresh.” If this amount of time has not been reached,
the browser can avoid another request to the server. If not, the browser loads the document
from the cache. Similarly, there’s also the “not modified” HTTP response, indicating that
the file content has not changed since it was last requested (which is information that’s
send in the request). Browsers typically do not cache the server’s response to a post re-
quest, because the next post might not return the same result. For example, in a survey,
many users could visit the same web page and answer a question. The survey results could
then be displayed for the user. Each new answer would change the survey results.

1.7 Multitier Application Architecture
Web-based applications are often multitier applications (sometimes referred to as n-tier
applications) that divide functionality into separate tiers (i.e., logical groupings of func-
tionality). Although tiers can be located on the same computer, the tiers of web-based ap-
plications often reside on separate computers. Figure 1.10 presents the basic structure of a
three-tier web-based application.

The bottom tier (also called the data tier or the information tier) maintains the appli-
cation’s data. This tier typically stores data in a relational database management system
(RDBMS). We discuss RDBMSs in Chapter 18. For example, Amazon might have an
inventory information database containing product descriptions, prices and quantities in
stock. Another database might contain customer information, such as user names, billing
addresses and credit card numbers. These may reside on one or more computers, which
together comprise the application’s data.

The middle tier implements business logic, controller logic and presentation logic to
control interactions between the application’s clients and its data. The middle tier acts as

Software Engineering Observation 1.1
The data sent in a post request is not part of the URL, and the user can’t see the data by
default. However, tools are available that expose this data, so you should not assume that
the data is secure just because a post request is used.

iw3htp5_01_Intro.fm Page 48 Wednesday, November 16, 2011 1:06 PM

1.8 Client-Side Scripting versus Server-Side Scripting 49

an intermediary between data in the information tier and the application’s clients. The
middle-tier controller logic processes client requests (such as requests to view a product
catalog) and retrieves data from the database. The middle-tier presentation logic then pro-
cesses data from the information tier and presents the content to the client. Web applica-
tions typically present data to clients as HTML documents.

Business logic in the middle tier enforces business rules and ensures that data is reliable
before the application updates a database or presents data to users. Business rules dictate how
clients access data and how applications process data. For example, a business rule in the
middle tier of a retail store’s web-based application might ensure that all product quantities
remain positive. A client request to set a negative quantity in the bottom tier’s product infor-
mation database would be rejected by the middle tier’s business logic.

The top tier, or client tier, is the application’s user interface, which gathers input and
displays output. Users interact directly with the application through the user interface, which
is typically a web browser or a mobile device. In response to user actions (e.g., clicking a
hyperlink), the client tier interacts with the middle tier to make requests and to retrieve data
from the information tier. The client tier then displays the data retrieved for the user.

1.8 Client-Side Scripting versus Server-Side Scripting
Client-side scripting with JavaScript can be used to validate user input, to interact with the
browser, to enhance web pages, and to add client/server communication between a brows-
er and a web server.

Client-side scripting does have limitations, such as browser dependency; the browser
or scripting host must support the scripting language and capabilities. Scripts are
restricted from arbitrarily accessing the local hardware and file system for security reasons.
Another issue is that client-side scripts can be viewed by the client by using the browser’s
source-viewing capability. Sensitive information, such as passwords or other personally
identifiable data, should not be on the client. All client-side data validation should be mir-
rored on the server. Also, placing certain operations in JavaScript on the client can open
web applications to security issues.

Programmers have more flexibility with server-side scripts, which often generate
custom responses for clients. For example, a client might connect to an airline’s web server
and request a list of flights from Boston to San Francisco between April 19 and May 5.
The server queries the database, dynamically generates an HTML document containing

Fig. 1.10 | Three-tier architecture.

Web server Database

Middle tier Bottom tierTop tier

Browser web page

also called also calledalso called
Business logic tier Data tier or

Information tier
User interface tier or

Client tier

iw3htp5_01_Intro.fm Page 49 Wednesday, November 16, 2011 1:06 PM

50 Chapter 1 Introduction to Computers and the Internet

the flight list and sends the document to the client. This technology allows clients to
obtain the most current flight information from the database by connecting to an airline’s
web server.

Server-side scripting languages have a wider range of programmatic capabilities than
their client-side equivalents. Server-side scripts also have access to server-side software that
extends server functionality—Microsoft web servers use ISAPI (Internet Server Applica-
tion Program Interface) extensions and Apache HTTP Servers use modules. Compo-
nents and modules range from programming-language support to counting the number of
web-page hits. We discuss some of these components and modules in subsequent chapters.

1.9 World Wide Web Consortium (W3C)
In October 1994, Tim Berners-Lee founded an organization—the World Wide Web
Consortium (W3C)—devoted to developing nonproprietary, interoperable technologies
for the World Wide Web. One of the W3C’s primary goals is to make the web universally
accessible—regardless of disability, language or culture. The W3C home page
(www.w3.org) provides extensive resources on Internet and web technologies.

The W3C is also a standards organization. Web technologies standardized by the
W3C are called Recommendations. Current and forthcoming W3C Recommendations
include the HyperText Markup Language 5 (HTML5), Cascading Style Sheets 3 (CSS3)
and the Extensible Markup Language (XML). A recommendation is not an actual software
product but a document that specifies a technology’s role, syntax rules and so forth.

1.10 Web 2.0: Going Social
In 2003 there was a noticeable shift in how people and businesses were using the web and
developing web-based applications. The term Web 2.0 was coined by Dale Dougherty of
O’Reilly Media4 in 2003 to describe this trend. Generally, Web 2.0 companies use the
web as a platform to create collaborative, community-based sites (e.g., social networking
sites, blogs, wikis).

Web 1.0 versus Web 2.0
Web 1.0 (the state of the web through the 1990s and early 2000s) was focused on a rela-
tively small number of companies and advertisers producing content for users to access
(some people called it the “brochure web”). Web 2.0 involves the users—not only do they
often create content, but they help organize it, share it, remix it, critique it, update it, etc.
One way to look at Web 1.0 is as a lecture, a small number of professors informing a large
audience of students. In comparison, Web 2.0 is a conversation, with everyone having the
opportunity to speak and share views. Companies that understand Web 2.0 realize that
their products and services are conversations as well.

Architecture of Participation
Web 2.0 is providing new opportunities and connecting people and content in unique
ways. Web 2.0 embraces an architecture of participation—a design that encourages user

4. T. O’Reilly, “What is Web 2.0: Design Patterns and Business Models for the Next Generation
of Software.” September 2005 <http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/
09/30/what-is-web-20.html?page=1>.

iw3htp5_01_Intro.fm Page 50 Wednesday, November 16, 2011 1:06 PM

1.10 Web 2.0: Going Social 51

interaction and community contributions. You, the user, are the most important aspect of
Web 2.0—so important, in fact, that in 2006, TIME magazine’s “Person of the Year” was
“you.”5 The article recognized the social phenomenon of Web 2.0—the shift away from
a powerful few to an empowered many. Several popular blogs now compete with traditional
media powerhouses, and many Web 2.0 companies are built almost entirely on user-gen-
erated content. For websites like Facebook®, Twitter™, YouTube, eBay® and Wikipe-
dia®, users create the content, while the companies provide the platforms on which to
enter, manipulate and share the information. These companies trust their users—without
such trust, users cannot make significant contributions to the sites.

The architecture of participation has influenced software development as well. Open-
source software is available for anyone to use and modify with few or no restrictions (we’ll
say more about open source in Section 1.12). Using collective intelligence—the concept
that a large diverse group of people will create smart ideas—communities collaborate to
develop software that many people believe is better and more robust than proprietary soft-
ware. Rich Internet Applications (RIAs) are being developed using technologies (such as
Ajax, which we discuss throughout the book) that have the look and feel of desktop soft-
ware, enhancing a user’s overall experience.

Search Engines and Social Media
Search engines, including Google™, Microsoft Bing™, and many more, have become es-
sential to sifting through the massive amount of content on the web. Social bookmarking
sites such as del.icio.us allow users to share their favorite sites with others. Social media
sites such as Digg™ enable the community to decide which news articles are the most sig-
nificant. The way we find the information on these sites is also changing—people are tag-
ging (i.e., labeling) web content by subject or keyword in a way that helps anyone locate
information more effectively.

Semantic Web
In the future, computers will learn to understand the meaning of the data on the web—
the beginnings of the Semantic Web are already appearing. Continual improvements in
hardware, software and communications technologies will enable exciting new types of ap-
plications.

These topics and more are covered in our online e-book, Dive Into® Web 2.0 (avail-
able at http://www.deitel.com/diveintoweb20/). The e-book highlights the major
characteristics and technologies of Web 2.0, providing examples of popular Web 2.0 com-
panies and Web 2.0 Internet business and monetization models. We discuss user-gener-
ated content, blogging, content networks, social networking, location-based services and
more. In the subsequent chapters of this book, you’ll learn key software technologies for
building web-based applications.

Google
In 1996, Stanford computer science Ph.D. candidates Larry Page and Sergey Brin began
collaborating on a new search engine. In 1997, they chose the name Google—a play on
the mathematical term googol, a quantity represented by the number “one” followed by

5. L. Grossman, “TIME’s Person of the Year: You.” TIME, December 2006 <http://
www.time.com/time/magazine/article/0,9171,1569514,00.html>.

iw3htp5_01_Intro.fm Page 51 Wednesday, November 16, 2011 1:06 PM

52 Chapter 1 Introduction to Computers and the Internet

100 “zeros” (or 10100)—a staggeringly large number. Google’s ability to return extremely
accurate search results quickly helped it become the most widely used search engine and
one of the most popular websites in the world.

Google continues to be an innovator in search technologies. For example, Google
Goggles is a fascinating mobile app (available on Android and iPhone) that allows you to
perform a Google search using a photo rather than entering text. You simply take a picture
of a landmark, book (covers or barcodes), logo, art or wine bottle label, and Google Gog-
gles scans the photo and returns search results. You can also take a picture of text (for
example, a restaurant menu or a sign) and Google Goggles will translate it for you.

Web Services and Mashups
We include in this book a substantial treatment of web services (Chapters 22, 25 and 28)
and introduce the applications-development methodology of mashups, in which you can
rapidly develop powerful and intriguing applications by combining (often free) comple-
mentary web services and other forms of information feeds (Fig. 1.11). One of the first
mashups was www.housingmaps.com, which combines the real estate listings provided by
www.craigslist.org with the mapping capabilities of Google Maps to offer maps that
show the locations of apartments for rent in a given area.

Web services source How it’s used

Google Maps Mapping services

Facebook Social networking

Foursquare Mobile check-in

LinkedIn Social networking for business

YouTube Video search

Twitter Microblogging

Groupon Social commerce

Netflix Movie rentals

eBay Internet auctions

Wikipedia Collaborative encyclopedia

PayPal Payments

Last.fm Internet radio

Amazon eCommerce Shopping for books and more

Salesforce.com Customer Relationship Management (CRM)

Skype Internet telephony

Microsoft Bing Search

Flickr Photo sharing

Zillow Real estate pricing

Yahoo Search Search

WeatherBug Weather

Fig. 1.11 | Some popular web services that you can use to build web applications
(www.programmableweb.com/apis/directory/1?sort=mashups).

iw3htp5_01_Intro.fm Page 52 Wednesday, November 16, 2011 1:06 PM

1.10 Web 2.0: Going Social 53

Web services, inexpensive computers, abundant high-speed Internet access, open
source software and many other elements have inspired new, exciting, lightweight business
models that people can launch with only a small investment. Some types of websites with
rich and robust functionality that might have required hundreds of thousands or even mil-
lions of dollars to build in the 1990s can now be built for nominal sums.

Ajax
Ajax is one of the premier Web 2.0 software technologies (Fig. 1.12). Ajax helps Internet-
based applications perform like desktop applications—a difficult task, given that such appli-
cations suffer transmission delays as data is shuttled back and forth between your computer
and servers on the Internet.

Social Applications
Over the last several years, there’s been a tremendous increase in the number of social ap-
plications on the web. Even though the computer industry is mature, these sites were still
able to become phenomenally successful in a relatively short period. Figure 1.13 discusses
a few of the social applications that are making an impact.

Chapter Ajax coverage

Chapter 1 This chapter introduces Ajax.

Chapters 2–14 These chapters cover several key technologies used in
Ajax web applications, including HTML5, CSS3,
JavaScript, JavaScript event handling, the Document
Object Model (DOM) and dynamic manipulation of
an HTML5 document—known as dynamic HTML.

Chapter 15 Web applications use XML extensively to represent
structured data. This chapter introduces XML, XML-
related technologies and key JavaScript capabilities
for loading and manipulating XML documents pro-
grammatically.

Chapter 16 This chapter uses the technologies presented in
Chapters 2–15 to build Ajax-enabled web applica-
tions. We use both XML and JSON (JavaScript
Object Notation) to send/receive data between the
client and the server. The chapter begins by building
basic Ajax applications using JavaScript and the
browser’s XMLHttpRequest object. We then build an
Ajax application using the jQuery JavaScript libraries.

Chapters 21, 24 and 27 These chapters use Ajax in Microsoft’s ASP.NET with
C# and in ASP.NET with Visual Basic, and in
JavaServer Faces (JSF), respectively, to implement
Ajax applications that use Ajax for form validation
and partial-page updates.

Fig. 1.12 | Ajax coverage in Internet & World Wide Web How to Program, 5/e.

iw3htp5_01_Intro.fm Page 53 Wednesday, November 16, 2011 1:06 PM

54 Chapter 1 Introduction to Computers and the Internet

Company Description

Facebook Facebook was launched in 2004 and is already worth an estimated
$100 billion. By January 2011, Facebook was the most active site on
the Internet with more than 750 million users who were spending
700 billion minutes on Facebook per month (www.facebook.com/
press/info.php?statistics). At its current growth rate (about 5%
per month), Facebook will reach one billion users in 2012, out of
two billion Internet users! The activity on the site makes it extremely
attractive for application developers. Each day, over 20 million appli-
cations are installed by Facebook users (www.facebook.com/press/
info.php?statistics).

Twitter Twitter (founded in 2006) has revolutionized microblogging. Users
post tweets—messages up to 140 characters long. Approximately
140 million tweets are posted per day. You can follow the tweets of
friends, celebrities, businesses, government representatives (includ-
ing Barack Obama, who has 10 million followers), and so on, or
you can follow tweets by subject to track news, trends and more. At
the time of this writing, Lady Gaga had the most followers (over 13
million). Twitter has become the point of origin for many breaking
news stories worldwide.

Groupon Groupon, a social commerce site, was launched in 2008. By August
2011 the company was valued as high as $25 billion, making it the
fastest growing company ever! Groupon offers daily deals in each
market for restaurants, retailers, services, attractions and more.
Deals are activated only after a minimum number of people sign up
to buy the product or service. If you sign up for a deal and it has yet
to meet the minimum, you might be inclined to tell others about
the deal via e-mail, Facebook, Twitter, etc. One of the most suc-
cessful national Groupon deals to date was a certificate for $50
worth of merchandise from a major retailer for $25. More than
620,000 vouchers were sold in one day (www.huffingtonpost.com/
2011/06/30/the-most-successful-group_n_887711.html)!

Foursquare Foursquare, launched in 2009, is a mobile check-in application that
allows you to notify your friends of your whereabouts. You can
download the app to your smartphone and link it to your Facebook
and Twitter accounts so your friends can follow you from multiple
platforms. If you do not have a smartphone, you can check in by
text message. Foursquare uses GPS to determine your location.
Businesses use Foursquare to send offers to users in the area.
Launched in March 2009, Foursquare already has over 10 million
users worldwide (foursquare.com/about).

Skype Skype (founded in 2003) allows you to make mostly free voice and
video calls over the Internet using a technology called VoIP (Voice
over IP; IP stands for “Internet Protocol”). The company was
recently sold to Microsoft for $8.5 billion.

Fig. 1.13 | Social applications. (Part 1 of 2.)

iw3htp5_01_Intro.fm Page 54 Wednesday, November 16, 2011 1:06 PM

1.11 Data Hierarchy 55

1.11 Data Hierarchy
Data items processed by computers form a data hierarchy that becomes larger and more
complex in structure as we progress from bits to characters to fields, and so on. Figure 1.14
illustrates a portion of the data hierarchy. Figure 1.15 summarizes the data hierarchy’s lev-
els.

YouTube YouTube is a video-sharing site that was founded in 2005. Within
one year, the company was purchased by Google for $1.65 billion.
YouTube now accounts for 8.2% of all Internet traffic
(www.engadget.com/2011/05/17/study-finds-netflix-is-the-
largest-source-of-internet-traffic-in/). Within one week of
the release of Apple’s iPhone 3GS—the first iPhone model to offer
video—mobile uploads to YouTube grew 400% (www.hypebot.com/
hypebot/2009/06/youtube-reports-1700-jump-in-mobile-

video.html).

Fig. 1.14 | Data hierarchy.

Company Description

Fig. 1.13 | Social applications. (Part 2 of 2.)

Tom Blue

Sally Black

Judy Green File

J u d y Field

Unicode character J

Record

Iris Orange

Randy Red

00000000 01001010

1 Bit

Judy Green

iw3htp5_01_Intro.fm Page 55 Wednesday, November 16, 2011 1:06 PM

56 Chapter 1 Introduction to Computers and the Internet

Level Description

Bits The smallest data item in a computer can assume the value 0 or the value 1.
Such a data item is called a bit (short for “binary digit”—a digit that can
assume one of two values). It’s remarkable that the impressive functions per-
formed by computers involve only the simplest manipulations of 0s and 1s—
examining a bit’s value, setting a bit’s value and reversing a bit’s value (from 1 to 0
or from 0 to 1).

Characters It’s tedious for people to work with data in the low-level form of bits. Instead,
they prefer to work with decimal digits (0–9), letters (A–Z and a–z), and special
symbols (e.g., $, @, %, &, *, (,), –, +, ", :, ? and /). Digits, letters and special
symbols are known as characters. The computer’s character set is the set of all
the characters used to write programs and represent data items. Computers pro-
cess only 1s and 0s, so a computer’s character set represents every character as a
pattern of 1s and 0s. Java uses Unicode® characters that are composed of two
bytes, each composed of eight bits. Unicode contains characters for many of
the world’s languages. See Appendix F for more information on Unicode. See
Appendix D for more information on the ASCII (American Standard Code
for Information Interchange) character set—the popular subset of Unicode
that represents uppercase and lowercase letters, digits and some common spe-
cial characters.

Fields Just as characters are composed of bits, fields are composed of characters or
bytes. A field is a group of characters or bytes that conveys meaning. For exam-
ple, a field consisting of uppercase and lowercase letters could be used to repre-
sent a person’s name, and a field consisting of decimal digits could represent a
person’s age.

Records Several related fields can be used to compose a record (implemented as a class in
Java). In a payroll system, for example, the record for an employee might consist
of the following fields (possible types for these fields are shown in parentheses):

• Employee identification number (a whole number)

• Name (a string of characters)

• Address (a string of characters)

• Hourly pay rate (a number with a decimal point)

• Year-to-date earnings (a number with a decimal point)

• Amount of taxes withheld (a number with a decimal point)

Thus, a record is a group of related fields. In the preceding example, all the
fields belong to the same employee. A company might have many employees
and a payroll record for each one.

Files A file is a group of related records. [Note: More generally, a file contains arbi-
trary data in arbitrary formats. In some operating systems, a file is viewed sim-
ply as a sequence of bytes—any organization of the bytes in a file, such as
organizing the data into records, is a view created by the application program-
mer.] It’s not unusual for an organization to have many files, some containing
billions, or even trillions, of characters of information.

Fig. 1.15 | Levels of the data hierarchy. (Part 1 of 2.)

iw3htp5_01_Intro.fm Page 56 Wednesday, November 16, 2011 1:06 PM

1.12 Operating Systems 57

1.12 Operating Systems
Operating systems are software systems that make using computers more convenient for
users, application developers and system administrators. Operating systems provide
services that allow each application to execute safely, efficiently and concurrently (i.e., in
parallel) with other applications. The software that contains the core components of the
operating system is called the kernel. Popular desktop operating systems include Linux,
Windows 7 and Mac OS X. Popular mobile operating systems used in smartphones and
tablets include Google’s Android, Apple’s iOS (for iPhone, iPad and iPod Touch devices),
BlackBerry OS and Windows Phone 7.

1.12.1 Desktop and Notebook Operating Systems
In this section we discuss two of the popular desktop operating systems—the proprietary
Windows operating system and the open source Linux operating system.

Windows—A Proprietary Operating System
In the mid-1980s, Microsoft developed the Windows operating system, consisting of a
graphical user interface built on top of DOS—an enormously popular personal-computer
operating system of the time that users interacted with by typing commands. Windows
borrowed from many concepts (such as icons, menus and windows) developed by Xerox
PARC and popularized by early Apple Macintosh operating systems. Windows 7 is Mi-
crosoft’s latest operating system—its features include enhancements to the user interface,
faster startup times, further refinement of security features, touch-screen and multitouch
support, and more. Windows is a proprietary operating system—it’s controlled by Micro-
soft exclusively. Windows is by far the world’s most widely used operating system.

Linux—An Open-Source Operating System
The Linux operating system is perhaps the greatest success of the open-source movement.
Open-source software departs from the proprietary software development style that dom-
inated software’s early years. With open-source development, individuals and companies
contribute their efforts in developing, maintaining and evolving software in exchange for

Database A database is an electronic collection of data that’s organized for easy access and
manipulation. There are various database models. In this book, we introduce
relational databases in which data is stored in simple tables. A table includes
records and fields. For example, a table of students might include first name, last
name, major, year, student ID number and grade point average. The data for
each student is a record, and the individual pieces of information in each record
are the fields. You can search, sort and manipulate the data based on its rela-
tionship to multiple tables or databases. For example, a university might use
data from the student database in combination with databases of courses, on-
campus housing, meal plans, etc. We discuss databases in Chapter 18 and use
them in the server-side programming chapters.

Level Description

Fig. 1.15 | Levels of the data hierarchy. (Part 2 of 2.)

iw3htp5_01_Intro.fm Page 57 Wednesday, November 16, 2011 1:06 PM

58 Chapter 1 Introduction to Computers and the Internet

the right to use that software for their own purposes, typically at no charge. Open-source
code is often scrutinized by a much larger audience than proprietary software, so errors of-
ten get removed faster. Open source also encourages more innovation. Enterprise systems
companies, such as IBM, Oracle and many others, have made significant investments in
Linux open-source development.

Some key organizations in the open-source community are the Eclipse Foundation
(the Eclipse Integrated Development Environment helps programmers conveniently
develop software), the Mozilla Foundation (creators of the Firefox web browser), the
Apache Software Foundation (creators of the Apache web server used to develop web-
based applications) and SourceForge (which provides the tools for managing open-source
projects—it has over 306,000 of them under development). Rapid improvements to com-
puting and communications, decreasing costs and open-source software have made it
much easier and more economical to create a software-based business now than just a
decade ago. A great example is Facebook, which was launched from a college dorm room
and built with open-source software.6

The Linux kernel is the core of the most popular open-source, freely distributed, full-
featured operating system. It’s developed by a loosely organized team of volunteers and is
popular in servers, personal computers and embedded systems. Unlike that of proprietary
operating systems like Microsoft’s Windows and Apple’s Mac OS X, Linux source code
(the program code) is available to the public for examination and modification and is free
to download and install. As a result, Linux users benefit from a community of developers
actively debugging and improving the kernel, an absence of licensing fees and restrictions,
and the ability to completely customize the operating system to meet specific needs.

A variety of issues—such as Microsoft’s market power, the small number of user-
friendly Linux applications and the diversity of Linux distributions, such as Red Hat
Linux, Ubuntu Linux and many others—have prevented widespread Linux use on
desktop computers. But Linux has become extremely popular on servers and in embedded
systems, such as Google’s Android-based smartphones.

1.12.2 Mobile Operating Systems
Two of the most popular mobile operating systems are Apple’s iOS and Google’s Android.

iOS for iPhone®, iPad® and iPod Touch®

Apple, founded in 1976 by Steve Jobs and Steve Wozniak, quickly became a leader in per-
sonal computing. In 1979, Jobs and several Apple employees visited Xerox PARC (Palo
Alto Research Center) to learn about Xerox’s desktop computer that featured a graphical
user interface (GUI). That GUI served as the inspiration for the Apple Lisa personal com-
puter (designed for business customers) and, more notably, the Apple Macintosh,
launched with much fanfare in a memorable Super Bowl ad in 1984. Steve Jobs left Apple
in 1985 and founded NeXT Inc.

The Objective-C programming language, created by Brad Cox and Tom Love at
Stepstone in the early 1980s, added capabilities for object-oriented programming (OOP)
to the C programming language. In 1988, NeXT licensed Objective-C from StepStone
and developed an Objective-C compiler and libraries which were used as the platform for
the NeXTSTEP operating system’s user interface and Interface Builder—used to con-

6. developers.facebook.com/opensource/.

iw3htp5_01_Intro.fm Page 58 Wednesday, November 16, 2011 1:06 PM

1.13 Types of Programming Languages 59

struct graphical user interfaces. Apple’s Mac OS X operating system is a descendant of
NeXTSTEP. Apple’s proprietary iPhone operating system, iOS, is derived from Apple’s
Mac OS X and is used in the iPhone, iPad and iPod Touch devices.

You can download apps directly onto your iPhone, iPad or iPod device through the
App Store. There are over 425,000 apps in the App Store.

Google’s Android
Android—the fastest growing mobile and smartphone operating system—is based on the
Linux kernel and Java. Experienced Java programmers can quickly dive into Android de-
velopment. One benefit of developing Android apps is the openness of the platform. The
operating system is open source and free.

The Android operating system was developed by Android, Inc., which was acquired
by Google in 2005. In 2007, the Open Handset Alliance™—a consortium of 34 compa-
nies initially and 84 by 2011—was formed to continue developing Android. As of June
2011, more than 500,000 Android smartphones were being activated each day!7 Android
smartphones are now outselling iPhones in the United States.8 The Android operating
system is used in numerous smartphones (such as the Motorola Droid, HTC EVO™ 4G,
Samsung Vibrant™ and many more), e-reader devices (such as the Barnes and Noble
Nook™), tablet computers (such as the Dell Streak and the Samsung Galaxy Tab), in-
store touch-screen kiosks, cars, robots, multimedia players and more.

You can download apps directly onto your Android device through Android Market
and other app marketplaces. As of August 2011, there were over 250,000 apps in Google’s
Android Market.

1.13 Types of Programming Languages
Programmers write instructions in various programming languages, some directly under-
standable by computers and others requiring intermediate translation steps. Any computer
can directly understand only its own machine language, defined by its hardware design.
Machine languages generally consist of numbers (ultimately reduced to 1s and 0s). Such
languages are cumbersome for humans.

Programming in machine language—the numbers that computers could directly
understand—was simply too slow and tedious for most programmers. Instead, they began
using Englishlike abbreviations to represent elementary operations. These abbreviations
formed the basis of assembly languages. Translator programs called assemblers were devel-
oped to convert assembly-language programs to machine language. Although assembly-
language code is clearer to humans, it’s incomprehensible to computers until translated to
machine language.

To speed the programming process even further, high-level languages were developed
in which single statements could be written to accomplish substantial tasks. High-level
languages allow you to write instructions that look almost like everyday English and con-
tain commonly used mathematical expressions. Translator programs called compilers con-
vert high-level language programs into machine language.

7. news.cnet.com/8301-13506_3-20074956-17/google-500000-android-devices-activated-
each-day/.

8. www.pcworld.com/article/196035/android_outsells_the_iphone_no_big_surprise.html.

iw3htp5_01_Intro.fm Page 59 Wednesday, November 16, 2011 1:06 PM

60 Chapter 1 Introduction to Computers and the Internet

The process of compiling a large high-level language program into machine language
can take a considerable amount of computer time. Interpreter programs were developed
to execute high-level language programs directly, although more slowly than compiled
programs. In this book we study several key programming languages, including JavaScript
and PHP—each of these scripting languages is processed by interpreters. Figure 1.16
introduces a number of popular programming languages.

Performance Tip 1.1
Interpreters have an advantage over compilers in Internet scripting. An interpreted pro-
gram can begin executing as soon as it’s downloaded to the client’s machine, without need-
ing to be compiled before it can execute. On the downside, interpreted scripts generally run
slower than compiled code.

Programming
language Description

C C was implemented in 1972 by Dennis Ritchie at Bell Laboratories. It ini-
tially became widely known as the UNIX operating system’s development
language. Today, most of the code for general-purpose operating systems is
written in C or C++.

C++ C++, an extension of C, was developed by Bjarne Stroustrup in the early
1980s at Bell Laboratories. C++ provides a number of features that “spruce
up” the C language, but more important, it provides capabilities for object-
oriented programming.

Objective-C Objective-C is an object-oriented language based on C. It was developed in
the early 1980s and later acquired by NeXT, which in turn was acquired by
Apple. It has become the key programming language for the Mac OS X oper-
ating system and all iOS-based devices (such as iPods, iPhones and iPads).

Visual Basic Microsoft’s Visual Basic language (based on the Basic language developed at
Dartmouth College in the 1960s) was introduced in the early 1990s to sim-
plify Microsoft Windows applications development. Its latest versions sup-
port object-oriented programming.

Visual C# Microsoft’s three primary object-oriented programming languages are Visual
Basic, Visual C++ (based on C++) and C# (based on C++ and Java, and
developed for integrating the Internet and the web into computer applica-
tions).

Java Sun Microsystems in 1991 funded an internal corporate research project led
by James Gosling, which resulted in the C++-based object-oriented program-
ming language called Java. A key goal of Java is to enable the writing of pro-
grams that will run on a great variety of computer systems and computer-
controlled devices. This is sometimes called “write once, run anywhere.” Java
is used to develop large-scale enterprise applications, to enhance the function-
ality of web servers (the computers that provide the content we see in our web
browsers), to provide applications for consumer devices (smartphones, televi-
sion set-top boxes and more) and for many other purposes.

Fig. 1.16 | Popular programming languages. (Part 1 of 2.)

iw3htp5_01_Intro.fm Page 60 Wednesday, November 16, 2011 1:06 PM

1.14 Object Technology 61

1.14 Object Technology
Building software quickly, correctly and economically remains an elusive goal at a time
when demands for new and more powerful software are soaring. Objects, or more precisely
the classes objects come from, are essentially reusable software components. There are date
objects, time objects, audio objects, video objects, automobile objects, people objects, etc.
Almost any noun can be reasonably represented as a software object in terms of attributes
(e.g., name, color and size) and behaviors (e.g., calculating, moving and communicating).

PHP PHP—an object-oriented, “open-source” (see Section 1.12) “scripting” lan-
guage supported by a community of users and developers—is used by numer-
ous websites including Wikipedia and Facebook. PHP is platform
independent—implementations exist for all major UNIX, Linux, Mac and
Windows operating systems. PHP also supports many databases, including
MySQL. Two other popular languages similar in concept to PHP are Perl and
Python. The term “LAMP” describes four key technologies for building
open-source software—Linux (operating system), Apache (web server),
MySQL (database) and PHP or Perl or Python (server-side scripting lan-
guages).

Python Python, another object-oriented scripting language, was released publicly in
1991. Developed by Guido van Rossum of the National Research Institute
for Mathematics and Computer Science in Amsterdam (CWI), Python draws
heavily from Modula-3—a systems-programming language. Python is
“extensible”—it can be extended through classes and programming inter-
faces.

JavaScript JavaScript—developed by Brendan Eich at Netscape—is the most widely
used scripting language. It’s primarily used to add programmability to web
pages—for example, animations and interactivity with the user. It’s provided
with all major web browsers.

Ruby on Rails Ruby—created in the mid-1990s by Yukihiro Matsumoto—is an open-
source, object-oriented programming language with a simple syntax that’s
similar to Python. Ruby on Rails combines the scripting language Ruby with
the Rails web-application framework developed by 37Signals. Their book,
Getting Real (gettingreal.37signals.com/toc.php), is a must read for web
developers. Many Ruby on Rails developers have reported productivity gains
over other languages when developing database-intensive web applications.
Ruby on Rails was used to build Twitter’s user interface.

Scala Scala (www.scala-lang.org/node/273)—short for “scalable language”—was
designed by Martin Odersky, a professor at École Polytechnique Fédérale de
Lausanne (EPFL) in Switzerland. Released in 2003, Scala uses both the
object-oriented and functional programming paradigms and is designed to inte-
grate with Java. Programming in Scala can significantly reduce the amount of
code in your applications. Twitter and Foursquare use Scala.

Programming
language Description

Fig. 1.16 | Popular programming languages. (Part 2 of 2.)

iw3htp5_01_Intro.fm Page 61 Wednesday, November 16, 2011 1:06 PM

62 Chapter 1 Introduction to Computers and the Internet

Software developers are discovering that using a modular, object-oriented design and im-
plementation approach can make software-development groups much more productive
than was possible with earlier techniques—object-oriented programs are often easier to
understand, correct and modify.

The Automobile as an Object
Let’s begin with a simple analogy. Suppose you want to drive a car and make it go faster by
pressing its accelerator pedal. What must happen before you can do this? Well, before you
can drive a car, someone has to design it. A car typically begins as engineering drawings,
similar to the blueprints that describe the design of a house. These drawings include the
design for an accelerator pedal. The pedal hides from the driver the complex mechanisms
that actually make the car go faster, just as the brake pedal hides the mechanisms that slow
the car, and the steering wheel hides the mechanisms that turn the car. This enables people
with little or no knowledge of how engines, braking and steering mechanisms work to
drive a car easily.

Before you can drive a car, it must be built from the engineering drawings that
describe it. A completed car has an actual accelerator pedal to make the car go faster, but
even that’s not enough—the car won’t accelerate on its own (hopefully!), so the driver
must press the pedal to accelerate the car.

Methods and Classes
Let’s use our car example to introduce some key object-oriented programming concepts.
Performing a task in a program requires a method. The method houses the program state-
ments that actually perform its tasks. It hides these statements from its user, just as a car’s
accelerator pedal hides from the driver the mechanisms of making the car go faster. In ob-
ject-oriented programming languages, we create a program unit called a class to house the
set of methods that perform the class’s tasks. For example, a class that represents a bank
account might contain one method to deposit money to an account, another to withdraw
money from an account and a third to inquire what the account’s current balance is. A class
is similar in concept to a car’s engineering drawings, which house the design of an accel-
erator pedal, steering wheel, and so on.

Instantiation
Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object from a class before a program can perform the tasks
that the class’s methods define. The process of doing this is called instantiation. An object
is then referred to as an instance of its class.

Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and
effective systems, because existing classes and components often have gone through exten-
sive testing, debugging and performance tuning. Just as the notion of interchangeable parts
was crucial to the Industrial Revolution, reusable classes are crucial to the software revolu-
tion that has been spurred by object technology.

iw3htp5_01_Intro.fm Page 62 Wednesday, November 16, 2011 1:06 PM

1.15 Keeping Up-to-Date with Information Technologies 63

Messages and Method Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages to an object. Each message is implemented
as a method call that tells a method of the object to perform its task. For example, a pro-
gram might call a particular bank-account object’s deposit method to increase the account’s
balance.

Attributes and Instance Variables
A car, besides having capabilities to accomplish tasks, also has attributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank-account object has
a balance attribute that represents the amount of money in the account. Each bank-
account object knows the balance in the account it represents, but not the balances of the
other accounts in the bank. Attributes are specified by the class’s instance variables.

Encapsulation
Classes encapsulate (i.e., wrap) attributes and methods into objects—an object’s attributes
and methods are intimately related. Objects may communicate with one another, but nor-
mally they’re not allowed to know how other objects are implemented—implementation
details are hidden within the objects themselves. This information hiding is crucial to good
software engineering.

Inheritance
A new class of objects can be created quickly and conveniently by inheritance—the new
class absorbs the characteristics of an existing class, possibly customizing them and adding
unique characteristics of its own. In our car analogy, an object of class “convertible” cer-
tainly is an object of the more general class “automobile,” but more specifically, the roof can
be raised or lowered.

1.15 Keeping Up-to-Date with Information Technologies
This completes our introduction to the Internet and the web. As you work through the book,
if you have a question, send an e-mail to deitel@deitel.com and we’ll get back to you
promptly. We hope you enjoy using Internet and World Wide Web How to Program, 5/e.
Figure 1.17 lists key technical and business publications that will help you stay up-to-date
with the latest news and trends in computer, Internet and web technology. Enjoy!

Software Engineering Observation 1.2
Use a building-block approach to creating your programs. Avoid reinventing the wheel—
use existing pieces wherever possible. This software reuse is a key benefit of object-oriented
programming.

iw3htp5_01_Intro.fm Page 63 Wednesday, November 16, 2011 1:06 PM

64 Chapter 1 Introduction to Computers and the Internet

Publication URL

ACM TechNews technews.acm.org/

ACM Transactions on
Accessible Computing

www.is.umbc.edu/taccess/index.html

ACM Transactions on Internet
Technology

toit.acm.org/

Bloomberg BusinessWeek www.businessweek.com

CNET news.cnet.com

Communications of the ACM cacm.acm.org/

Computer World www.computerworld.com

Engadget www.engadget.com

eWeek www.eweek.com

Fast Company www.fastcompany.com/

Fortune money.cnn.com/magazines/fortune/

IEEE Computer www.computer.org/portal/web/computer

IEEE Internet Computing www.computer.org/portal/web/internet/home

InfoWorld www.infoworld.com

Mashable mashable.com

PCWorld www.pcworld.com

SD Times www.sdtimes.com

Slashdot slashdot.org/

Smarter Technology www.smartertechnology.com

Technology Review technologyreview.com

Techcrunch techcrunch.com

Wired www.wired.com

Fig. 1.17 | Technical and business publications.

Self-Review Exercises
1.1 Fill in the blanks in each of the following:

a) The company that popularized personal computing was .
b) Computers process data under the control of sets of instructions called computer

.
c) is a type of computer language that uses Englishlike abbreviations for ma-

chine-language instructions.
d) languages are most convenient to the programmer for writing programs

quickly and easily.
e) The only language a computer can directly understand is that computer’s .
f) The programs that translate high-level language programs into machine language are

called .
g) , or labeling content, is another key part of the collaborative theme of Web 2.0.

iw3htp5_01_Intro.fm Page 64 Wednesday, November 16, 2011 1:06 PM

 Answers to Self-Review Exercises 65

h) With development, individuals and companies contribute their efforts in de-
veloping, maintaining and evolving software in exchange for the right to use that soft-
ware for their own purposes, typically at no charge.

i) The was the predecessor to the Internet.
j) The information-carrying capacity of a communications medium like the Internet is

called .
k) The acronym TCP/IP stands for .

1.2 Fill in the blanks in each of the following statements.
a) The protocol for communicating over the ARPANET is known as .
b) When the user clicks a hyperlink, a locates the requested web page and sends

it to the user’s web browser.
c) The Linux operating system is perhaps the greatest success of the movement.
d) Several related fields can be used to compose a .

1.3 Fill in the blanks in each of the following statements (based on Section 1.14):
a) Objects, or more precisely the classes objects come from, are essentially soft-

ware components, which have both attributes and behaviors.
b) The houses the program statements that actually perform its tasks.
c) After instantiation, an object is then referred to as a(n) of its class.
d) Each message is implemented as a(n) that tells a method of the object to per-

form its task.
e) of existing classes when building new classes and programs saves time and ef-

fort.

1.4 State whether each of the following is true or false. If the statement is false, explain why.
a) HTML5 (HyperText Markup Language 5) is a high-level language designed to specify

the content and structure of web pages in a portable manner.
b) Keeping page styling together with the page content and structure enables you to easily

change the look and feel of the pages on an entire website, or a portion of a website.
c) A web server maintains a database of hostnames and their corresponding IP addresses,

and performs the translations automatically.

1.5 Fill in the blanks in each of the following statements
a) ARPANET operated with a technique called , in which digital data was sent

in small bundles called packets.
b) Each computer on the Internet has a unique .
c) Bit is the short form for .
d) Foursquare is a mobile application that allows you to notify your friends of

your whereabouts.
e) language is called “write once, run anywhere.”
f) One of the W3C’s primary goals is to make the web universally .

Answers to Self-Review Exercises
1.1 a) Apple. b) programs. c) Assembly language. d) High-level. e) machine language. f) com-
pilers. g) Tagging. h) open-source. i) ARPANET. j) bandwidth. k) Transmission Control Protocol/
Internet Protocol.

iw3htp5_01_Intro.fm Page 65 Wednesday, November 16, 2011 1:06 PM

66 Chapter 1 Introduction to Computers and the Internet

1.2 a) Transmission Control Protocol. b) web server. c) open-source. d) record.

1.3 a) reusable. b) method. c) instance. d) method call. e) Reuse.

1.4 a) False. HTML is a markup language. b) False. By separating page styling from page con-
tent and structure, you can change the look and feel of the pages on an entire website, or a portion
of a website, simply by swapping out one style sheet for another. c) False. A Domain Name System
(DNS) server maintains a database of hostnames and their corresponding IP addresses, and per-
forms the translations automatically.

1.5 a) packet switching. b) IP address. c) binary digit. d) check-in. e) Java. f) accessible.

Exercises
1.6 Fill in the blanks in each of the following statements:

a) The process of instructing the computer to solve a problem is called .
b) What type of computer language uses Englishlike abbreviations for machine-language

instructions? .
c) The level of computer language at which it’s most convenient for you to write programs

quickly and easily is .
d) The only language that a computer directly understands is called that computer's

.
e) Web 2.0 embraces an —a design that encourages user interaction and com-

munity contributions.
f) is the concept that a large, diverse group of people will create smart ideas.

1.7 Fill in the blanks in each of the following statements:
a) The standard specifies data formats, which programs can use to interpret data

correctly.
b) A(n) request often posts data to a server-side form handler that processes the

data.
c) Twitter (founded in 2006) has revolutionized .
d) in the middle tier enforces business rules and ensures that data is reliable be-

fore the application updates a database or presents data to users.

1.8 State whether each of the following is true or false. If the statement is false, explain why.
a) PHP is an object-oriented, “open-source” “scripting” language supported by a commu-

nity of users and developers and is used by numerous websites including Wikipedia and
Facebook.

b) Classes encapsulate (i.e., wrap) attributes and methods into objects.
c) Apple’s Mac OS X operating system is a descendant of Android.
d) Ajax is one of the premier Web 1.0 software technologies.

1.9 Fill in the blanks in each of the following statements:
a) is the next-generation Internet Protocol that features built-in security and

a new addressing scheme, significantly expanding the number of addresses available.
b) HTML documents normally contain , which, when clicked, load a speci-

fied web document.
c) A contains information that directs a browser to the resource that the user

wishes to access; make such resources available to web clients.
d) The two most common HTTP request types are and .

iw3htp5_01_Intro.fm Page 66 Wednesday, November 16, 2011 1:06 PM

 Exercises 67

e) Web-based applications are multitier applications. The (also called the
data tier or the information tier) maintains the application’s data and typically stores
data in a relational database management system. The implements busi-
ness logic, controller logic and presentation logic to control interactions between the ap-
plication’s clients and its data. The , or client tier, is the application’s user
interface, which gathers input and displays output.

f) , the fastest growing mobile and smartphone operating system. is based on
the Linux kernel and Java.

1.10 What is the relationship between WWW and HTTP?

1.11 Describe the difference between HTTP get and post requests.

1.12 (Internet in Industry and Research) Fig. 1.5 provides some examples of desktop browsers
and mobile browsers which are being used in industry and research. Find three additional examples
of both browsers, and describe how each is used in the Internet and the web.

1.13 (Programming Languages) Describe three major types of programming languages.

1.14 (Social Applications) In Fig. 1.13 we listed several social applications that can be used in
social interaction. Using two different social applications—either from the table or that you find
online—describe a type of social application that you would like to create.

1.15 (Internet Negatives) There are numerous benefits of surfing the Internet and the web using
mobile phones; however there are several downsides as well, such as security issues and speed. Research
some of these negative aspects. List five problems and describe what could possibly be done to help
solve each.

1.16 (Web Services and Mashups) In this chapter, we mentioned a few popular web services and
mashups including Google Maps, Foursquare, LinkedIn, and YouTube. Identify another web ser-
vice and mashup, and describe its application.

1.17 (Watch as an Object) You’re probably wearing on your wrist one of the world’s most com-
mon types of objects—a watch. Discuss how each of the following terms and concepts applies to the
notion of a watch: object, attributes, behaviors, class, inheritance (consider, for example, an alarm
clock), abstraction, modeling, messages, encapsulation, interface and information hiding.

1.18 (Authentication) You are receiving a lot of spam in your email account. The sources of the
emails are not known. How you can minimize the spam email in your account? Discuss the issues.

1.19 (Programmer Responsibility and Liability) As a programmer in industry, you may develop
software that could affect people’s social sentiments. Suppose the help section of a software applica-
tion in one of your programs contains a particular statement that could hurt the sentiments of a par-
ticular religious community. Discuss the issues.

1.20 (Internet Addiction Disorder) Internet addiction disorder (IAD) is a psychological disorder
caused by excessive use of the Internet. Researchers have found that excessive Internet use can pro-
duce morphological changes in the structure of the human brain. Use the Internet to investigate the
prevention and correction of the above problem and discuss the issues it raises.

1.21 (Making a Difference Projects) The following is a list of just a few worldwide organizations
that are working to make a difference. Visit these sites and our Making a Difference Resource Center
at www.deitel.com/makingadifference. Prepare a top 10 list of programming projects that you
think could indeed “make a difference.”

• www.imaginecup.com/

The Microsoft Image Cup is a global competition in which students use technology to try to solve
some of the world’s most difficult problems, such as environmental sustainability, ending hun-

iw3htp5_01_Intro.fm Page 67 Wednesday, November 16, 2011 1:06 PM

68 Chapter 1 Introduction to Computers and the Internet

ger, emergency response, literacy and combating HIV/AIDS. Visit www.imaginecup.com/about
for more information about the competition and to learn about the projects developed by previ-
ous winners. You can also find several project ideas submitted by worldwide charitable organiza-
tions at www.imaginecup.com/students/imagine-cup-solve-this. For additional ideas for
programming projects that can make a difference, search the web for “making a difference” and
visit the following websites:

• www.un.org/millenniumgoals

The United Nations Millennium Project seeks solutions to major worldwide issues such as envi-
ronmental sustainability, gender equality, child and maternal health, universal education and
more.

• www.ibm.com/smarterplanet/

The IBM® Smarter Planet website discusses how IBM is using technology to solve issues related
to business, cloud computing, education, sustainability and more.

• www.gatesfoundation.org/Pages/home.aspx

The Bill and Melinda Gates Foundation provides grants to organizations that work to alleviate
hunger, poverty and disease in developing countries. In the United States, the foundation focuss-
es on improving public education, particularly for people with few resources.

• www.nethope.org/

NetHope is a collaboration of humanitarian organizations worldwide working to solve technol-
ogy problems such as connectivity, emergency response and more.

• www.rainforestfoundation.org/home

The Rainforest Foundation works to preserve rainforests and to protect the rights of the indige-
nous people who call the rainforests home. The site includes a list of things you can do to help.

• www.undp.org/

The United Nations Development Programme (UNDP) seeks solutions to global challenges
such as crisis prevention and recovery, energy and the environment and democratic governance.

• www.unido.org

The United Nations Industrial Development Organization (UNIDO) seeks to reduce poverty,
give developing countries the opportunity to participate in global trade, and promote energy ef-
ficiency and sustainability.

• www.usaid.gov/

USAID promotes global democracy, health, economic growth, conflict prevention, humanitari-
an aid and more.

• www.toyota.com/ideas-for-good/

Toyota’s Ideas for Good website describes several Toyota technologies that are making a differ-
ence—including their Advanced Parking Guidance System, Hybrid Synergy Drive®, Solar Pow-
ered Ventilation System, T.H.U.M.S. (Total Human Model for Safety) and Touch Tracer
Display. You can participate in the Ideas for Good challenge by submitting a short essay or video
describing how these technologies can be used for other good purposes.

iw3htp5_01_Intro.fm Page 68 Wednesday, November 16, 2011 1:06 PM

2Introduction to HTML5:
Part 1

He had a wonderful talent for
packing thought close, and
rendering it portable.
—Thomas Babington Macaulay

High thoughts must have high
language.
—Aristophanes

O b j e c t i v e s
In this chapter you’ll:

■ Understand important
components of HTML5
documents.

■ Use HTML5 to create web
pages.

■ Add images to web pages.

■ Create and use hyperlinks to
help users navigate web
pages.

■ Mark up lists of information.

■ Create tables with rows and
columns of data.

■ Create and use forms to get
user input.

iw3htp5_02_HTML5_pt1.fm Page 69 Wednesday, November 16, 2011 1:06 PM

70 Chapter 2 Introduction to HTML5: Part 1

2.1 Introduction
This chapter begins unlocking the power of web-based application development with
HTML5. Unlike programming languages, such as C, C++, C#, Java and Visual Basic,
HTML5 is a markup language that specifies the structure and content of documents that
are displayed in web browsers.

We introduce some basics, then cover more sophisticated HTML5 techniques such as:

• tables, which are particularly useful for structuring information from databases
(i.e., software that stores structured sets of data)

• forms for collecting information from web-page visitors

• internal linking for easier page navigation

• meta elements for specifying information about a document

In Chapter 3, we introduce many new features in HTML5. In Chapter 4, we discuss
CSS3, a technology for specifying how web pages look.

2.2 Editing HTML5
We’ll create HTML5 documents by typing HTML5 markup text in a text editor (such as
Notepad, TextEdit, vi, emacs) and saving it with the .html or .htm filename extension.

Computers called web servers store HTML5 documents. Clients (such as web browsers
running on your local computer or smartphone) request specific resources such as
HTML5 documents from web servers. For example, typing www.deitel.com/books/
downloads.html into a web browser’s address field requests the file downloads.html from
the books directory on the web server running at www.deitel.com. We discuss web servers
in Chapter 17. For now, you’ll simply place the HTML5 documents on your computer
and render (i.e., display) them by opening them locally with a web browser.

2.3 First HTML5 Example
This chapter presents HTML5 markup capabilities and provides screen captures that show
how a browser renders (that is, displays) the HTML5. You can download the examples

2.1 Introduction
2.2 Editing HTML5
2.3 First HTML5 Example
2.4 W3C HTML5 Validation Service
2.5 Headings
2.6 Linking
2.7 Images

2.7.1 alt Attribute
2.7.2 Void Elements
2.7.3 Using Images as Hyperlinks

2.8 Special Characters and Horizontal
Rules

2.9 Lists
2.10 Tables
2.11 Forms
2.12 Internal Linking
2.13 meta Elements
2.14 Web Resources

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

iw3htp5_02_HTML5_pt1.fm Page 70 Wednesday, November 16, 2011 1:06 PM

2.3 First HTML5 Example 71

from www.pearsonhighered.com/deitel. The HTML5 documents we show have line
numbers for your convenience—these are not part of the documents. Open each HTML5
document in various web browsers so you can view and interact with it.

Figure 2.1 is an HTML5 document named main.html, which is stored in the exam-
ples/ch02 folder. This first example displays the message Welcome to HTML5! in the
browser. Now let’s consider each line of the document.

Document Type Declaration
The document type declaration (DOCTYPE) in line 1 is required in HTML5 documents so
that browsers render the page in standards mode, according to the HTML and CSS spec-
ifications. Some browsers operate in quirks mode to maintain backward compatibility
with web pages that are not up-to-date with the latest standards. You’ll include the DOC-
TYPE in each HTML5 document you create.

Blank Lines
We include blank lines (lines 2 and 10) to make our documents easier to read—the brows-
er ignores them.

Comments
Lines 3–4 are HTML5 comments. You’ll insert comments in your HTML5 markup to
improve readability and describe the content of a document. The browser ignores com-
ments when your document is rendered. HTML5 comments start with <!-- and end with
-->. We include in our examples comments that specify the figure number and file name
and state the example’s purpose. We’ll often include additional comments, especially to
explain new features.

1 <!DOCTYPE html>
2
3 <!-- Fig. 2.1: main.html -->
4 <!-- First HTML5 example. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Welcome</title>
9 </head>

10
11 <body>
12 <p>Welcome to HTML5!</p>
13 </body>
14 </html>

Fig. 2.1 | First HTML5 example.

Tab shows
contents of

title element

iw3htp5_02_HTML5_pt1.fm Page 71 Wednesday, November 16, 2011 1:06 PM

72 Chapter 2 Introduction to HTML5: Part 1

html, head and body Elements
HTML5 markup contains text (and images, graphics, animations, audios and videos) that
represents the content of a document and elements that specify a document’s structure and
meaning. Some important elements are the html element (which starts in line 5 and ends
in line 14), the head element (lines 6–9) and the body element (lines 11–13). The html
element encloses the head section (represented by the head element) and the body section
(represented by the body element). The head section contains information about the
HTML5 document, such as the character set (UTF-8, the most popular character-encoding
scheme for the web) that the page uses (line 7)—which helps the browser determine how
to render the content—and the title (line 8). The head section also can contain special
document-formatting instructions called CSS3 style sheets and client-side programs
called scripts for creating dynamic web pages. (We introduce CSS3 style sheets in Chapter 4
and explain scripting with the JavaScript language in Chapters 6–13.) The body section
contains the page’s content, which the browser displays when the user visits the web page.

Start Tags and End Tags
HTML5 documents delimit most elements with a start tag and an end tag. A start tag con-
sists of the element name in angle brackets (for example, <html> in line 5). An end tag con-
sists of the element name preceded by a forward slash (/) in angle brackets (for example,
</html> in line 14). There are several so-called “void elements” that do not have end tags.

As you’ll soon see, many start tags have attributes that provide additional information
about an element, which browsers use to determine how to process the element. Each attri-
bute has a name and a value separated by an equals sign (=).

title Element
Line 8 specifies a title element. This is called a nested element, because it’s enclosed in
the head element’s start and end tags. The head element is also a nested element, because
it’s enclosed in the html element’s start and end tags. The title element describes the web
page. Titles usually appear in the title bar at the top of the browser window, in the browser
tab on which the page is displayed, and also as the text identifying a page when users add
the page to their list of Favorites or Bookmarks, enabling them to return to their favorite
sites. Search engines use the title for indexing purposes and when displaying results.

Line 11 begins the document’s body element, which specifies the document’s content,
which may include text, images, audios and videos.

Paragraph Element (<p>...</p>)
Some elements, such as the paragraph element denoted with <p> and </p> in line 12, help
define the structure of a document. All the text placed between the <p> and </p> tags

Good Programming Practice 2.1
Although HTML5 element and attribute names are case insensitive (you can use upper-
case and lowercase letters), it’s a good practice to use only lowercase letters.

Good Programming Practice 2.2
Indenting nested elements emphasizes a document’s structure and promotes readability.
We use three spaces for each level of indentation.

iw3htp5_02_HTML5_pt1.fm Page 72 Wednesday, November 16, 2011 1:06 PM

2.4 W3C HTML5 Validation Service 73

forms one paragraph. When a browser renders a paragraph, it places extra space above and
below the paragraph text. The key line in the program is line 12, which tells the browser to
display Welcome to HTML5!.

End Tags
This document ends with two end tags (lines 13–14), which close the body and html ele-
ments, respectively. The </html> tag informs the browser that the HTML5 markup is
complete.

Opening an HTML5 File in Your Default Web Browser
To open an HTML5 example from this chapter, open the folder where you saved the
book’s examples, browse to the Chapter 2 folder and double click the file to open it in your
default web browser. At this point your browser window should appear similar to the sam-
ple screen capture shown in Fig. 2.1. We resized the browser window to save space.

2.4 W3C HTML5 Validation Service
You must use proper HTML5 syntax to ensure that browsers process your documents
properly. The World Wide Web Consortium (W3C) provides a validation service (at
validator.w3.org) for checking a document’s syntax. Documents can be validated by

• providing the URL of an online web page

• uploading a file to the validator

• pasting code directly into a text area provided on the validator site

All of the HTML5 examples in this book have been validated by uploading a file to:

To use validator.w3.org/#validate-by-upload, click the Choose File button to
select a file from your computer to validate. Next, click More Options. In the Document
Type drop-down list, select HTML5 (experimental). Select the Verbose Output checkbox,
then click the Check button to validate your document. If it contains syntax errors, the
validation service displays error messages describing the errors. Since the HTML5 vali-
dator is still considered experimental, you’ll receive a warning each time you validate an
HTML5 document.

2.5 Headings
Some text in an HTML5 document may be more important than other text. HTML5 pro-
vides six heading elements (h1 through h6) for specifying the relative importance of informa-
tion (Fig. 2.2). Heading element h1 (line 12) is considered the most significant one and is
typically rendered in a larger font than the other five (lines 13–17). Each successive heading
element (h2, h3, etc.) is typically rendered in a progressively smaller font.

validator.w3.org/#validate-by-upload

Error-Prevention Tip 2.1
Most browsers attempt to render HTML5 documents even if they’re invalid. This can
lead to unexpected and undesirable results. Use a validation service, such as the W3C
MarkUp Validation Service, to confirm that an HTML5 document is syntactically correct.

iw3htp5_02_HTML5_pt1.fm Page 73 Wednesday, November 16, 2011 1:06 PM

74 Chapter 2 Introduction to HTML5: Part 1

2.6 Linking
One of the most important HTML5 features is the hyperlink, which references (or links
to) other resources, such as HTML5 documents and images. When a user clicks a hyper-
link, the browser tries to execute an action associated with it (for example, navigate to a

Portability Tip 2.1
The text size used to display each heading element can vary between browsers. In
Chapter 4, we use CSS to control the text size and other text properties.

Look-and-Feel Observation 2.1
Placing a heading at the top of each page helps viewers understand the purpose of the page.
Headers also help create an outline for a document and are indexed by search engines.

1 <!DOCTYPE html>
2
3 <!-- Fig. 2.2: heading.html -->
4 <!-- Heading elements h1 through h6. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Headings</title>
9 </head>

10
11 <body>
12
13
14
15
16
17
18 </body>
19 </html>

Fig. 2.2 | Heading elements h1 through h6.

<h1>Level 1 Heading</h1>
<h2>Level 2 heading</h2>
<h3>Level 3 heading</h3>
<h4>Level 4 heading</h4>
<h5>Level 5 heading</h5>
<h6>Level 6 heading</h6>

iw3htp5_02_HTML5_pt1.fm Page 74 Wednesday, November 16, 2011 1:06 PM

2.6 Linking 75

URL or open an e-mail client). Any displayed element can act as a hyperlink. Web browsers
typically underline text hyperlinks and color their text blue by default so that users can dis-
tinguish hyperlinks from plain text. In Fig. 2.3, we create text hyperlinks to four websites.

Line 13 introduces the strong element, which indicates that its content has high
importance. Browsers typically render such text in a bold font.

Links are created using the a (anchor) element. Line 16 defines a hyperlink to the URL
assigned to attribute href (hypertext reference), which specifies a resource’s location, such as

• a web page or location within a web page

• a file

• an e-mail address

1 <!DOCTYPE html>
2
3 <!-- Fig. 2.3: links.html -->
4 <!-- Linking to other web pages. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Links</title>
9 </head>

10
11 <body>
12 <h1>Here are my favorite sites:</h1>
13 <p>Click a name to visit that site.</p>
14
15 <!-- create four text hyperlinks -->
16 <p> </p>
17 <p> </p>
18 <p> </p>
19 <p> </p>
20 </body>
21 </html>

Fig. 2.3 | Linking to other web pages.

Facebook
Twitter
Foursquare
Google

iw3htp5_02_HTML5_pt1.fm Page 75 Wednesday, November 16, 2011 1:06 PM

76 Chapter 2 Introduction to HTML5: Part 1

The anchor element in line 16 links the text Facebook to a web page located at http://
www.facebook.com. The browser changes the color of any text link once you’ve clicked the
link (in this case, the links are purple rather than blue). When a URL does not indicate a
specific document on the website, the web server returns a default web page. This page is
often called index.html, but most web servers can be configured to use any file as the de-
fault web page for the site. If the web server cannot locate a requested document, it returns
an error indication to the web browser (known as a 404 error), and the browser displays a
web page containing an error message.

Hyperlinking to an E-Mail Address
Anchors can link to e-mail addresses using a mailto: URL. When the user clicks this type of
anchored link, most browsers launch the user’s default e-mail program (for example, Mozilla
Thunderbird, Microsoft Outlook or Apple Mail) to enable the user to write an e-mail mes-
sage to the linked address. Figure 2.4 demonstrates this type of anchor. Lines 13–14 contain
an e-mail link. The form of an e-mail anchor is ….
In this case, we link to the e-mail address deitel@deitel.com. Line 13 includes the e-mail
address as it will appear in the message displayed on the browser.

Software Engineering Observation 2.1
Although not required in HTML5, enclosing attribute values in either single or double
quotes is recommended.

1 <!DOCTYPE html>
2
3 <!-- Fig. 2.4: contact.html -->
4 <!-- Linking to an e-mail address. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Contact Page</title>
9 </head>

10
11 <body>
12 <p>
13 To write to
14 , click the link and your default
15 email client will open an email message and address it to us.
16 </p>
17 </body>
18 </html>

Fig. 2.4 | Linking to an e-mail address. (Part 1 of 2.)

Deitel & Associates, Inc.

iw3htp5_02_HTML5_pt1.fm Page 76 Wednesday, November 16, 2011 1:06 PM

2.7 Images 77

2.7 Images
We’ve shown how to mark up documents that contain only text, but web pages may also
contain images, animations, graphics, audios and even videos. The most popular image for-
mats used by web developers today are PNG (Portable Network Graphics) and JPEG (Joint
Photographic Experts Group). Users can create images using specialized software, such as
Adobe Photoshop Express (www.photoshop.com), G.I.M.P. (www.gimp.org), Inkscape
(www.inkscape.org) and many more. Images may also be acquired from various websites,
many of which offer royalty-free images (Fig. 2.5)—read each site’s Terms of Service to
determine if you’ll need permission to use their images, especially in commercial, for-
profit applications. Figure 2.6 demonstrates how to include images in web pages.

 Image-sharing site URL

Flickr® www.flickr.com

Photobucket photobucket.com

Fotki™ www.fotki.com

deviantART www.deviantart.com

Picasa™ picasa.google.com

TinyPic® tinypic.com

ImageShack www.imageshack.us

FreeDigitalPhotos.net www.freedigitalphotos.net

Open Stock Photography www.openstockphotography.org

Open Clip Art Library www.openclipart.org

Fig. 2.5 | Popular image-sharing sites.

Fig. 2.4 | Linking to an e-mail address. (Part 2 of 2.)

iw3htp5_02_HTML5_pt1.fm Page 77 Wednesday, November 16, 2011 1:06 PM

78 Chapter 2 Introduction to HTML5: Part 1

Lines 13–14 use an img element to include an image in the document. The image
file’s location is specified with the src (source) attribute. This image is located in the same
directory as the HTML5 document, so only the image’s file name is required. This is
known as a relative path—the image is stored relative to the location of the document.
Optional attributes width and height specify the image’s dimensions. You can scale an
image by increasing or decreasing the values of the image width and height attributes. If
these attributes are omitted, the browser uses the image’s actual width and height. Images
are measured in pixels (“picture elements”), which represent dots of color on the screen.
Image-editing programs display the dimensions, in pixels, of an image. The image in
Fig. 2.6 is 92 pixels wide and 120 pixels high.

1 <!DOCTYPE html>
2
3 <!-- Fig. 2.6: picture.html -->
4 <!-- Including images in HTML5 files. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Images</title>
9 </head>

10
11 <body>
12 <p>
13
14
15
16
17 </p>
18 </body>
19 </html>

Fig. 2.6 | Including images in HTML5 files.

Performance Tip 2.1
Always include the width and the height of an image in the tag so that when the
browser loads the HTML5 file, it will know how much screen space to provide and can
lay out the page properly, even before it downloads the image. Including the width and
height attributes in an tag can help the browser load and render pages faster.

<img src = "cpphtp.png" width = "92" height = "120"
 alt = "C++ How to Program book cover">
<img src = "jhtp.png" width = "92" height = "120"
 alt = "Java How to Program book cover">

Internet Explorer 9 showing an image and the alt text for a missing image

iw3htp5_02_HTML5_pt1.fm Page 78 Wednesday, November 16, 2011 1:06 PM

2.7 Images 79

2.7.1 alt Attribute
A browser may not be able to render an image for several reasons. It may not support im-
ages—as is the case with text-only browsers—or the client may have disabled image view-
ing to reduce download time. Every img element in an HTML5 document must have an
alt attribute. If a browser cannot render an image, the browser displays the alt attribute’s
value. Figure 2.6 shows the Internet Explorer browser rendering a red X symbol and dis-
playing the alt attribute’s value, signifying that the image (jhtp.png) cannot be found.

The alt attribute is also important for accessibility—speech synthesizer software can
speak the alt attribute’s value so that a visually impaired user can understand what the
browser is displaying. For this reason, the alt attribute should describe the image’s con-
tents.

2.7.2 Void Elements
Some HTML5 elements (called void elements) contain only attributes and do not mark
up text (i.e., text is not placed between a start and an end tag). Although this is not re-
quired in HTML5, you can terminate void elements (such as the img element) by using
the forward slash character (/) inside the closing right angle bracket (>) of the start tag.
Foe example, lines 15–16 could be written as follows:

2.7.3 Using Images as Hyperlinks
By using images as hyperlinks, you can create graphical web pages that link to other re-
sources. In Fig. 2.7, we create five different image hyperlinks. Clicking an image in this
example takes the user to a corresponding web page—one of the other examples in this
chapter.

Look-and-Feel Observation 2.2
Entering new dimensions for an image that change its width-to-height ratio distorts the ap-
pearance of the image. To avoid distortion, if your image is 200 pixels wide and 100 pixels
high, for example, any new dimensions should maintain the 2:1 width-to-height ratio.

<img src = "jhtp.png" width = "92" height = "120"
 alt = "Java How to Program book cover" />

1 <!DOCTYPE html>
2
3 <!-- Fig. 2.7: nav.html -->
4 <!-- Images as link anchors. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Navigation Bar</title>
9 </head>

10

Fig. 2.7 | Images as link anchors. (Part 1 of 2.)

iw3htp5_02_HTML5_pt1.fm Page 79 Wednesday, November 16, 2011 1:06 PM

80 Chapter 2 Introduction to HTML5: Part 1

Lines 13–16 create an image hyperlink by nesting an img element in an anchor ele-
ment. The img element’s src attribute value specifies that this image (links.jpg) resides
in a directory named buttons. The buttons directory and the HTML5 document are in
the same directory. Images from other web documents also can be referenced by setting the
src attribute to the name and location of the image. If you refer to an image on another
website, the browser has to request the image resource from that site’s server. [Note: If
you’re hosting a publicly available web page that uses an image from another site, you
should get permission to use the image and host a copy of the image on your own website.
The image’s owner may require you to acknowledge their work.] Clicking an image hyper-
link takes a user to the web page specified by the surrounding anchor element’s href attri-
bute. When the mouse hovers over a link of any kind, the URL that the link points to is
displayed in the status bar at the bottom of the browser window.

11 <body>
12 <p>
13
14
15
16
17
18
19 <img src = "buttons/list.jpg" width = "65"
20 height = "50" alt = "List of Features">
21
22
23
24 <img src = "buttons/contact.jpg" width = "65"
25 height = "50" alt = "Contact Me">
26
27
28
29 <img src = "buttons/table.jpg" width = "65"
30 height = "50" alt = "Tables Page">
31
32
33
34 <img src = "buttons/form.jpg" width = "65"
35 height = "50" alt = "Feedback Form">
36
37 </p>
38 </body>
39 </html>

Fig. 2.7 | Images as link anchors. (Part 2 of 2.)

 <img src = "buttons/links.jpg" width = "65"
 height = "50" alt = "Links">

iw3htp5_02_HTML5_pt1.fm Page 80 Wednesday, November 16, 2011 1:06 PM

2.8 Special Characters and Horizontal Rules 81

2.8 Special Characters and Horizontal Rules
When marking up text, certain characters or symbols may be difficult to embed directly into
an HTML5 document. Some keyboards do not provide these symbols (such as ©), or their
presence in the markup may cause syntax errors (as with <). For example, the markup

results in a syntax error because it uses the less-than character (<), which is reserved for start
tags and end tags such as <p> and </p>. HTML5 provides character entity references (in
the form &code;) for representing special characters (Fig. 2.8). We could correct the previ-
ous line by writing

which uses the character entity reference < for the less-than symbol (<). [Note: Before
HTML5, the character entity reference & was required to display an & in a web page.
This is no longer the case.]

Figure 2.9 demonstrates how to use special characters in an HTML5 document. For
an extensive list of character entities, see

<p>if x < 10 then increment x by 1</p>

<p>if x < 10 then increment x by 1</p>

Symbol Description Character entity reference

HTML5 character entities
& ampersand &

’ apostrophe '

> greater-than >

< less-than <

" quote "

Other common character entities
non-breaking space

© copyright ©

— em dash —

– en dash –

¼ fraction 1/4 ¼

½ fraction 1/2 ½

¾ fraction 3/4 ¾

... horizontal ellipsis …

® registered trademark ®

§ section §

™ trademark ™

Fig. 2.8 | Some common HTML character entity references.

 www.w3.org/TR/REC-html40/sgml/entities.html

iw3htp5_02_HTML5_pt1.fm Page 81 Wednesday, November 16, 2011 1:06 PM

82 Chapter 2 Introduction to HTML5: Part 1

The paragraph in lines 12–15 allows the user to click the link to send an e-mail to
Deitel & Associates, Inc. In this case, we represented the & with the character entity refer-
ence & to show that it still works even though it’s not required in HTML5.

1 <!DOCTYPE html>
2
3 <!-- Fig. 2.9: contact2.html -->
4 <!-- Inserting special characters. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Contact Page</title>
9 </head>

10
11 <body>
12 <p>
13 Send an email to
14 Deitel Associates, Inc..
15 </p>
16
17
18
19 <!-- special characters are entered -->
20 <!-- using the form &code; -->
21
22
23
24 <!-- to strike through text use element -->
25 <!-- to subscript text use <sub> element -->
26 <!-- to superscript text use <sup> element -->
27 <!-- these elements are nested inside other elements -->
28
29
30
31
32
33 </body>
34 </html>

Fig. 2.9 | Inserting special characters.

&

<hr> <!-- inserts a horizontal rule -->

<p>All information on this site is ©
 Deitel & Associates, Inc. 2012. </p>

<p>You may download 3.14 x 10²
 characters worth of information from this site.
 The first item in the series is x₁.</p>
<p>Note: < ¼ of the information
 presented here is updated daily.</p>

iw3htp5_02_HTML5_pt1.fm Page 82 Wednesday, November 16, 2011 1:06 PM

2.9 Lists 83

In addition to special characters, this document introduces a horizontal rule, indi-
cated by the <hr> tag in line 17. Most browsers render a horizontal rule as a horizontal line
with extra space above and below it. As a professional, you’ll see lots of older code—known
as legacy code. The horizontal rule element should be considered a legacy element and you
should avoid using it. As you’ll learn, CSS can be used to add horizontal rules and other
formatting to documents.

Lines 21–22 contain other special characters, which can be expressed as either character
entity references (coded using word abbreviations such as © for copyright) or numeric
character references—decimal or hexadecimal (hex) values representing special characters.
For example, the & character is represented in decimal and hexadecimal notation as & and
&, respectively. Hexadecimal numbers are base 16 numbers—digits in a hexadecimal
number have values from 0 to 15 (a total of 16 different values). The letters A–F represent the
hexadecimal digits corresponding to decimal values 10–15. Thus in hexadecimal notation we
can have numbers like 876 consisting solely of decimal-like digits, numbers like DA19F con-
sisting of digits and letters, and numbers like DCB consisting solely of letters. We discuss
hexadecimal numbers in detail in Appendix E, Number Systems, which is available online at
www.deitel.com/books/iw3htp5/.

In lines 28–30, we introduce four new elements. Most browsers render the del ele-
ment as strike-through text. With this format users can indicate document revisions. To
superscript text (i.e., raise text above the baseline and in a decreased font size) or subscript
text (i.e., lower text below the baseline and in a decreased font size), use the sup or sub
element, respectively. We also use character entity reference < for a less-than sign and
¼ for the fraction 1/4 (line 31).

2.9 Lists
Now we show how to use lists in a web page to organize content that similar in nature.
Figure 2.10 displays text in an unordered list (i.e., a simple bullet-style list that does not
order its items by letter or number). The unordered-list element ul (lines 16–22) creates
a list in which each item begins with a bullet symbol (typically a disc). Each entry in an
unordered list is an li (list item) element (lines 18–21). Most web browsers render each
li element on a new line with a bullet symbol indented from the beginning of the line.

1 <!DOCTYPE html>
2
3 <!-- Fig. 2.10: links2.html -->
4 <!-- Unordered list containing hyperlinks. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Links</title>
9 </head>

10
11 <body>
12 <h1>Here are my favorite sites</h1>
13 <p>Click on a name to go to that page</p>

Fig. 2.10 | Unordered list containing hyperlinks. (Part 1 of 2.)

iw3htp5_02_HTML5_pt1.fm Page 83 Wednesday, November 16, 2011 1:06 PM

84 Chapter 2 Introduction to HTML5: Part 1

Nested Lists
Lists may be nested to represent hierarchical relationships, as in a multilevel outline.
Figure 2.11 demonstrates nested lists and ordered lists. The ordered-list element ol cre-
ates a list in which each item begins with a number.

In many browsers, the items in the outermost unordered list (lines 15–55) are pre-
ceded by discs. List items nested inside the unordered list of line 15 are preceded in many
browsers by hollow circular bullets. A web browser indents each nested list to indicate a
hierarchical relationship. The first ordered list (lines 29–33) includes two items. Items in
an ordered list are enumerated 1., 2., 3. and so on. Nested ordered lists are enumerated in
the same manner. Although not demonstrated in this example, subsequent nested unor-
dered list items are often preceded by square bullets. The bullet styles used may vary by
browser.

14
15 <!-- create an unordered list -->
16
17 <!-- the list contains four list items -->
18
19
20
21
22
23 </body>
24 </html>

1 <!DOCTYPE html>
2
3 <!-- Fig. 2.11: list.html -->
4 <!-- Nested lists and ordered lists. -->
5 <html>
6 <head>

Fig. 2.11 | Nested lists and ordered lists. (Part 1 of 3.)

Fig. 2.10 | Unordered list containing hyperlinks. (Part 2 of 2.)

YouTube
Wikipedia
Amazon
LinkedIn

iw3htp5_02_HTML5_pt1.fm Page 84 Wednesday, November 16, 2011 1:06 PM

2.9 Lists 85

7 <meta charset = "utf-8">
8 <title>Lists</title>
9 </head>

10
11 <body>
12 <h1>The Best Features of the Internet</h1>
13
14 <!-- create an unordered list -->
15
16 You can meet new people from countries around
17 the world.
18
19 You have access to new media as it becomes public:
20
21 <!-- this starts a nested unordered list, which uses a -->
22 <!-- different bullet. The list ends when you -->
23 <!-- close the tag. -->
24
25 New games
26
27
28
29
30
31
32
33
34
35 Around the clock news
36 Search engines
37 Shopping
38
39
40
41
42
43
44
45
46
47
48
49 <!-- ends the nested list of line 24 -->
50
51
52 Links
53 Keeping in touch with old friends
54 It’s the technology of the future!
55 <!-- ends the unordered list of line 15 -->
56 </body>
57 </html>

Fig. 2.11 | Nested lists and ordered lists. (Part 2 of 3.)

New applications

 <!-- nested ordered list -->

 For business
 For pleasure

 <!-- ends line 27 new applications li-->

Programming

 <!-- another nested ordered list -->

 XML
 Java
 HTML5
 JavaScript
 New languages

 <!-- ends programming li of line 38 -->

iw3htp5_02_HTML5_pt1.fm Page 85 Wednesday, November 16, 2011 1:06 PM

86 Chapter 2 Introduction to HTML5: Part 1

2.10 Tables
Tables are frequently used to organize data into rows and columns. Our first example
(Fig. 2.12) creates a table with six rows and two columns to display price information for
various fruits. Tables are defined with the table element (lines 13–58). Line 13 specifies
the table element’s start tag. The border attribute with the value "1" specifies that the
browser should place borders around the table and the table’s cells. The border attribute
is a legacy attribute that you should avoid. When we introduce CSS3 (Chapter 4), we’ll
use CSS’s border property, which is the preferred way to format a table’s borders.

The caption element (lines 17–18) specifies a table’s title. Text in this element is typ-
ically rendered above the table. In addition, it’s good practice to include a general descrip-
tion of a table’s information in the table element’s summary attribute—one of the many
HTML5 features that make web pages more accessible to users with disabilities. Speech
devices use this attribute to make the table more accessible to users with visual impairments.

1 <!DOCTYPE html>
2
3 <!-- Fig. 2.12: table1.html -->
4 <!-- Creating a basic table. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">

Fig. 2.12 | Creating a basic table. (Part 1 of 3.)

Fig. 2.11 | Nested lists and ordered lists. (Part 3 of 3.)

iw3htp5_02_HTML5_pt1.fm Page 86 Wednesday, November 16, 2011 1:06 PM

2.10 Tables 87

8 <title>A simple HTML5 table</title>
9 </head>

10
11 <body>
12 <!-- the <table> tag opens a table -->
13
14
15 <!-- the <caption> tag summarizes the table's -->
16 <!-- contents (this helps visually impaired people) -->
17
18
19
20 <!-- the <thead> section appears first in the table -->
21 <!-- it formats the table header area -->
22
23
24
25
26
27
28
29 <!-- the <tfoot> section appears last in the table -->
30 <!-- it formats the table footer -->
31
32
33
34
35
36
37
38 <!-- all table content is enclosed -->
39 <!-- within the <tbody> -->
40
41
42 <!-- insert a data cell -->
43
44
45 <tr>
46 <td>Orange</td>
47 <td>$0.50</td>
48 </tr>
49 <tr>
50 <td>Banana</td>
51 <td>$1.00</td>
52 </tr>
53 <tr>
54 <td>Pineapple</td>
55 <td>$2.00</td>
56 </tr>
57
58
59 </body>
60 </html>

Fig. 2.12 | Creating a basic table. (Part 2 of 3.)

<table border = "1">

<caption>Table of Fruits (1st column) and
 Their Prices (2nd column)</caption>

<thead>
 <tr> <!-- <tr> inserts a table row -->
 <th>Fruit</th> <!-- insert a heading cell -->
 <th>Price</th>
 </tr>
</thead>

<tfoot>
 <tr>
 <th>Total</th>
 <th>$3.75</th>
 </tr>
</tfoot>

<tbody>
 <tr>
 <td>Apple</td>
 <td>$0.25</td>
 </tr>

 </tbody>
</table>

iw3htp5_02_HTML5_pt1.fm Page 87 Wednesday, November 16, 2011 1:06 PM

88 Chapter 2 Introduction to HTML5: Part 1

A table has three distinct sections—head, body and foot. The head section (or header
cell) is defined with a thead element (lines 22–27), which contains header information
such as column names. Each tr element (lines 23–26) defines an individual table row.
The columns in the thead section are defined with th elements. Most browsers center text
formatted by th (table header column) elements and display them in bold. Table header
elements (lines 24–25) are nested inside table row elements.

The body section, or table body, contains the table’s primary data. The table body
(lines 40–57) is defined in a tbody element. In the table body, each tr element specifies
one row. Data cells contain individual pieces of data and are defined with td (table data)
elements in each row.

The tfoot section (lines 31–36) is defined with a tfoot (table foot) element. The text
placed in the footer commonly includes calculation results and footnotes. Here, we manually
entered the calculation total. In later chapters, we’ll show how to perform such calcula-
tions dynamically. Like other sections, the tfoot section can contain table rows, and each
row can contain cells. As in the thead section, cells in the foot section are created using th
elements, instead of the td elements used in the table body. Before HTML5, the tfoot
section was required to appear above the tbody section of the table. As of HTML5, the
tfoot section can be above or below the tbody section in the code.

In this example, we specified only the table’s data, not its formatting. As you can see,
in the browser’s default formatting each column is only as wide as its largest element, and
the table itself is not visually appealing. In Chapter 4, we’ll use CSS to specify HTML5
elements’ formats.

Using rowspan and colspan with Tables
Figure 2.12 explored a basic table’s structure. Figure 2.13 presents another table example
and introduces new attributes that allow you to build more complex tables.

The table begins in line 14. Table cells are sized to fit the data they contain, but you can
control a table’s formatting using CSS3. You can create cells that apply to more than one

Fig. 2.12 | Creating a basic table. (Part 3 of 3.)

Table border

Table header

Table footer

Table body

Table caption

iw3htp5_02_HTML5_pt1.fm Page 88 Wednesday, November 16, 2011 1:06 PM

2.10 Tables 89

row or column using the attributes rowspan and colspan. The values assigned to these
attributes specify the number of rows or columns occupied by a cell. The th element at
lines 22–25 uses the attribute rowspan = "2" to allow the cell containing the picture of the
camel to use two vertically adjacent cells (thus the cell spans two rows). The th element in
lines 28–31 uses the attribute colspan = "4" to widen the header cell (containing Camelid
comparison and Approximate as of 10/2011) to span four cells.

Line 29 introduces the br element, which most browsers render as a line break. Any
markup or text following a br element is rendered on the next line, which in this case
appears within the same four-column span. Like the img element, br is an example of a
void element. Like the hr element, br is considered a legacy formatting element that you
should avoid using—in general, formatting should be specified using CSS.

1 <!DOCTYPE html>
2
3 <!-- Fig. 2.13: table2.html -->
4 <!-- Complex HTML5 table. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Tables</title>
9 </head>

10
11 <body>
12 <h1>Table Example: Spanning Rows and Columns</h1>
13
14 <table border = "1">
15 <caption>A more complex sample table</caption>
16
17 <thead>
18 <!-- rowspans and colspans merge the specified -->
19 <!-- number of cells vertically or horizontally -->
20 <tr>
21 <!-- merge two rows -->
22 <th rowspan = "2">
23 <img src = "camel.png" width = "205"
24 height = "167" alt = "Picture of a camel">
25 </th>
26
27 <!-- merge four columns -->
28
29
30
31
32 </tr>
33 <tr>
34 <th># of humps</th>
35 <th>Indigenous region</th>
36 <th>Spits?</th>
37 <th>Produces wool?</th>
38 </tr>
39 </thead>

Fig. 2.13 | Complex HTML5 table. (Part 1 of 2.)

<th colspan = "4">
 Camelid comparison

 Approximate as of 10/2011
</th>

iw3htp5_02_HTML5_pt1.fm Page 89 Wednesday, November 16, 2011 1:06 PM

90 Chapter 2 Introduction to HTML5: Part 1

2.11 Forms
When browsing websites, users often need to provide information such as search queries,
e-mail addresses and zip codes. HTML5 provides a mechanism, called a form, for collect-
ing data from a user.

Data that users enter on a web page is normally sent to a web server that provides access
to a site’s resources (for example, HTML5 documents, images, animations, videos). These
resources are located either on the same machine as the web server or on a machine that

40 <tbody>
41 <tr>
42 <th>Camels (bactrian)</th>
43 <td>2</td>
44 <td>Africa/Asia</td>
45 <td>Yes</td>
46 <td>Yes</td>
47 </tr>
48 <tr>
49 <th>Llamas</th>
50 <td>1</td>
51 <td>Andes Mountains</td>
52 <td>Yes</td>
53 <td>Yes</td>
54 </tr>
55 </tbody>
56 </table>
57 </body>
58 </html>

Fig. 2.13 | Complex HTML5 table. (Part 2 of 2.)

iw3htp5_02_HTML5_pt1.fm Page 90 Wednesday, November 16, 2011 1:06 PM

2.11 Forms 91

the web server can access through the Internet. When a browser requests a publicly avail-
able web page or file that’s located on a server, the server processes the request and returns
the requested resource. A request contains the name and path of the desired resource and
the protocol (method of communication). HTML5 documents are requested and trans-
ferred via the Hypertext Transfer Protocol (HTTP).

Figure 2.14 is a simple form that sends data to the web server for processing. The web
server typically returns a web page back to the web browser—this page often indicates
whether or not the form’s data was processed correctly. [Note: This example demonstrates
only client-side functionality. If you submit this form (by clicking Submit), the browser
will simply display www.deitel.com (the site specified in the form’s action), because we
haven’t yet specified how to process the form data on the server. In later chapters, we
present the server-side programming (for example, in PHP, ASP.NET and JavaServer Faces)
necessary to process information entered into a form.]

1 <!DOCTYPE html>
2
3 <!-- Fig. 2.14: form.html -->
4 <!-- Form with a text field and hidden fields. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Forms</title>
9 </head>

10
11 <body>
12 <h1>Feedback Form</h1>
13
14 <p>Please fill out this form to help
15 us improve our site.</p>
16
17 <!-- this tag starts the the form, gives the -->
18 <!-- method of sending information and the -->
19 <!-- location of the form-processing script -->
20
21 <!-- hidden inputs contain non-visual -->
22 <!-- information that will also be submitted -->
23
24
25
26
27
28
29
30 <!-- <input type = "text"> inserts a text field -->
31
32
33
34
35

Fig. 2.14 | Form with a text field and hidden fields. (Part 1 of 2.)

<form method = "post" action = "http://www.deitel.com">

<input type = "hidden" name = "recipient"
 value = "deitel@deitel.com">
<input type = "hidden" name = "subject"
 value = "Feedback Form">
<input type = "hidden" name = "redirect"
 value = "main.html">

<p><label>Name:
 <input name = "name" type = "text" size = "25"
 maxlength = "30">
 </label></p>

iw3htp5_02_HTML5_pt1.fm Page 91 Wednesday, November 16, 2011 1:06 PM

92 Chapter 2 Introduction to HTML5: Part 1

method Attribute of the form Element
The form is defined in lines 20–43 by a form element. Attribute method (line 20) specifies
how the form’s data is sent to the web server. Using method = "post" appends form data
to the browser request, which contains the protocol (HTTP) and the requested resource’s
URL. This method of passing data to the server is transparent—the user doesn’t see the
data after the form is submitted. The other possible value, method = "get", appends the
form data directly to the end of the URL of the script, where it’s visible in the browser’s
Address field. The post and get methods for sending form data are discussed in detail in
Chapter 17.

action Attribute of the form Element
The action attribute in the form element in line 20 specifies the URL of a script on the
web server that will be invoked to process the form’s data. Since we haven’t introduced
server-side programming yet, we set this attribute to http://www.deitel.com for now.

Lines 24–43 define input elements that specify data to provide to the script that pro-
cesses the form (also called the form handler). There are several types of input elements.
An input’s type is determined by its type attribute. This form uses a text input, a submit
input, a reset input and three hidden inputs.

Hidden Inputs
Forms can contain visual and nonvisual components. Visual components include clickable
buttons and other graphical user interface components with which users interact. Nonvi-

36 <p>
37 <!-- input types "submit" and "reset" insert -->
38 <!-- buttons for submitting and clearing the -->
39 <!-- form's contents, respectively -->
40
41
42 </p>
43
44 </body>
45 </html>

Fig. 2.14 | Form with a text field and hidden fields. (Part 2 of 2.)

<input type = "submit" value = "Submit">
<input type = "reset" value = "Clear">

</form>

iw3htp5_02_HTML5_pt1.fm Page 92 Wednesday, November 16, 2011 1:06 PM

2.11 Forms 93

sual components, called hidden inputs (lines 23–28), store any data that you specify, such
as e-mail addresses and HTML5 document file names that act as links.

The three hidden input elements in lines 23–28 have the type attribute hidden, which
allows you to send form data that’s not input by a user. The hidden inputs are an e-mail address
to which the data will be sent, the e-mail’s subject line and a URL for the browser to open
after submission of the form. Two other input attributes are name, which identifies the
input element, and value, which provides the value that will be sent (or posted) to the web
server. The server uses the name attribute to get the corresponding value from the form.

text input Element
The text input in lines 32–33 inserts a text field in the form. Users can type data in text
fields. The label element (lines 31–34) provides users with information about the input
element’s purpose. The input element’s size attribute specifies the number of characters
visible in the text field. Optional attribute maxlength limits the number of characters input
into the text field—in this case, the user is not permitted to type more than 30 characters.

submit and reset input Elements
Two input elements in lines 40–41 create two buttons. The submit input element is a
button. When the submit button is pressed, the form’s data is sent to the location specified
in the form’s action attribute. The value attribute sets the text displayed on the button.
The reset input element allows a user to reset all form elements to their default values.
The value attribute of the reset input element sets the text displayed on the button (the
default value is Reset if you omit the value attribute).

Additional Form Elements
In the previous example, you saw basic elements of HTML5 forms. Now we introduce el-
ements and attributes for creating more complex forms. Figure 2.15 contains a form that
solicits user feedback about a website.

The textarea element (lines 31–32) inserts a multiline text area into the form. The
number of rows is specified with the rows attribute, and the number of columns (i.e., char-
acters per line) with the cols attribute. In this example, the textarea is four rows high
and 36 characters wide. To display default text in the textarea, place the text between the
<textarea> and </textarea> tags. Default text can be specified in other input types, such
as text fields, by using the value attribute.

1 <!DOCTYPE html>
2
3 <!-- Fig. 2.15: form2.html -->
4 <!-- Form using a variety of components. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>More Forms</title>
9 </head>

10

Fig. 2.15 | Form using a variety of components. (Part 1 of 4.)

iw3htp5_02_HTML5_pt1.fm Page 93 Wednesday, November 16, 2011 1:06 PM

94 Chapter 2 Introduction to HTML5: Part 1

11 <body>
12 <h1>Feedback Form</h1>
13 <p>Please fill out this form to help
14 us improve our site.</p>
15
16 <form method = "post" action = "http://www.deitel.com">
17
18 <input type = "hidden" name = "recipient"
19 value = "deitel@deitel.com">
20 <input type = "hidden" name = "subject"
21 value = "Feedback Form">
22 <input type = "hidden" name = "redirect"
23 value = "main.html">
24
25 <p><label>Name:
26 <input name = "name" type = "text" size = "25">
27 </label></p>
28
29 <!-- <textarea> creates a multiline textbox -->
30 <p><label>Comments:
31
32
33 </label></p>
34
35 <!-- <input type = "password"> inserts a -->
36 <!-- textbox whose display is masked with -->
37 <!-- asterisk characters -->
38 <p><label>E-mail Address:
39
40 </label></p>
41
42 <p>
43 Things you liked:

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 </p>
61
62 <!-- <input type = "radio"> creates a radio -->
63 <!-- button. The difference between radio buttons -->

Fig. 2.15 | Form using a variety of components. (Part 2 of 4.)

<textarea name = "comments"
 rows = "4" cols = "36">Enter comments here.</textarea>

<input name = "email" type = "password" size = "25">

<label>Site design
 <input name = "thingsliked" type = "checkbox"
 value = "Design"></label>
<label>Links
 <input name = "thingsliked" type = "checkbox"
 value = "Links"></label>
<label>Ease of use
 <input name = "thingsliked" type = "checkbox"
 value = "Ease"></label>
<label>Images
 <input name = "thingsliked" type = "checkbox"
 value = "Images"></label>
<label>Source code
 <input name = "thingsliked" type = "checkbox"
 value = "Code"></label>

iw3htp5_02_HTML5_pt1.fm Page 94 Wednesday, November 16, 2011 1:06 PM

2.11 Forms 95

64 <!-- and checkboxes is that only one radio button -->
65 <!-- in a group can be selected. -->
66 <p>
67 How did you get to our site?:

68
69 <label>Search engine
70
71
72 <label>Links from another site
73 <input name = "howtosite" type = "radio"
74 value = "link"></label>
75 <label>Deitel.com Web site
76 <input name = "howtosite" type = "radio"
77 value = "deitel.com"></label>
78 <label>Reference in a book
79 <input name = "howtosite" type = "radio"
80 value = "book"></label>
81 <label>Other
82 <input name = "howtosite" type = "radio"
83 value = "other"></label>
84 </p>
85
86 <p>
87 <label>Rate our site:
88
89 <!-- the <select> tag presents a drop-down -->
90 <!-- list with choices indicated by the -->
91 <!-- <option> tags -->
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106 </label>
107 </p>
108
109 <p>
110 <input type = "submit" value = "Submit">
111 <input type = "reset" value = "Clear">
112 </p>
113 </form>
114 </body>
115 </html>

Fig. 2.15 | Form using a variety of components. (Part 3 of 4.)

<input name = "howtosite" type = "radio"
 value = "search engine" checked></label>

<select name = "rating">
 <option selected>Amazing</option>
 <option>10</option>
 <option>9</option>
 <option>8</option>
 <option>7</option>
 <option>6</option>
 <option>5</option>
 <option>4</option>
 <option>3</option>
 <option>2</option>
 <option>1</option>
 <option>Awful</option>
</select>

iw3htp5_02_HTML5_pt1.fm Page 95 Wednesday, November 16, 2011 1:06 PM

96 Chapter 2 Introduction to HTML5: Part 1

The password input in line 39 inserts a password box with the specified size (max-
imum number of displayed characters). A password box allows users to enter sensitive infor-
mation, such as credit card numbers and passwords, by “masking” the information input
with asterisks (*). The actual value input is sent to the web server, not the masking characters.

Lines 45–59 introduce the checkbox input element. checkboxes enable users to select
an option. When a user selects a checkbox, a check mark appears in the checkbox. Other-
wise, the checkbox remains empty. Each checkbox input creates a new checkbox. check-
boxes can be used individually or in groups. checkboxes that belong to a group are assigned
the same name (in this case, "thingsliked").

After the checkboxes, we present two more ways to allow the user to make choices. In
this example, we introduce two new input types. The first is the radio button (lines 69–
83) specified with type radio. radio buttons are similar to checkboxes, except that only
one radio button in a group of radio buttons may be selected at any time. The radio but-
tons in a group all have the same name attributes and are distinguished by their different

Common Programming Error 2.1
When your form has several checkboxes with the same name, make sure that they have
different values, or the web server scripts will not be able to distinguish them.

Fig. 2.15 | Form using a variety of components. (Part 4 of 4.)

iw3htp5_02_HTML5_pt1.fm Page 96 Wednesday, November 16, 2011 1:06 PM

2.12 Internal Linking 97

value attributes. The attribute checked (line 71) indicates which radio button, if any, is
selected initially. The checked attribute also applies to checkboxes.

The select element (lines 92–105) provides a drop-down list from which the user can
select an item. The name attribute identifies the drop-down list. The option elements (lines
93–104) add items to the drop-down list. The option element’s selected attribute speci-
fies which item initially is displayed as the selected item in the select element. If no
option element is marked as selected, the browser selects the first option by default.

2.12 Internal Linking
Earlier in the chapter, we discussed how to hyperlink one web page to another. Figure 2.16
introduces internal linking—a mechanism that enables the user to jump between loca-
tions in the same document. Internal linking is useful for long documents that contain
many sections. Clicking an internal link enables the user to find a section without scrolling
through the entire document.

Common Programming Error 2.2
Not setting the name attributes of the radio buttons in a group to the same name is a logic
error because it lets the user select all of the radio buttons at the same time.

1 <!DOCTYPE html>
2
3 <!-- Fig. 2.16: internal.html -->
4 <!-- Internal Linking -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Internal Links</title>
9 </head>

10
11 <body>
12 <!-- id attribute creates an internal hyperlink destination -->
13
14
15 <!-- an internal link's address is "#id" -->
16
17
18
19 You can meet people from countries
20 around the world.
21 You have access to new media as it becomes public:
22
23 New games
24 New applications
25
26 For Business
27 For Pleasure
28
29

Fig. 2.16 | Internal hyperlinks to make pages more navigable. (Part 1 of 3.)

<h1 id = "features">The Best Features of the Internet</h1>

<p>Go to Favorite Bugs</p>

iw3htp5_02_HTML5_pt1.fm Page 97 Wednesday, November 16, 2011 1:06 PM

98 Chapter 2 Introduction to HTML5: Part 1

30
31 Around the clock news
32 Search Engines
33 Shopping
34 Programming
35
36 HTML5
37 Java
38 Dynamic HTML
39 Scripts
40 New languages
41
42
43
44
45
46 Links
47 Keeping in touch with old friends
48 It is the technology of the future!
49
50
51 <!-- id attribute creates an internal hyperlink destination -->
52
53 <p>
54 <!-- internal hyperlink to features -->
55 Go to Favorite Features
56 </p>
57
58 Fire Fly
59 Gal Ant
60 Roman Tic
61
62 </body>
63 </html>

Fig. 2.16 | Internal hyperlinks to make pages more navigable. (Part 2 of 3.)

<h1 id = "bugs">My 3 Favorite Bugs</h1>

a) Browser before the user clicks the internal link

iw3htp5_02_HTML5_pt1.fm Page 98 Wednesday, November 16, 2011 1:06 PM

2.13 meta Elements 99

Line 13 contains a tag with the id attribute (set to "features") for an internal hyper-
link. To link to a tag with this attribute inside the same web page, the href attribute of an
anchor element includes the id attribute value, preceded by a pound sign (as in #fea-
tures). Line 55 contains a hyperlink with the id features as its target. Clicking this
hyperlink in a web browser scrolls the browser window to the h1 tag in line 13. You may
have to resize your browser to a small window and scroll down before clicking the link to
see the browser scroll to the h1 element.

A hyperlink can also reference an internal link in another document by specifying the
document name followed by a pound sign and the id value, as in:

For example, to link to a tag with the id attribute booklist in books.html, href is as-
signed "books.html#booklist". You can send the browser to an internal link on another
website by appending the pound sign and id value of an element to any URL, as in:

2.13 meta Elements
Search engines catalog sites by following links from page to page (often known as spidering
or crawling the site) and saving identification and classification information for each page.
One way that search engines catalog pages is by reading the content in each page’s meta
elements, which specify information about a document. Using the meta element is one of
many methods of search engine optimization (SEO)—the process of designing and tun-
ing your website to maximize your findability and improve your rankings in organic (non-
paid) search engine results.

Two important attributes of the meta element are name, which identifies the type of
meta element, and content, which provides the information search engines use to catalog
pages. Figure 2.17 introduces the meta element.

href = "filename.html#id"

href = "URL/filename.html#id"

Fig. 2.16 | Internal hyperlinks to make pages more navigable. (Part 3 of 3.)

b) Browser after the user clicks the internal link

iw3htp5_02_HTML5_pt1.fm Page 99 Wednesday, November 16, 2011 1:06 PM

100 Chapter 2 Introduction to HTML5: Part 1

Lines 12–14 demonstrate a "keywords" meta element. The content attribute of such
a meta element provides search engines with a list of words that describe the page. These
words are compared with words in search requests. Thus, including meta elements and
their content information can draw more viewers to your site.

1 <!DOCTYPE html>
2
3 <!-- Fig. 2.17: meta.html -->
4 <!-- meta elements provide keywords and a description of a page. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Welcome</title>
9

10 <!-- <meta> tags provide search engines with -->
11 <!-- information used to catalog a site -->
12
13
14
15
16
17
18
19 </head>
20 <body>
21 <h1>Welcome to Our Website!</h1>
22
23 <p>We have designed this site to teach about the wonders
24 of HTML5. HTML5 is
25 better equipped than HTML to represent complex
26 data on the Internet. HTML5 takes advantage of
27 XML's strict syntax to ensure well-formedness. Soon you
28 will know about many of the great features of
29 HTML5.</p>
30
31 <p>Have Fun With the Site!</p>
32 </body>
33 </html>

Fig. 2.17 | meta elements provide keywords and a description of a page.

<meta name = "keywords" content = "web page, design,
 HTML5, tutorial, personal, help, index, form,
 contact, feedback, list, links, deitel">
<meta name = "description" content = "This website will
 help you learn the basics of HTML5 and web page design
 through the use of interactive examples and
 instruction.">

iw3htp5_02_HTML5_pt1.fm Page 100 Wednesday, November 16, 2011 1:06 PM

2.14 Web Resources 101

Lines 15–18 demonstrate a "description" meta element. The content attribute of
such a meta element provides a three- to four-line description of a site, written in sentence
form. Search engines also use this description to catalog your site and sometimes display
this information as part of the search results.

2.14 Web Resources
www.deitel.com/html5

Visit our online HTML5 Resource Center to find categorized links to mostly free HTML5 intro-
ductions, tutorials, demos, videos, documentation, books, blogs, forums, sample chapters and more.

Software Engineering Observation 2.2
meta elements are not visible to users. They must be placed inside the head section of your
HTML5 document; otherwise they will not be read by search engines.

Summary
Section 2.1 Introduction
• HTML5 is a markup language that specifies the structure and content of documents that are dis-

played in web browsers.

Section 2.2 Editing HTML5
• Computers called web servers store HTML5 documents.

• Clients (for example, web browsers running on your local computer or smartphone) request spe-
cific resources (p. 70) such as HTML5 documents from web servers.

Section 2.3 First HTML5 Example
• The document type declaration (DOCTYPE; p. 71) is required in HTML5 documents so that

browsers render the page in standards mode (p. 71).

• HTML5 comments (p. 71) always start with <!-- (p. 71) and end with --> (p. 71). The browser
ignores all text inside a comment.

• The html element (p. 72) encloses the head section (represented by the head element; p. 72) and
the body section (represented by the body element; p. 72).

• The head section contains information about the HTML5 document, such as its title (p. 72). It
also can contain special document-formatting instructions called style sheets (p. 72) and client-
side programs called scripts (p. 72) for creating dynamic web pages.

• The body section contains the page’s content, which the browser displays when the user visits the
web page.

• HTML5 documents delimit an element with start and end tags. A start tag (p. 72) consists of the
element name in angle brackets (for example, <html>). An end tag (p. 72) consists of the element
name preceded by a forward slash (/) in angle brackets (for example, </html>).

• The title element names a web page. The title usually appears in the colored bar (called the title
bar; p. 72) at the top of the browser window and also appears as the text identifying a page when
users add your page to their list of Favorites or Bookmarks.

• The paragraph element (p. 72), denoted with <p> and </p>, helps define the structure of a doc-
ument. All the text placed between the <p> and </p> tags forms one paragraph.

iw3htp5_02_HTML5_pt1.fm Page 101 Wednesday, November 16, 2011 1:06 PM

102 Chapter 2 Introduction to HTML5: Part 1

Section 2.4 W3C HTML5 Validation Service
• You must use proper HTML5 syntax to ensure that browsers process your documents properly.

• The World Wide Web Consortium (W3C) provides a validation service (validator.w3.org;
p. 73) for checking a document’s syntax.

Section 2.5 Headings
• HTML5 provides six heading elements (h1 through h6; p. 73) for specifying the relative impor-

tance of information. Heading element h1 is considered the most significant and is rendered in
a larger font than the other five. Each successive heading element (h2, h3, etc.) is rendered in a
progressively smaller font.

Section 2.6 Linking
• Hyperlinks (p. 74) reference (or link to) other resources, such as HTML5 documents and images.

• The strong element (p. 75) typically causes the browser to render text in a bold font.

• Links are created using the a (anchor) element (p. 75). The href (“hypertext reference”) attribute
(p. 75) specifies the location of a linked resource, such as a web page, a file or an e-mail address.

• Anchors can link to an e-mail address using a mailto: URL (p. 76). When someone clicks this
type of anchored link, most browsers launch the default e-mail program to initiate an e-mail mes-
sage addressed to the linked address.

Section 2.7 Images
• The img element’s (p. 78) src attribute (p. 78) specifies an image’s location.

• Every img element in an HTML5 document must have an alt attribute (p. 79). If a browser can-
not render an image, the browser displays the alt attribute’s value.

• The alt attribute helps you create accessible web pages (p. 79) for users with disabilities, espe-
cially those with vision impairments who use text-only browsers.

• Void HTML5 elements (such as img; p. 79) contain only attributes, do not mark up text and do
not have a closing tag.

Section 2.8 Special Characters and Horizontal Rules
• HTML5 provides character entity references in the form &code; (p. 81) for representing charac-

ters.

• Most browsers render a horizontal rule (p. 83), indicated by the <hr> tag (a void element), as a
horizontal line with a blank line above and below it.

• Special characters can also be expressed as numeric character references (p. 83)—decimal or
hexadecimal (hex; p. 83) values.

• Most browsers render the del element (p. 83) as strike-through text. With this format users can
indicate document revisions.

Section 2.9 Lists
• The unordered-list element ul (p. 83) creates a list in which each item begins with a bullet sym-

bol (called a disc). Each entry in an unordered list is an li (list item) element (p. 83). Most web
browsers render these elements on a new line with a bullet symbol indented from the beginning
of the line.

• Lists may be nested to represent hierarchical data relationships.

• The ordered-list element ol (p. 84) creates a list in which each item begins with a number.

iw3htp5_02_HTML5_pt1.fm Page 102 Wednesday, November 16, 2011 1:06 PM

 Summary 103

Section 2.10 Tables
• Tables are frequently used to organize data into rows and columns. Tables are defined with the

table element (p. 86).

• The caption element (p. 86) specifies a table’s title. The text inside the <caption> tag is rendered
above the table by most browsers. It’s good practice to include a general description of a table’s
information in the table element’s summary attribute—one of the many HTML5 features that
make web pages more accessible to users with disabilities. Speech devices use this attribute to
make the table more accessible to users with visual impairments.

• A table has three distinct sections: head, body and foot (p. 88). The head section (or header cell) is
defined with a thead element (p. 88), which contains header information such as column names.

• Each tr element (p. 88) defines an individual table row (p. 88). The columns in the head section
are defined with th elements (p. 88).

• The table body, defined in a tbody element (p. 88), contains the table’s primary data.

• The foot section is defined with a tfoot element (p. 88). The text placed in the footer commonly
includes calculation results and footnotes.

• You can create larger data cells using the attributes rowspan (p. 89) and colspan (p. 89). The val-
ues assigned to these attributes specify the number of rows or columns occupied by a cell.

• The br element (p. 89) causes most browsers to render a line break (p. 89). Any markup or text
following a br element is rendered on the next line.

Section 2.11 Forms
• HTML5 provides forms (p. 90) for collecting information from a user.

• Forms can contain visual and nonvisual components. Visual components include clickable but-
tons and other graphical user-interface components with which users interact. Nonvisual com-
ponents, called hidden inputs (p. 93), store any data that you specify, such as e-mail addresses
and HTML5 document file names that act as links.

• A form is defined by a form element (p. 92).

• Nonvisual components, called hidden inputs (p. 93), store any data that you specify.

• Attribute method (p. 92) specifies how the form’s data is sent to the web server.

• The action attribute (p. 92) in the form element specifies the URL of the script on the web server
that will be invoked to process the form’s data.

• The text input (p. 93) inserts a text field into the form. Users can type data into text fields.

• The input element’s size attribute (p. 93) specifies the number of characters visible in the text
field. Optional attribute maxlength (p. 93) limits the number of characters input into the text field.

• The submit input (p. 93) is a button that, when pressed, sends the user to the location specified
in the form’s attribute. The reset input element sets the text displayed on the button (the default
value is Reset if you omit the value attribute).

• The textarea element (p. 93) inserts a multiline text area into a form. The number of rows is
specified with the rows attribute (p. 93) and the number of columns (i.e., characters per line)
with the cols attribute (p. 93).

• The password input (p. 96) inserts a password box with the specified size (maximum number
of characters allowed).

• A password box allows users to enter sensitive information, such as credit card numbers and pass-
words, by “masking” the information input with asterisks (*). Asterisks are usually the masking
character used for password boxes. The actual value input is sent to the web server, not the char-
acters that mask the input.

iw3htp5_02_HTML5_pt1.fm Page 103 Wednesday, November 16, 2011 1:06 PM

104 Chapter 2 Introduction to HTML5: Part 1

• checkboxes (p. 96) enable users to select from a set of options. When a user selects a checkbox, a
check mark appears in the checkbox. Otherwise, the checkbox remains empty. checkboxes can be
used individually or in groups. checkboxes that are part of the same group have the same name.

• radio buttons (p. 96) are similar to checkboxes, except that only one radio button in a group
can be selected at any time. The radio buttons in a group all have the same name attribute and
are distinguished by their different value attributes.

• The select element (p. 97) provides a drop-down list from which the user can select an item.
The name attribute identifies the drop-down list. The option element adds items to the drop-
down list.

Section 2.12 Internal Linking
• Internal linking (p. 99) is a mechanism that enables the user to jump between locations in the

same document.

• To link to a tag with its attribute inside the same web page, the href attribute of an anchor ele-
ment includes the id attribute value preceded by a pound sign (as in #features).

Section 2.13 meta Elements
• Search engines catalog sites by following links from page to page (often known as spidering or

crawling) and saving identification and classification information for each page.

• One way that search engines catalog pages is by reading the content in each page’s meta elements
(p. 99), which specify information about a document.

• Two important attributes of the meta element are name (p. 99), which identifies the type of meta
element, and content (p. 99), which provides information search engines use to catalog pages.

• The content attribute of a keywords meta element provides search engines with a list of words
that describe the page. These words are compared with words in search requests.

• The content attribute of a description meta element provides a three- to four-line description
of a site, written in sentence form. Search engines also use this description to catalog your site
and sometimes display this information as part of the search results.

Self-Review Exercises
2.1 State whether each of the following is true or false. If false, explain why.

a) All the text placed between the <a> and tags forms one paragraph.
b) A form is defined by a form element.
c) Anchors can link to an e-mail address using a href attribute
d) HTML5 provides five heading elements.
e) Each th element defines an individual table row.

2.2 Fill in the blanks in each of the following:
a) A form is defined by a(n) element.
b) In HTML5, one can specify the width of any column, either in or as a(n)

 of the table width.
c) The heading element has the largest font and the heading element

 has the progressively smallest font.
d) HTML5 always start with <! -- and end with -->.
e) Tables are defined with the element
f) The attribute in the form element specifies the URL of the script on the

web server that will be invoked to process the form’s data.
g) The table body, defined in a element, contains the table’s primary data.
h) The img element’s attribute specifies an image’s location.

iw3htp5_02_HTML5_pt1.fm Page 104 Wednesday, November 16, 2011 1:06 PM

 Answers to Self-Review Exercises 105

Answers to Self-Review Exercises
2.1 a) False. All the text placed between the <p> and </p> tags forms one paragraph. b) True.
c) False. Anchors can link to an e-mail address using a mailto: URL. d) False. HTML5 provides
six heading elements (h1 through h6). e) False. Each tr element defines an individual table row.
2.2 a) form. b) pixels, percentage. c) h1, h6. d) comments. e) table. f) action. g) tbody.
h) src.

Exercises
2.3 Use HTML5 to create a document that contains the following text:

Internet and World Wide Web How to Program: Fifth Edition
Welcome to the world of Internet programming. We have provided coverage for
many Internet-related topics.

Write the first line in title. Use h2 and h4 for text (the second and third lines of text). Insert a
horizontal rule between the h2 element and the h4 element. Open your new document in a web
browser to view the marked-up document.
2.4 An image named deitel.png is 400 pixels wide and 300 pixels high. Write an HTML5
statement using the width and height attributes of the img element to perform each of the follow-
ing transformations:

a) Increase the size of the image by 10 percent.
b) Increase the size of the image by 20 percent.
c) Change the width-to-height ratio to 3:1, keeping the width attained in part (a). [This

will distort the image.]

2.5 Create a link to each of the following:
a) The file home.html, located in the students directory.
b) The file home.html, located in the web subdirectory of the students directory.
c) The file home.html, located in the internet directory in your parent directory.

[Hint: .. signifies parent directory.]
d) The Vice President’s e-mail address (vicepresident@whitehouse.gov).
e) The file named Demo in the install directory of ftp.dvdrom.com. [Hint: Use ftp://.]

2.6 Create an HTML5 document containing an ordered list of two items— soft drinks and fast
food. Each ordered list should contain a nested, unordered list of your favorite variety. Provide three
varieties in each unordered list.

2.7 Create an HTML5 document that uses an image as an e-mail link. Use attribute alt to pro-
vide a description of the image and link.

2.8 Create an HTML5 document that contains links to your four favorite news web sites. Your
page should contain the heading “My Favorite News Web Sites.” Click on each of these links to test
your page.

2.9 Create an HTML5 document that contains an ordered list with links to any five examples
presented in this chapter. [Hint: Place any five examples from this chapter in an examples directory
then link to the files in that directory.]

2.10 Identify each of the following HTML5 items as either an element or an attribute:
a) head
b) height

c) rowspan

d) body

e) title

iw3htp5_02_HTML5_pt1.fm Page 105 Wednesday, November 16, 2011 1:06 PM

106 Chapter 2 Introduction to HTML5: Part 1

f) ol
g) id

2.11 State which of the following statements are true and which are false. If false, explain why.
a) The input element’s maxlength attribute specifies the number of characters visible in the

text field.
b) Forms can contain visual and nonvisual components.
c) A table has three distinct sections: head, body and foot.
d) Most browsers render the
 element as strike-through text.

2.12 Fill in the blanks in each of the following:
a) The browser all text inside a comment.
b) The section contains information about the HTML5 document.
c) All the text placed between the and tags forms one paragraph.
d) The table body, defined in a(n) element, contains the table’s primary data.

2.13 Categorize each of the following as an element or an attribute:
a) method

b) meta

c) form
d) rows
e) thead
f) cols

2.14 Create the HTML5 markup that produces the table shown in Fig. 2.18. Use and
 tags as necessary. The image (camel.png) is included in the Chapter 2 examples directory.

2.15 Write an HTML5 document that produces the table shown in Fig. 2.19.

2.16 A local university has asked you to create an HTML5 document that allows prospective col-
lege students to provide feedback about their campus visit. Your HTML5 document should contain
a form with text fields for a name and e-mail. Provide checkboxes that allow prospective students to

Fig. 2.18 | HTML5 table for Exercise 2.14.

iw3htp5_02_HTML5_pt1.fm Page 106 Wednesday, November 16, 2011 1:06 PM

 Exercises 107

indicate what they liked most about the campus. The checkboxes should include: campus, students,
location, atmosphere, dorm rooms and sports. Also, provide radio buttons that ask the prospective
students how they became interested in the college. Options should include: friends, television, In-
ternet and other. In addition, provide a text area for additional comments, a submit button and a
reset button. Use post to sent the information in the form to http://www.deitel.com.

2.17 Create an HTML5 document titled “Internet and World Wide Web: How to Program.”
Use <meta> tags to include a series of keywords that describe your document.

2.18 Why is the following markup invalid?

<h1> Internet and World Wide Web

<hr />

<h2>And some more text...</h2>

Fig. 2.19 | HTML5 table for Exercise 2.15.

iw3htp5_02_HTML5_pt1.fm Page 107 Wednesday, November 16, 2011 1:06 PM

3 Introduction to HTML5:
Part 2

Form ever follows function.
—Louis Sullivan

I listen and give input only if
somebody asks.
—Barbara Bush

O b j e c t i v e s
In this chapter you’ll:

■ Build a form using the new
HTML5 input types.

■ Specify an input element in
a form as the one that should
receive the focus by default.

■ Use self-validating input
elements.

■ Specify temporary
placeholder text in
various input elements

■ Use autocomplete input
elements that help users re-
enter text that they’ve
previously entered in a form.

■ Use a datalist to specify a
list of values that can be
entered in an input element
and to autocomplete entries
as the user types.

■ Use HTML5’s new page-
structure elements to
delineate parts of a page,
including headers, sections,
figures, articles, footers and
more.

iw3htp5_03_HTML5_pt2.fm Page 108 Wednesday, November 16, 2011 1:06 PM

3.1 Introduction 109

3.1 Introduction
We now continue our presentation of HTML5 by discussing various new features, includ-
ing:

• new input element types for colors, dates, times, e-mail addresses, numbers,
ranges of integer values, telephone numbers, URLs, search queries, months and
weeks—browsers that don’t support these input types simply render them as
standard text input elements

• autocompletion capabilities that help users quickly re-enter text that they’ve pre-
viously entered in a form

• datalists for providing lists of allowed values that a user can enter in an input
element and for autocompleting those values as the user types

• page-structure elements that enable you to delineate and give meaning to the
parts of a page, such as headers, navigation areas, footers, sections, articles, asides,
summaries/details, figures, figure captions and more

Support for the features presented in this chapter varies among browsers, so for our sample
outputs we’ve used several browsers. We’ll discuss many more new HTML5 features
throughout the remaining chapters.

3.2 New HTML5 Form input Types
Figure 3.1 demonstrates HTML5’s new form input types. These are not yet universally
supported by all browsers. In this example, we provide sample outputs from a variety of
browsers so that you can see how the input types behave in each.

3.1 Introduction
3.2 New HTML5 Form input Types

3.2.1 input Type color
3.2.2 input Type date
3.2.3 input Type datetime
3.2.4 input Type datetime-local
3.2.5 input Type email
3.2.6 input Type month
3.2.7 input Type number
3.2.8 input Type range
3.2.9 input Type search

3.2.10 input Type tel
3.2.11 input Type time
3.2.12 input Type url
3.2.13 input Type week

3.3 input and datalist Elements and
autocomplete Attribute

3.3.1 input Element autocomplete
Attribute

3.3.2 datalist Element

3.4 Page-Structure Elements
3.4.1 header Element
3.4.2 nav Element
3.4.3 figure Element and figcaption

Element
3.4.4 article Element
3.4.5 summary Element and details

Element
3.4.6 section Element
3.4.7 aside Element
3.4.8 meter Element
3.4.9 footer Element

3.4.10 Text-Level Semantics: mark Element
and wbr Element

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

iw3htp5_03_HTML5_pt2.fm Page 109 Wednesday, November 16, 2011 1:06 PM

110 Chapter 3 Introduction to HTML5: Part 2

1 <!DOCTYPE html>
2
3 <!-- Fig. 3.1: newforminputtypes.html -->
4 <!-- New HTML5 form input types and attributes. -->
5 <html>
6 <head>
7 <meta charset="utf-8">
8 <title>New HTML5 Input Types</title>
9 </head>

10
11 <body>
12 <h1>New HTML5 Input Types Demo</h1>
13 <p>This form demonstrates the new HTML5 input types
14 and the placeholder, required and autofocus attributes.
15 </p>
16
17 <form method = "post" action = "http://www.deitel.com">
18 <p>
19 <label>Color:
20
21
22 </label>
23 </p>
24 <p>
25 <label>Date:
26
27
28 </label>
29 </p>
30 <p>
31 <label>Datetime:
32
33
34 </label>
35 </p>
36 <p>
37 <label>Datetime-local:
38
39
40 </label>
41 </p>
42 <p>
43 <label>Email:
44
45
46 </label>
47 </p>
48 <p>
49 <label>Month:
50
51 </label>
52 </p>
53 <p>

Fig. 3.1 | New HTML5 form input types and attributes. (Part 1 of 2.)

<input type = "color" autofocus />
 (Hexadecimal code such as #ADD8E6)

<input type = "date" />
 (yyyy-mm-dd)

<input type = "datetime" />
 (yyyy-mm-ddThh:mm+ff:gg, such as 2012-01-27T03:15)

<input type = "datetime-local" />
 (yyyy-mm-ddThh:mm, such as 2012-01-27T03:15)

<input type = "email" placeholder = "name@domain.com"
 required /> (name@domain.com)

<input type = "month" /> (yyyy-mm)

iw3htp5_03_HTML5_pt2.fm Page 110 Wednesday, November 16, 2011 1:06 PM

3.2 New HTML5 Form input Types 111

54 <label>Number:
55
56
57
58
59
60 </label> (Enter a number between 0 and 7)
61 </p>
62 <p>
63 <label>Range:
64
65
66
67
68 </label>
69 </p>
70 <p>
71 <label>Search:
72
73 </label> (Enter your search query here.)
74 </p>
75 <p>
76 <label>Tel:
77
78
79
80 </label>
81 </p>
82 <p>
83 <label>Time:
84
85 </label>
86 </p>
87 <p>
88 <label>URL:
89
90
91
92 </label>
93 </p>
94 <p>
95 <label>Week:
96
97
98 </label>
99 </p>
100 <p>
101 <input type = "submit" value = "Submit" />
102 <input type = "reset" value = "Clear" />
103 </p>
104 </form>
105 </body>
106 </html>

Fig. 3.1 | New HTML5 form input types and attributes. (Part 2 of 2.)

<input type = "number"
 min = "0"
 max = "7"
 step = "1"
 value = "4" />

0 <input type = "range"
 min = "0"
 max = "20"
 value = "10" /> 20

<input type = "search" placeholder = "search query" />

<input type = "tel" placeholder = "(###) ###-####"
 pattern = "\(\d{3}\) +\d{3}-\d{4}" required />
 (###) ###-####

<input type = "time" /> (hh:mm:ss.ff)

<input type = "url"
 placeholder = "http://www.domainname.com" />
 (http://www.domainname.com)

<input type = "week" />
 (yyyy-Wnn, such as 2012-W01)

iw3htp5_03_HTML5_pt2.fm Page 111 Wednesday, November 16, 2011 1:06 PM

112 Chapter 3 Introduction to HTML5: Part 2

3.2.1 input Type color
The color input type (Fig. 3.1, lines 20–21) enables the user to enter a color. At the time
of this writing, most browsers render the color input type as a text field in which the user
can enter a hexadecamal code or a color name. In the future, when you click a color
input, browsers will likely display a color picker similar to the Microsoft Windows color
dialog shown in Fig. 3.2.

autofocus Attribute
The autofocus attribute (Fig. 3.1, line 20)—an optional attribute that can be used in
only one input element on a form—automatically gives the focus to the input element,
allowing the user to begin typing in that element immediately. Figure 3.3 shows auto-
focus on the color element—the first input element in our form—as rendered in
Chrome. You do not need to include autofocus in your forms.

Fig. 3.2 | A dialog for choosing colors.

Fig. 3.3 | Autofocus in the color input element using Chrome.

iw3htp5_03_HTML5_pt2.fm Page 112 Wednesday, November 16, 2011 1:06 PM

3.2 New HTML5 Form input Types 113

Validation
Traditionally it’s been difficult to validate user input, such as ensuring that an e-mail ad-
dress, URL, date or time is entered in the proper format. The new HTML 5 input types
are self validating on the client side, eliminating the need to add complicated JavaScript
code to your web pages to validate user input, reducing the amount of invalid data sub-
mitted and consequently reducing Internet traffic between the server and the client to cor-
rect invalid input. The server should still validate all user input.

When a user enters data into a form then submits the form (in this example, by
clicking the Submit button), the browser immediately checks the self-validating elements
to ensure that the data is correct. For example, if a user enters an incorrect hexadecimal
color value when using a browser that renders the color elements as a text field (e.g.,
Chrome), a callout pointing to the element will appear, indicating that an invalid value
was entered (Fig. 3.4). Figure 3.5 lists each of the new HTML5 input types and provides
examples of the proper formats required for each type of data to be valid.

Fig. 3.4 | Validating a color input in Chrome.

input type Format

color Hexadecimal code

date yyyy-mm-dd

datetime yyyy-mm-dd

datetime-local yyyy-mm-ddThh:mm

month yyyy-mm

number Any numerical value

email name@domain.com

url http://www.domainname.com

time hh:mm

week yyyy-Wnn

Fig. 3.5 | Self-validating input types.

iw3htp5_03_HTML5_pt2.fm Page 113 Wednesday, November 16, 2011 1:06 PM

114 Chapter 3 Introduction to HTML5: Part 2

If you want to bypass validation, you can add the formnovalidate attribute to input
type submit in line 101:

3.2.2 input Type date
The date input type (lines 26–27) enables the user to enter a date in the form yyyy-mm-dd.
Firefox and Internet Explorer display a text field in which a user can enter a date such as
2012-01-27. Chrome and Safari display a spinner control—a text field with an up-down
arrow () on the right side—allowing the user to select a date by clicking the up or down
arrow. The start date is the current date. Opera displays a calendar from which you can
choose a date. In the future, when the user clicks a date input, browsers are likely to display
a date control similar to the Microsoft Windows one shown in Fig. 3.6.

3.2.3 input Type datetime
The datetime input type (lines 32–33) enables the user to enter a date (year, month, day),
time (hour, minute, second, fraction of a second) and the time zone set to UTC (Coordi-
nated Universal Time or Universal Time, Coordinated). Currently, most of the browsers
render datetime as a text field; Chrome renders an up-down control and Opera renders a
date and time control. For more information on the datetime input type, visit:

3.2.4 input Type datetime-local
The datetime-local input type (lines 38–39) enables the user to enter the date and time
in a single control. The data is entered as year, month, day, hour, minute, second and frac-
tion of a second. Internet Explorer, Firefox and Safari all display a text field. Opera displays
a date and time control. For more information on the datetime-local input type, visit:

<input type = "submit" value = "Submit" formnovalidate />

Fig. 3.6 | A date chooser control.

www.w3.org/TR/html5/states-of-the-type-attribute.html#
 date-and-time-state

www.w3.org/TR/html5/states-of-the-type-attribute.html#
 local-date-and-time-state

iw3htp5_03_HTML5_pt2.fm Page 114 Wednesday, November 16, 2011 1:06 PM

3.2 New HTML5 Form input Types 115

3.2.5 input Type email
The email input type (lines 44–45) enables the user to enter an e-mail address or a list
of e-mail addresses separated by commas (if the multiple attribute is specified). Cur-
rently, all of the browsers display a text field. If the user enters an invalid e-mail address
(i.e., the text entered is not in the proper format) and clicks the Submit button, a callout
asking the user to enter an e-mail address is rendered pointing to the input element
(Fig. 3.7). HTML5 does not check whether an e-mail address entered by the user actu-
ally exists—rather it just validates that the e-mail address is in the proper format.

placeholder Attribute
The placeholder attribute (lines 44, 72 and 77) allows you to place temporary text in a
text field. Generally, placeholder text is light gray and provides an example of the text
and/or text format the user should enter (Fig. 3.8). When the focus is placed in the text
field (i.e., the cursor is in the text field), the placeholder text disappears—it’s not “sub-
mitted” when the user clicks the Submit button (unless the user types the same text).

HTML5 supports placeholder text for only six input types—text, search, url,
tel, email and password. Because the user’s browser might not support placeholder text,
we’ve added descriptive text to the right of each input element.

Fig. 3.7 | Validating an e-mail address in Chrome.

Fig. 3.8 | placeholder text disappears when the input element gets the focus.

a) Text field with gray
placeholder text

b) placeholder
text disappears
when the text
field gets the

focus

iw3htp5_03_HTML5_pt2.fm Page 115 Wednesday, November 16, 2011 1:06 PM

116 Chapter 3 Introduction to HTML5: Part 2

required Attribute
The required attribute (lines 45 and 78) forces the user to enter a value before submitting
the form. You can add required to any of the input types. In this example, the user must
enter an e-mail address and a telephone number before being able to submit the form. For
example, if the user fails to enter an e-mail address and clicks the Submit button, a callout
pointing to the empty element appears, asking the user to enter the information (Fig. 3.9).

3.2.6 input Type month
The month input type (line 50) enables the user to enter a year and month in the format
yyyy-mm, such as 2012-01. If the user enters the data in an improper format (e.g., January
2012) and submits the form, a callout stating that an invalid value was entered appears.

3.2.7 input Type number
The number input type (lines 55–59) enables the user to enter a numerical value—mobile
browsers typically display a numeric keypad for this input type. Internet Explorer, Firefox
and Safari display a text field in which the user can enter a number. Chrome and Opera ren-
der a spinner control for adjusting the number. The min attribute sets the minimum valid
number, in this case "0". The max attribute sets the maximum valid number, which we set
to "7". The step attribute determines the increment in which the numbers increase. For ex-
ample, we set the step to "1", so the number in the spinner control increases or decreases by
one each time the up or down arrow, respectively, in the spinner control is clicked. If you
change the step attribute to "2", the number in the spinner control will increase or decrease
by two each time the up or down arrow, respectively, is clicked. The value attribute sets the
initial value displayed in the form (Fig. 3.10). The spinner control includes only the valid

Fig. 3.9 | Demonstrating the required attribute in Chrome.

iw3htp5_03_HTML5_pt2.fm Page 116 Wednesday, November 16, 2011 1:06 PM

3.2 New HTML5 Form input Types 117

numbers. If the user attempts to enter an invalid value by typing in the text field, a callout
pointing to the number input element will instruct the user to enter a valid value.

3.2.8 input Type range
The range input type (lines 64–67) appears as a slider control in Chrome, Safari and Op-
era (Fig. 3.12). You can set the minimum and maximum and specify a value. In our ex-
ample, the min attribute is "0", the max attribute is "20" and the value attribute is "10",
so the slider appears near the center of the range when the document is rendered. The
range input type is inherently self-validating when it is rendered by the browser as a slider
control, because the user is unable to move the slider outside the bounds of the minimum or
maximum value. A range input is more useful if the user can see the current value chang-
ing while dragging the thumb—this can be accomplished with JavaScript, as you’ll learn
later in the book.

3.2.9 input Type search
The search input type (line 72) provides a search field for entering a query. This input el-
ement is functionally equivalent to an input of type text. When the user begins to type in

Fig. 3.10 | input type number with a value attribute of 4 as rendered in Chrome.

Fig. 3.11 | Chrome checking for a valid number.

Fig. 3.12 | range slider with a value attribute of 10 as rendered in Chrome.

iw3htp5_03_HTML5_pt2.fm Page 117 Wednesday, November 16, 2011 1:06 PM

118 Chapter 3 Introduction to HTML5: Part 2

the search field, Chrome and Safari display an X that can be clicked to clear the field
(Fig. 3.13).

3.2.10 input Type tel
The tel input type (lines 77–79) enables the user to enter a telephone number—mobile
browsers typically display a keypad specific to entering phone numbers for this input type.
At the time of this writing, the tel input type is rendered as a text field in all of the brows-
ers. The length and format of telephone numbers varies greatly based on location, making
validation quite complex. HTML5 does not self validate the tel input type. To ensure
that the user enters a phone number in a proper format, we’ve added a pattern attribute
(line 79) that uses a regular expression to determine whether the number is in the format:

When the user enters a phone number in the wrong format, a callout appears requesting the
proper format, pointing to the tel input element (Fig. 3.14). Visit www.regexlib.com for
a search engine that helps you find already implemented regular expressions that you can use
to validate inputs.

3.2.11 input Type time
The time input type (line 84) enables the user to enter an hour, minute, seconds and frac-
tion of second (Fig. 3.15). The HTML5 specification indicates that a time must have two
digits representing the hour, followed by a colon (:) and two digits representing the min-
ute. Optionally, you can also include a colon followed by two digits representing the sec-
onds and a period followed by one or more digits representing a fraction of a second
(shown as ff in our sample text to the right of the time input element in Fig. 3.15.

Fig. 3.13 | Entering a search query in Chrome.

(555) 555-5555

Fig. 3.14 | Validating a phone number using the pattern attribute in the tel input type.

iw3htp5_03_HTML5_pt2.fm Page 118 Wednesday, November 16, 2011 1:06 PM

3.3 input and datalist Elements and autocomplete Attribute 119

3.2.12 input Type url
The url input type (lines 89–91) enables the user to enter a URL. The element is ren-
dered as a text field, and the proper format is http://www.deitel.com. If the user enters
an improperly formatted URL (e.g., www.deitel.com or www.deitelcom), the URL will
not validate (Fig. 3.16). HTML5 does not check whether the URL entered is valid; rather
it validates that the URL entered is in the proper format.

3.2.13 input Type week
The week input type enables the user to select a year and week number in the format
yyyy-Wnn, where nn is 01–53—for example, 2012-W01 represents the first week of 2012.
Internet Explorer, Firefox and Safari render a text field. Chrome renders an up-down con-
trol. Opera renders week control with a down arrow that, when clicked, brings up a calen-
dar for the current month with the corresponding week numbers listed down the left side.

3.3 input and datalist Elements and autocomplete
Attribute
Figure 3.17 shows how to use the new autocomplete attribute and datalist element.

3.3.1 input Element autocomplete Attribute
The autocomplete attribute (line 18) can be used on input types to automatically fill in
the user’s information based on previous input—such as name, address or e-mail. You can
enable autocomplete for an entire form or just for specific elements. For example, an on-

Fig. 3.15 | time input as rendered in Chrome.

Fig. 3.16 | Validating a URL in Chrome.

iw3htp5_03_HTML5_pt2.fm Page 119 Wednesday, November 16, 2011 1:06 PM

120 Chapter 3 Introduction to HTML5: Part 2

line order form might set automcomplete = "on" for the name and address inputs and set
autocomplete = "off" for the credit card and password inputs for security purposes.

Error-Prevention Tip 3.1
The autocomplete attribute works only if you specify a name or id attribute for the input
element.

1 <!DOCTYPE html>
2
3 <!-- Fig. 3.17: autocomplete.html -->
4 <!-- New HTML5 form autocomplete attribute and datalist element. -->
5 <html>
6 <head>
7 <meta charset="utf-8">
8 <title>New HTML5 autocomplete Attribute and datalist Element</title>
9 </head>

10
11 <body>
12 <h1>Autocomplete and Datalist Demo</h1>
13 <p>This form demonstrates the new HTML5 autocomplete attribute
14 and the datalist element.
15 </p>
16
17 <!-- turn autocomplete on -->
18 <form method = "post" >
19 <p><label>First Name:
20 <input type = "text" id = "firstName"
21 placeholder = "First name" /> (First name)
22 </label></p>
23 <p><label>Last Name:
24 <input type = "text" id = "lastName"
25 placeholder = "Last name" /> (Last name)
26 </label></p>
27 <p><label>Email:
28 <input type = "email" id = "email"
29 placeholder = "name@domain.com" /> (name@domain.com)
30 </label></p>
31 <p><label for = "txtList">Birth Month:
32
33
34
35
36
37
38
39
40
41
42
43
44

Fig. 3.17 | New HTML5 form autocomplete attribute and datalist element. (Part 1 of 3.)

autocomplete = "on"

<input type = "text" id = "txtList"
 placeholder = "Select a month" list = "months" />
<datalist id = "months">
 <option value = "January">
 <option value = "February">
 <option value = "March">
 <option value = "April">
 <option value = "May">
 <option value = "June">
 <option value = "July">
 <option value = "August">
 <option value = "September">
 <option value = "October">

iw3htp5_03_HTML5_pt2.fm Page 120 Wednesday, November 16, 2011 1:06 PM

3.3 input and datalist Elements and autocomplete Attribute 121

45
46
47
48 </label></p>
49 <p><input type = "submit" value = "Submit" />
50 <input type = "reset" value = "Clear" /></p>
51 </form>
52 </body>
53 </html>

Fig. 3.17 | New HTML5 form autocomplete attribute and datalist element. (Part 2 of 3.)

 <option value = "November">
 <option value = "December">
</datalist>

a) Form rendered
in Firefox before

the user interacts
with it

b) autocomplete
automatically fills in

the data when the
user returns to a
form submitted
previously and

begins typing in the
First Name

input element;
clicking Jane

inserts that value in
the input

iw3htp5_03_HTML5_pt2.fm Page 121 Wednesday, November 16, 2011 1:06 PM

122 Chapter 3 Introduction to HTML5: Part 2

3.3.2 datalist Element
The datalist element (lines 32–47) provides input options for a text input element. At
the time of this writing, datalist support varies by browser. In this example, we use a
datalist element to obtain the user’s birth month. Using Opera, when the user clicks in
the text field, a drop-down list of the months of the year appears. If the user types "M" in
the text field, the list on months is narrowed to March and May. When using Firefox, the
drop-down list of months appears only after the user begins typing in the text field. If the
user types "M", all months containing the letter "M" or "m" appear in the drop-down list—
March, May, September, November and December.

3.4 Page-Structure Elements
HTML5 introduces several new page-structure elements (Fig. 3.18) that meaningfully iden-
tify areas of the page as headers, footers, articles, navigation areas, asides, figures and more.

1 <!DOCTYPE html>
2
3 <!-- Fig. 3.18: sectionelements.html -->
4 <!-- New HTML5 section elements. -->
5 <html>
6 <head>
7 <meta charset="utf-8">
8 <title>New HTML5 Section Elements</title>
9 </head>

Fig. 3.18 | New HTML5 section elements. (Part 1 of 6.)

Fig. 3.17 | New HTML5 form autocomplete attribute and datalist element. (Part 3 of 3.)

c) autocomplete
with a datalist

showing the
previously entered

value (June)
followed by all items
that match what the

user has typed so far;
clicking an item in the
autocomplete list
inserts that value in

the input

datalist
values

filtered by
what’s been
typed so far

iw3htp5_03_HTML5_pt2.fm Page 122 Wednesday, November 16, 2011 1:06 PM

3.4 Page-Structure Elements 123

10
11 <body>
12 <!-- header element creates a header for the page -->
13
14 <h1>Welcome to the Deitel Buzz Online<h1>
15
16 <!-- time element inserts a date and/or time -->
17 <time>2012-01-17</time>
18
19
20
21 <!-- Begin section 1 -->
22 <!-- nav element groups navigation links -->
23 <h2> Recent Publications</h2>
24
25
26 Internet & World Wide Web How to Program, 5/e
27
28 Android for Programmers: An App-Driven Approach
29
30
31 iPhone for Programmers: An App-Driven Approach
32
33 Java How to Program, 9/e
34
35 C++ How to Program, 8/e
36
37
38 Visual C# 2010 How to Program, 4/e
39
40 Visual Basic 2010 How to Program
41
42 </nav>
43 </section>
44
45 <!-- Begin section 2 -->
46 <h2>How to Program Series Books</h2>
47 <h3>Java How to Program, 9/e</h3>
48
49 <!-- figure element describes the image -->
50
51
52 <!-- figurecaption element inserts a figure caption -->
53
54
55 </figure>
56
57 <!--article element represents content from another source -->
58
59 <header>
60 <h5>From
61
62

Fig. 3.18 | New HTML5 section elements. (Part 2 of 6.)

<header>

</header>

 <section id = "1">
<nav>

<section id = "2">

<figure>

<figcaption>Java How to Program, 9/e
 cover.</figcaption>

<article>

iw3htp5_03_HTML5_pt2.fm Page 123 Wednesday, November 16, 2011 1:06 PM

124 Chapter 3 Introduction to HTML5: Part 2

63 Java How to program, 9/e:
64
65 </h5>
66 </header>
67
68 <p>Features include:
69
70 Rich coverage of fundamentals, including
71 <!-- mark element highlights text -->
72
73 Focus on <mark>real-world examples.</mark>
74 <mark>Making a Difference exercises set.</mark>
75 Early introduction to classes, objects,
76 methods and strings.
77 Integrated exception handling.
78 Files, streams and object serialization.
79 Optional modular sections on language and
80 library features of the new Java SE 7.
81 Other topics include: Recursion, searching,
82 sorting, generic collections, generics, data
83 structures, applets, multimedia,
84 multithreading, databases/JDBC™, web-app
85 development, web services and an optional
86 ATM Object-Oriented Design case study.
87
88
89 <!-- summary element represents a summary for the -->
90 <!-- content of the details element -->
91
92
93
94 "Updated to reflect the state of the
95 art in Java technologies; its deep and
96 crystal clear explanations make it
97 indispensable. The social-consciousness
98 [Making a Difference] exercises are
99 something really new and refreshing."
100 —José Antonio
101 González Seco, Parliament of
102 Andalusia
103 "Gives new programmers the benefit of the
104 wisdom derived from many years of software
105 development experience."
106 —Edward F. Gehringer, North Carolina
107 State University
108 "Introduces good design practices and
109 methodologies right from the beginning.
110 An excellent starting point for developing
111 high-quality robust Java applications."
112 —Simon Ritter,
113 Oracle Corporation
114 "An easy-to-read conversational style.
115 Clear code examples propel readers to

Fig. 3.18 | New HTML5 section elements. (Part 3 of 6.)

<mark>two chapters on control statements.</mark>

<details>
 <summary>Recent Edition Testimonials</summary>

iw3htp5_03_HTML5_pt2.fm Page 124 Wednesday, November 16, 2011 1:06 PM

3.4 Page-Structure Elements 125

116 become proficient in Java."
117 —Patty Kraft, San Diego State
118 University
119 "A great textbook with a myriad of examples
120 from various application domains—
121 excellent for a typical CS1 or CS2 course."
122 —William E. Duncan, Louisiana
123 State University
124
125 </details>
126 </p>
127 </article>
128
129 <!-- aside element represents content in a sidebar that’s -->
130 <!-- related to the content around the element -->
131
132
133
134
135 <h2>Deitel Developer Series Books</h2>
136 <h3>Android for Programmers: An App-Driven Approach
137 </h3>
138 Click
139 here for more information or to order this book.
140
141 <h2>LiveLessons Videos</h2>
142 <h3>C# 2010 Fundamentals LiveLessons</h3>
143 Click
144 here for more information about our LiveLessons videos.
145 </section>
146
147 <section id = "3"> <!-- Begin section 3 -->
148 <h2>Results from our Facebook Survey</h2>
149 <p>If you were a nonprogrammer about to learn Java for the first
150 time, would you prefer a course that taught Java in the
151 context of Android app development? Here are the results from
152 our survey:</p>
153
154 <!-- meter element represents a scale within a range -->
155
156
157
158 <p>Of the 54 responders, 14 (green) would prefer to
159 learn Java in the context of Android app development.</p>
160 </section>
161
162 <!-- footer element represents a footer to a section or page, -->
163 <!-- usually containing information such as author name, -->
164 <!-- copyright, etc. -->
165
166 <!-- wbr element indicates the appropriate place to break a -->
167 <!-- word when the text wraps -->
168 <h6>© 1992-2012 by Deitel & Associ ates, Inc.

Fig. 3.18 | New HTML5 section elements. (Part 4 of 6.)

<aside>
 The aside element is not formatted by the browsers.
</aside>

0 <meter min = "0"
max = "54"
value = "14"></meter> 54

<footer>

<wbr>

iw3htp5_03_HTML5_pt2.fm Page 125 Wednesday, November 16, 2011 1:06 PM

126 Chapter 3 Introduction to HTML5: Part 2

169 All Rights Reserved.<h6>
170 <!-- address element represents contact information for a -->
171 <!-- document or the nearest body element or article -->
172 <address>
173 Contact us at
174 deitel@deitel.com
175 </address>
176 </footer>
177 </body>
178 </html>

Fig. 3.18 | New HTML5 section elements. (Part 5 of 6.)

a) Chrome browser
showing the

header element
and a nav element

that contains an
unordered list of

links

b) Chrome browser
showing the

beginning of a
section containing

a figure and a
figurecaption

iw3htp5_03_HTML5_pt2.fm Page 126 Wednesday, November 16, 2011 1:06 PM

3.4 Page-Structure Elements 127

Fig. 3.18 | New HTML5 section elements. (Part 6 of 6.)

c) Chrome browser
showing an article
containing a header,

some content and a
collapsed details

element, followed by
an aside element

d) Chrome browser
showing the end of
the section that
started in part (b)

e) Chrome browser
showing the last

section
containing a meter
element, followed by

a footer element

iw3htp5_03_HTML5_pt2.fm Page 127 Wednesday, November 16, 2011 1:06 PM

128 Chapter 3 Introduction to HTML5: Part 2

3.4.1 header Element
The header element (lines 12–19) creates a header for this page that contains both text
and graphics. The header element can be used multiple times on a page and can include
HTML headings (<h1> through <h6>), navigation, images and logos and more. For an ex-
ample, see the top of the front page of your favorite newspaper.

time Element
The time element (line 17), which does not need to be enclosed in a header, enables you
to identify a date (as we do here), a time or both.

3.4.2 nav Element
The nav element (lines 22–42) groups navigation links. In this example, we used the head-
ing Recent Publications and created a ul element with seven li elements that link to the
corresponding web pages for each book.

3.4.3 figure Element and figcaption Element
The figure element (lines 49–55) describes a figure (such as an image, chart or table) in
the document so that it could be moved to the side of the page or to another page. The
figure element does not include any styling, but you can style the element using CSS. The
figcaption element (lines 53–54) provides a caption for the image in the figure element.

3.4.4 article Element
The article element (lines 58–127) describes standalone content that could potentially be
used or distributed elsewhere, such as a news article, forum post or blog entry. You can nest
article elements. For example, you might have reader comments about a magazine nested
as an article within the magazine article.

3.4.5 summary Element and details Element
The summary element (line 92) displays a right-pointing arrow next to a summary or cap-
tion when the document is rendered in a browser (Fig. 3.19). When clicked, the arrow
points downward and reveals the content in the details element (lines 91–125).

3.4.6 section Element
The section element describes a section of a document, usually with a heading for each
section—these elements can be nested. For example, you could have a section element
for a book, then nested sections for each chapter name in the book. In this example, we
broke the document into three sections—the first is Recent Publications (lines 21–43).
The section element may also be nested in an article.

3.4.7 aside Element
The aside element (lines 131–133) describes content that’s related to the surrounding
content (such as an article) but is somewhat separate from the flow of the text. For ex-
ample, an aside in a news story might include some background history. A print adver-
tisement might include an aside with product testimonials from users.

iw3htp5_03_HTML5_pt2.fm Page 128 Wednesday, November 16, 2011 1:06 PM

3.4 Page-Structure Elements 129

3.4.8 meter Element
The meter element (lines 155–157) renders a visual representation of a measure within a
range (Fig. 3.20). In this example, we show the results of a recent web survey we did. The
min attribute is "0" and a max attribute is "54" —indicating the total number of responses
to our survey. The value attribute is "14", representing the total number of people who
responded “yes” to our survey question.

Fig. 3.19 | Demonstrating the summary and detail elements.

Fig. 3.20 | Chrome rendering the meter element.

iw3htp5_03_HTML5_pt2.fm Page 129 Wednesday, November 16, 2011 1:06 PM

130 Chapter 3 Introduction to HTML5: Part 2

3.4.9 footer Element
The footer element (lines 165–176) describes a footer—content that usually appears at
the bottom of the content or section element. In this example, we use the footer to de-
scribe the copyright notice and contact information. You can use CSS3 to style the footer
and position it on the page.

3.4.10 Text-Level Semantics: mark Element and wbr Element
The mark element (lines 72–74) highlights the text that’s enclosed in the element. The wbr
element (line 168) indicates the appropriate place to break a word when the text wraps to
multiple lines. You might use wbr to prevent a word from breaking in an awkward place.

Summary
Section 3.2 New HTML5 Form input Types
• HTML5 introduces several new form input types and attributes. These are not yet universally

supported by all browsers.

• The Opera browser offers robust support of the new input types.

• We provide sample outputs from a variety of browsers so that you can see how the input types
behave differently in each.

Section 3.2.1 input Type color
• The color input type (p. 112) enables the user to enter a color.

• Most browsers render the color input type as a text field in which the user can enter a hexadec-
imal code.

• In the future, when the user clicks a color input, browsers will likely display a dialog from which
the the user can select a color.

• The autofocus attribute (p. 112)—which can be used in only one input element on a form—
places the cursor in the text field after the browser loads and renders the page. You do not need
to include autofocus in your forms.

• The new HTML 5 input types self validate on the client side, eliminating the need to add
JavaScript code to validate user input and reducing the amount of invalid data submitted.

• When a user enters data into a form then submits the form, the browser immediately checks that
the data is correct.

• If you want to bypass validation, you can add the formnovalidate attribute (p. 114) to input
type submit.

• Using JavaScript, we can customize the validation process.

Section 3.2.2 input Type date
• The date input type (p. 114) enables the user to enter a date in the format yyyy-mm-dd.

• Firefox and Internet Explorer all display a text field in which a user can enter a date such as 2012-
01-27.

• Chrome and Safari display a spinner control (p. 114)—a text field with an up-down arrow ()
on the right side—allowing the user to select a date by clicking the up or down arrows.

• Opera displays a calendar.

iw3htp5_03_HTML5_pt2.fm Page 130 Wednesday, November 16, 2011 1:06 PM

 Summary 131

Section 3.2.3 input Type datetime
• The datetime input type (p. 114) enables the user to enter a date (year, month, day), time (hour,

minute, second, fraction of a second) and the time zone set to UTC (Coordinated Universal
Time or Universal Time, Coordinated).

Section 3.2.4 input Type datetime-local
• The datetime-local input type (p. 114) enables the user to enter the date and time in a single

control.

• The date is entered as year, month, day, hour, minute, second and fraction of a second.

Section 3.2.5 input Type email
• The email input type (p. 115) enables the user to enter an e-mail address or list of e-mail ad-

dresses separated by commas.

• If the user enters an invalid e-mail address (i.e., the text entered is not in the proper format) and
clicks the Submit button, a callout asking the user to enter an e-mail address is rendered pointing
to the input element.

• HTML5 does not validate whether an e-mail address entered by the user actually exists—rather
it just validates that the information is in the proper format.

• The placeholder attribute (p. 115) allows you to place temporary text in a text field. Generally,
placeholder text is light gray and provides an example of the text and text format the user should
enter. When the focus is placed in the text field (i.e., the cursor is in the text field), the place-
holder text disappears—it’s not “submitted” when the user clicks the Submit button (unless the
user types the same text).

• Add descriptive text to the right of each input element in case the user’s browser does not support
placeholder text.

• The required attribute (p. 116) forces the user to enter a value before submitting the form.

• You can add required to any of the input types. If the user fails to fill enter a required item, a
callout pointing to the empty element appears, asking the user to enter the information.

Section 3.2.6 input Type month
• The month input type (p. 116) enables the user to enter a year and month in the format yyyy-

mm, such as 2012-01.

• If the user enters a month in an improper format and clicks the Submit button, a callout stating
that an invalid value was entered appears.

Section 3.2.7 input Type number
• The number input type (p. 116) enables the user to enter a numerical value.

• The min attribute sets the minimum valid number, in this case "0".

• The max attribute sets the maximum valid number, which we set to "7".

• The step attribute determines the increment in which the numbers increase. For example, if we
set the step to "2", the number in the spinner control will increase or decrease by two each time
the up or down arrow, respectively, in the spinner control is clicked.

• The value attribute sets the initial value displayed in the form.

• The spinner control includes only the valid numbers. If the user attempts to enter an invalid val-
ue by typing in the text field, a callout pointing to the number input element will instruct the user
to enter a valid value.

iw3htp5_03_HTML5_pt2.fm Page 131 Wednesday, November 16, 2011 1:06 PM

132 Chapter 3 Introduction to HTML5: Part 2

Section 3.2.8 input Type range
• The range input type (p. 117) appears as a slider control in Chrome, Safari and Opera.

• You can set the minimum and maximum and specify a value.

• The slider appears at the value in the range when the HTML5 document is rendered.

• The range input type is inherently self-validating when it’s rendered by the browser as a slider
control, because the user is unable to move the slider outside the bounds of the minimum or
maximum value.

Section 3.2.9 input Type search
• The search input type (p. 117) provides a search field for entering a query and is functionally

equivalent to an input of type text.

• When the user begins to type in the search field, Chrome and Safari display an X that can be
clicked to clear the field.

Section 3.2.10 input Type tel
• The tel input type (p. 118) enables the user to enter a telephone number.

• At the time of this writing, the tel input type is rendered as a text field in all of the browsers.

• The length and format of telephone numbers varies greatly based on location, making validation
quite complex. HTML5 does not self validate the tel input type. To ensure that the user enters
a phone number in a proper format, you can use the pattern attribute.

• When the user enters a phone number in the wrong format, a callout requesting the proper for-
mat appears, pointing to the tel input element.

Section 3.2.11 input Type time
• The time input type (p. 118) enables the user to enter an hour, minute, second and fraction of

a second.

Section 3.2.12 input Type url
• The url input type (p. 119) enables the user to enter a URL. The element is rendered as a text

field. If the user enters an improperly formatted URL, it will not validate. HTML5 does not en-
sure that the URL entered actually exists.

Section 3.2.13 input Type week
• The week input type (p. 119) enables the user to select a year and week number in the format

yyyy-Wnn.

• Opera renders week control with a down arrow that, when clicked, brings up a calendar control.

Section 3.3.1 input Element autocomplete Attribute
• The autocomplete attribute (p. 119) can be used on input types to automatically fill in the user's

information based on previous input.

• You can enable autocomplete for an entire form or just for specific elements.

Section 3.3.2 datalist Element
• The datalist element (p. 122) provides input options for a text input element. The browser

can use these options to display autocomplete options to the user.

Section 3.4 Page-Structure Elements
• HTML5 introduces several new page structure elements.

iw3htp5_03_HTML5_pt2.fm Page 132 Wednesday, November 16, 2011 1:06 PM

 Summary 133

Section 3.4.1 header Element
• The header element (p. 128) creates a header for the page that contains text, graphics or both.

• The header element may be used multiple times on a page and often includes HTML headings.

• The time element (p. 128) enables you to identify a date, a time or both.

Section 3.4.2 nav Element
• The nav element (p. 128) groups navigation links.

Section 3.4.3 figure Element and figcaption Element
• The figure element (p. 128) describes an image in the document so that it could be moved to

the side of the page or to another page.

• The figcaption element (p. 128) provides a caption for the image in the figure element.

Section 3.4.4 article Element
• The article element (p. 128) describes content that’s separate from the main content of the

page and might be used or distributed elsewhere, such as a news article, forum post or blog entry.

• article elements can be nested.

Section 3.4.5 summary Element and details Element
• The summary element (p. 128) displays a right-pointing arrow next to a summary or caption

when the document is rendered in a browser. When clicked, the arrow points downward and re-
veals the content in the details element (p. 128).

Section 3.4.6 section Element
• The section element (p. 128) describes a section of a document, usually with a heading for each

section.

• section elements can be nested.

Section 3.4.7 aside Element
• The aside element (p. 128) describes content that’s related to the surrounding content (such as

an article) but that’s somewhat separate from the flow of the text.

• nav elements can be nested in an aside element.

Section 3.4.8 meter Element
• The meter element (p. 129) renders a visual representation of a measure within a range.

• Useful meter attributes are min, max and value.

Section 3.4.9 footer Element
• The footer element (p. 130) describes a footer—content that usually appears at the bottom of

the content or section element.

• You can use CSS3 to style the footer and position it on the page.

Section 3.4.10 Text-Level Semantics: mark Element and wbr Element
• The mark element (p. 130) enables you to highlight text.

• The wbr element (p. 130) indicates the appropriate place to break a word when the text wraps to
multiple lines. You might use wbr to prevent a word from breaking in an awkward place.

iw3htp5_03_HTML5_pt2.fm Page 133 Wednesday, November 16, 2011 1:06 PM

134 Chapter 3 Introduction to HTML5: Part 2

Self-Review Exercises
3.1 Fill in the blanks in each of the following:

a) HTML5 has for providing lists of allowed values that a user can enter in
an input element, and for autocompleting those values as the user types.

b) The attribute determines the increment in which the numbers increase.
c) You can use to style the footer and position it on the page.
d) The element enables you to highlight text.
e) The attribute forces the user to enter a value before submitting the form.
f) For input type search, Chrome and Safari display a(n) that can be clicked

to clear the field.
g) The attribute allows you to place temporary text in a text field.
h) Opera renders with a down arrow that, when clicked, brings up a

calendar for the current month with the corresponding week numbers listed.
i) The element provides a caption for the image in the figure element.
j) A print advertisement might include a(n) with product testimonials from

users.

3.2 State whether each of the following is true or false. If false, explain why.
a) Any particular HTML5 form input types must render identically in every HTML5-

compliant browser.
b) When the focus is placed in the text field (i.e., the cursor is in the text field), the place-

holder text is submitted to the server.
c) You do not need to include autofocus in your forms.
d) The new HTML 5 input types are self validating on the client side, eliminating the

need to add complicated scripts to your forms to validate user input and reducing the
amount of invalid data submitted.

e) The range input type is inherently self-validating when it’s rendered by the browser as
a slider control, because the user is unable to move the slider outside the bounds of the
minimum or maximum value.

f) HTML5 self validates the tel input type.
g) If the user enters an improperly formatted URL in a url input type, it will not validate.

HTML5 does not validate that the URL entered actually exists.
h) The nav element displays a drop-down menu of hyperlinks.
i) The header element may be used only one time on a page.
j) nav elements can be nested in an aside element.
k) You might use the brk to prevent awkward word breaks.

Answers to Self-Review Exercises
3.1 a) datalists. b) step. c) CSS3. d) mark. e) required. f) X. g) placeholder. h) week control.
i) figcaption. j) aside.

3.2 a) False. The rendering of input types can vary among browsers. b) False. When the focus
is placed in the text field, the placeholder text disappears. It’s not “submitted” when the user clicks
the Submit button (unless the user types the same text). c) True. d) True. e) True. f) False. The
length and format of telephone numbers varies greatly based on location, making validation quite

iw3htp5_03_HTML5_pt2.fm Page 134 Wednesday, November 16, 2011 1:06 PM

 Exercises 135

complex, so HTML5 does not self validate the tel input type. To ensure that the user enters a
phone number in a proper format, we use the pattern attribute. g) True. h) False. The nav element
groups navigation links. i) False. The header element may be used multiple times on a page and of-
ten includes HTML headings (<h1> through <h6>) j) True. k) False. You might use the wbr to pre-
vent awkward word breaks.

Exercises
3.3 Fill in the blanks in each of the following:

a) Opera displays a color control that shows the default color (black) with a
down arrow that, when clicked, shows a drop-down with 20 basic colors.

b) If you want to bypass validation, you can add the attribute to input type.
c) Chrome displays a(n) , a text field with an updown arrow on the right

side—allowing the user to select a date by clicking the up or down arrows.
d) The enables the user to enter an e-mail address or a list of e-mail addresses

separated by commas.
e) The week input type enables the user to select a year and week number in the format

.
f) The attribute is used to place a string in a text field.
g) The element describes a section of a document, usually with a heading for

each section.
h) The input type enables the user to enter a telephone number.

3.4 State whether each of the following is true or false. If false, explain why.
a) Using HTML, we can customize the validation process.
b) The autofocus attribute—which can be used in only one input element on a form—

places the cursor in the text field after the browser loads and renders the page.
c) The autocomplete attribute allows you to place temporary text in a text field.
d) The nav element groups navigation links.
e) The imgcaption element provides a caption for the image in the figure element.
f) The time element enables you to identify a date, a time, or both.
g) The choice input type appears as a slider control in Chrome, Safari and Opera.
h) The editorial element describes content that’s separate from the main content of the

page and might be used or distributed elsewhere, such as a news article, forum post or
blog entry.

i) The header element may be used multiple times on a page and often includes HTML
headings.

j) section elements cannot be nested.

3.5 Write an HTML5 element (or elements) to accomplish each of the following tasks:
a) Teachers were asked to evaluate students in an examination on a scale of 1 to 100. Use

a meter element with text to its left and right to indicate that the average rating was 65
out of 100.

b) Create a details element that displays the summary text "Student Results" for Part
(a). When the user clicks the arrow next to the summary text, an explanatory paragraph
about the survey should be displayed.

c) Create a text input element for a telephone number. The element should automatically
receive the focus when the form is rendered in a browser.

d) How to bypass validation procedure.

iw3htp5_03_HTML5_pt2.fm Page 135 Wednesday, November 16, 2011 1:06 PM

136 Chapter 3 Introduction to HTML5: Part 2

e) Use a datalist to provide an autocomplete list for five fruits.
f) Create a range input element that allows the user to select a number from 5 to 50.
g) Specify how autocomplete should always be allowed for a form. Show only the form’s

opening tag.
h) Use a mark element to highlight the first sentence in the following paragraph.

<p> Teachers were asked to evaluate students in an examination
 on a scale of 1 to 100. The average result was 65. </p>

3.6 (College Registration Form with Optional Survey) Create a college registration form to ob-
tain a user’s first name, last name, telephone number, and e-mail address. In addition, include an
optional survey question that asks the user’s qualification. Place the optional survey question in a
details element so that the user can expand the details element to see the question.

3.7 (Creating an Autocomplete Form) Create a simple number entry form using an number
input element in which the user can enter a number. Using the Firefox web browser, test the form
by entering 345 and submitting the form. Then enter a 3 in the input element to see previous entries
that started with 3—345 should be displayed below the input element. Enter 367 and submit the form
again. Now enter a 3 in the input element to see previous entries that started with 3—345 and 367
should be displayed below the input element. Try this with your own search queries as well.

3.8 (Creating an Autocomplete Form with a datalist) Create an autocomplete input element
with an associated datalist that contains the months of the year.

3.9 (Laying Out Book Pages in HTML5: Creating the Sections) Mark up the paragraph text
from Section 3.2.1 of this chapter as a web page using page-structure elements. The text is provided
in the exerciseTextAndImages folder with this chapter’s examples. Do not include the figures in this
exercise.

3.10 (Laying Out Book Pages in HTML5: Adding Figures) Modify your solution to Exercise 3.9
to add the section’s graphics as figures. The images are provided in the exerciseTextAndImages
folder with this chapter’s examples.

3.11 (Laying Out Book Pages in HTML5: Adding a details Element) Modify your solution to
Exercise 3.10 to add the table in Fig. 3.5. Use the figure caption as the summary and format the table
as an HTML table element inside the details element.

iw3htp5_03_HTML5_pt2.fm Page 136 Wednesday, November 16, 2011 1:06 PM

4Introduction to Cascading
Style Sheets™ (CSS): Part 1

Fashions fade, style is eternal.
—Yves Saint Laurent

How liberating to work in the
margins, outside a central
perception.
—Don DeLillo

O b j e c t i v e s
In this chapter you’ll:

■ Control a website’s
appearance with style sheets.

■ Use a style sheet to give all
the pages of a website the
same look and feel.

■ Use the class attribute to
apply styles.

■ Specify the precise font, size,
color and other properties of
displayed text.

■ Specify element backgrounds
and colors.

■ Understand the box model
and how to control margins,
borders and padding.

■ Use style sheets to separate
presentation from content.

iw3htp5_04_CSS_pt1.fm Page 137 Thursday, November 17, 2011 10:37 AM

138 Chapter 4 Introduction to Cascading Style Sheets™ (CSS): Part 1

4.1 Introduction
In Chapters 2–3, we introduced HTML5 for marking up information to be rendered in a
browser. In this chapter and Chapter 5, we shift our focus to formatting and presenting
information. To do this, we use a W3C technology called Cascading Style Sheets 3
(CSS3) that allows you to specify the presentation of elements on a web page (e.g., fonts,
spacing, sizes, colors, positioning) separately from the document’s structure and content
(section headers, body text, links, etc.). This separation of structure from presentation
simplifies maintaining and modifying web pages, especially on large-scale websites. In
Chapter 5, we introduce many new features in CSS3.

HTML5 was designed to specify the content and structure of a document. Though
HTML5 has some attributes that control presentation, it’s better not to mix presentation
with content. If a website’s presentation is determined entirely by a style sheet, you can
simply swap in a new style sheet to completely change the site’s appearance.

The W3C provides a CSS3 code validator at jigsaw.w3.org/css-validator/. This
tool can help you make sure that your code is correct and will work on CSS3-compliant
browsers. We’ve run this validator on every CSS3/HTML5 document in this book. For
more CSS3 information, check out our CSS3 Resource Center at www.deitel.com/css3.

4.2 Inline Styles
You can declare document styles inline in the HTML5 markup, in embedded style sheets
or in separate CSS files. This section presents inline styles that declare an individual ele-
ment’s format using the HTML5 attribute style. Inline styles override any other styles ap-
plied using the techniques we discuss later in the chapter. Figure 4.1 applies inline styles
to p elements to alter their font size and color.

4.1 Introduction
4.2 Inline Styles
4.3 Embedded Style Sheets
4.4 Conflicting Styles
4.5 Linking External Style Sheets
4.6 Positioning Elements: Absolute

Positioning, z-index
4.7 Positioning Elements: Relative

Positioning, span
4.8 Backgrounds

4.9 Element Dimensions
4.10 Box Model and Text Flow
4.11 Media Types and Media Queries
4.12 Drop-Down Menus
4.13 (Optional) User Style Sheets
4.14 Web Resources

Summary | Self-Review Exercise | Answers to Self-Review Exercises | Exercises

Software Engineering Observation 4.1
Inline styles do not truly separate presentation from content. To apply similar styles to mul-
tiple elements, use embedded style sheets or external style sheets, introduced later in this
chapter.

iw3htp5_04_CSS_pt1.fm Page 138 Thursday, November 17, 2011 10:37 AM

4.2 Inline Styles 139

The first inline style declaration appears in line 16. Attribute style specifies an ele-
ment’s style. Each CSS property (font-size in this case) is followed by a colon and a
value. In line 16, we declare this particular p element to use a 20-point font size.

Line 20 specifies the two properties, font-size and color, separated by a semicolon.
In this line, we set the given paragraph’s color to deepskyblue. Hexadecimal codes may
be used in place of color names. Figure 4.2 contains the HTML standard color set. We
provide a list of extended hexadecimal color codes and color names in Appendix B. You
can also find a complete list of HTML standard and extended colors at www.w3.org/TR/
css3-color/.

1 <!DOCTYPE html>
2
3 <!-- Fig. 4.1: inline.html -->
4 <!-- Using inline styles -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Inline Styles</title>
9 </head>

10 <body>
11 <p>This text does not have any style applied to it.</p>
12
13 <!-- The style attribute allows you to declare -->
14 <!-- inline styles. Separate multiple -->
15 <!-- style properties with a semicolon. -->
16 This text has the
17 font-size style applied to it, making it 20pt.
18 </p>
19
20
21 This text has the font-size and
22 color styles applied to it, making it
23 20pt and deep sky blue.</p>
24 </body>
25 </html>

Fig. 4.1 | Using inline styles.

<p style = "font-size: 20pt;">

<p style = "font-size: 20pt; color: deepskyblue;">

iw3htp5_04_CSS_pt1.fm Page 139 Thursday, November 17, 2011 10:37 AM

140 Chapter 4 Introduction to Cascading Style Sheets™ (CSS): Part 1

4.3 Embedded Style Sheets
A second technique for using style sheets is embedded style sheets, which enable you to
embed a CSS3 document in an HTML5 document’s head section. Figure 4.3 creates an
embedded style sheet containing four styles.

Color name Value Color name Value

aqua #00FFFF navy #000080

black #000000 olive #808000

blue #0000FF purple #800080

fuchsia #FF00FF red #FF0000

gray #808080 silver #C0C0C0

green #008000 teal #008080

lime #00FF00 yellow #FFFF00

maroon #800000 white #FFFFFF

Fig. 4.2 | HTML standard colors and hexadecimal RGB values.

1 <!DOCTYPE html>
2
3 <!-- Fig. 4.3: embedded.html -->
4 <!-- Embedded style sheet. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Embedded Style Sheet</title>
9

10 <!-- this begins the style sheet section -->
11
12
13
14
15
16
17
18
19 </head>
20 <body>
21 <!-- this attribute applies the .special style class -->
22 <h1 class = "special">Deitel & Associates, Inc.</h1>
23
24 <p>Deitel & Associates, Inc. is an authoring and
25 corporate training organization specializing in
26 programming languages, Internet and web technology,
27 iPhone and Android app development, and object
28 technology education.</p>
29

Fig. 4.3 | Embedded style sheet. (Part 1 of 2.)

<style type = "text/css">
 em { font-weight: bold;
 color: black; }
 h1 { font-family: tahoma, helvetica, sans-serif; }
 p { font-size: 12pt;
 font-family: arial, sans-serif; }
 .special { color: purple; }
</style>

iw3htp5_04_CSS_pt1.fm Page 140 Thursday, November 17, 2011 10:37 AM

4.3 Embedded Style Sheets 141

The style Element and MIME Types
The style element (lines 11–18) defines the embedded style sheet. Styles placed in the head
apply to matching elements wherever they appear in the body. The style element’s type
attribute specifies the MIME (Multipurpose Internet Mail Extensions) type that describes
the style element’s content. CSS documents use the MIME type text/css. As of
HTML5, the default type for a style element is "text/css", so this attribute is no longer
needed—we kept it here because you’ll see this used in legacy HTML code. Figure 4.4 lists
common MIME types used in this book. For a complete list of MIME types, visit:

The style sheet’s body (lines 12–17) declares the CSS rules for the style sheet. To
achieve the separation between the CSS3 code and the HTML5 that it styles, we’ll use a
CSS selector to specify the elements that will be styled according to a rule. Our first rule

30 <h1>Clients</h1>
31 <p class = "special"> The company's clients include many
32 Fortune 1000 companies, government agencies,
33 branches of the military and business organizations.</p>
34 </body>
35 </html>

www.w3schools.com/media/media_mimeref.asp

MIME type Description

text/css CSS documents

image/png PNG images

text/javascript JavaScript markup

text/plain Plain text

image/jpeg JPEG image

text/html HTML markup

Fig. 4.4 | A few common MIME types.

Fig. 4.3 | Embedded style sheet. (Part 2 of 2.)

iw3htp5_04_CSS_pt1.fm Page 141 Thursday, November 17, 2011 10:37 AM

142 Chapter 4 Introduction to Cascading Style Sheets™ (CSS): Part 1

(line 12) begins with the selector em, which selects all em elements in the document. An em
element indicates that its contents should be emphasized. Browsers usually render em ele-
ments in an italic font. Each rule’s body is enclosed in curly braces ({ and }). CSS rules in
embedded style sheets use the same syntax as inline styles; the property name is followed
by a colon (:) and the property value. Multiple properties are separated by semicolons (;).
The font-weight property in line 12 specifies the “boldness” of text. Possible values are
bold, normal (the default), bolder (bolder than bold text) and lighter (lighter than
normal text). Boldness also can be specified with multiples of 100, from 100 to 900. Text
specified as normal is equivalent to 400, and bold text is equivalent to 700. However, many
systems do not have fonts that can scale with this level of precision, so using these numeric
values might not display the desired effect.

In this example, all em elements will be displayed in a bold black font. We also apply
styles to all h1 and p elements (lines 14–16).

Style Classes
Line 17 declares a selector for a style class named special. Style-class declarations are pre-
ceded by a period (.). They define styles that can be applied to any element. In this exam-
ple, class special sets color to purple. We’ll show how to apply a style class momentarily.
You can also declare id selectors. If an element in your page has an id, you can declare a
selector of the form #elementId to specify that element’s style.

font-family Property
The font-family property (line 14) specifies the name of the font to use. Not all users have
the same fonts installed on their computers, so CSS allows you to specify a comma-separated
list of fonts to use for a particular style. The browser attempts to use the fonts in the order in
which they appear in the list. It’s advisable to end a font list with a generic font family name
in case the other fonts are not installed on the user’s computer (Fig. 4.5). In this example, if
the tahoma font is not found on the system, the browser will look for the helvetica font. If
neither is found, the browser will display its default sans-serif font.

font-size Property
Property font-size (line 15) specifies a 12-point font. Other possible measurements in
addition to pt (point) are introduced in Section 4.4. Relative values—xx-small, x-small,
small, smaller, medium, large, larger, x-large and xx-large—also can be used. Gen-
erally, relative font-size values are preferred over points, because an author does not know the
specific measurements of each client’s display. Relative values permit more flexible viewing of
web pages. For example, users can change font sizes the browser displays for readability.

Generic font families Examples

serif times new roman, georgia
sans-serif arial, verdana, futura
cursive script

fantasy critter

monospace courier, fixedsys

Fig. 4.5 | Generic font families.

iw3htp5_04_CSS_pt1.fm Page 142 Thursday, November 17, 2011 10:37 AM

4.4 Conflicting Styles 143

A user may view a web page on a handheld device with a small screen. Specifying a
fixed font size (such as 18pt) prevents the browser from scaling fonts. A relative font size,
such as large or larger, allows the browser to determine the actual size of the text dis-
played. Using relative sizes also makes pages more accessible to users with disabilities. Users
with impaired vision, for example, may configure their browser to use a larger default font,
upon which all relative sizes are based. Text that the author specifies to be smaller than
the main text still displays in a smaller size font. Accessibility is an important consider-
ation—in 1998, Congress passed the Section 508 Amendment to the Rehabilitation Act
of 1973, mandating that websites of federal government agencies be accessible to disabled
users. For more information, visit www.access-board.gov/508.htm.

Applying a Style Class
Line 22 uses the HTML5 attribute class in an h1 element to apply a style class—in this
case, the class named special (declared with the .special selector in the style sheet on
line 17). When the browser renders the h1 element, the text appears on screen with the
properties of both an h1 element (tahoma, helvetica or sans-serif font defined in line 14)
and the .special style class applied (the color purple defined in line 17). The browser
also still applies its own default style to the h1 element—the header is displayed in a large
font size. Similarly, all em elements will still be italicized by the browser, but they will also
be bold as a result of lines 12–13.

The formatting rules for both the p element and the .special class are applied to the
text in lines 31–33. In many cases, the styles applied to an element (the parent or ancestor
element) also apply to the element’s nested elements (child or descendant elements). The
em element nested in the p element in line 32 inherits the style from the p element (namely,
the 12-point font size in line 15) but retains its italic style. So styles defined for the para-
graph and not defined for the em element are still applied to this em element that’s nested
in the p element. Multiple values of one property can be set or inherited on the same ele-
ment, so the browser must reduce them to one value for that property per element before
they’re rendered. We discuss the rules for resolving these conflicts in the next section.

4.4 Conflicting Styles
Styles may be defined by a user, an author or a user agent. A user is a person viewing your
web page, you’re the author—the person who writes the document—and the user agent
is the program used to render and display the document (e.g., a web browser).

• Styles cascade (and hence the term “Cascading Style Sheets”), or flow together,
such that the ultimate appearance of elements on a page results from combining
styles defined in several ways.

• Styles defined by the user take precedence over styles defined by the user agent.

• Styles defined by authors take precedence over styles defined by the user.

Most styles defined for parent elements are also inherited by child (nested) elements.
This makes sense for most styles, such as font properties, but there are certain properties
that you don’t want to be inherited. For example, the background-image property allows
you to set an image as the background of an element. If the body element is assigned a back-
ground image, we don’t want the same image to be in the background of every element in
the body of our page. Instead, the background-image property of all child elements retains

iw3htp5_04_CSS_pt1.fm Page 143 Thursday, November 17, 2011 10:37 AM

144 Chapter 4 Introduction to Cascading Style Sheets™ (CSS): Part 1

its default value of none. In this section, we discuss the rules for resolving conflicts between
styles defined for elements and styles inherited from parent and ancestor elements.

Figure 4.3 contains an example of inheritance in which a child em element inherits the
font-size property from its parent p element. However, in Fig. 4.3, the child em element
has a color property that conflicts with (i.e., has a different value than) the color property
of its parent p element. Properties defined for child and descendant elements have a higher
specificity than properties defined for parent and ancestor elements. Conflicts are resolved
in favor of properties with a higher specificity, so the child’s styles take precedence.
Figure 4.6 illustrates examples of inheritance and specificity.

1 <!DOCTYPE html>
2
3 <!-- Fig. 4.6: advanced.html -->
4 <!-- Inheritance in style sheets. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>More Styles</title>
9 <style type = "text/css">

10 body { font-family: arial, helvetica, sans-serif; }
11
12
13
14
15 ul { margin-left: 20px; }
16 ul ul { font-size: .8em; }
17 </style>
18 </head>
19 <body>
20 <h1>Shopping list for Monday:</h1>
21
22
23 Milk
24 Bread
25
26 white bread
27 Rye bread
28 Whole wheat bread
29
30
31 Carrots
32 Yogurt
33 Pizza with mushrooms
34
35
36 <p>Go to the
37
38 Grocery store
39 </p>
40 </body>
41 </html>

Fig. 4.6 | Inheritance in style sheets. (Part 1 of 2.)

a.nodec { text-decoration: none; }
a:hover { text-decoration: underline; }
li em { font-weight: bold; }
h1, em { text-decoration: underline; }

iw3htp5_04_CSS_pt1.fm Page 144 Thursday, November 17, 2011 10:37 AM

4.4 Conflicting Styles 145

Line 11 applies property text-decoration to all a elements whose class attribute is
set to nodec (line 37). The text-decoration property applies decorations to text in an
element. By default, browsers underline the text of an a (anchor) element. Here, we set the
text-decoration property to none to indicate that the browser should not underline
hyperlinks. Other possible values for text-decoration include overline, line-through
and underline. The .nodec appended to a is a more specific class selector; this style in line
11 applies only to a (anchor) elements that specify the nodec in their class attribute.

Line 12 specifies a style for hover, which is a pseudo-class. Pseudo-classes give you
access to information that’s not declared in the document, such as whether the mouse is
hovering over an element or whether the user has previously clicked (visited) a particular

Portability Tip 4.1
To ensure that your style sheets work in various web browsers, test them on many client
web browsers, and use the W3C CSS Validator.

Fig. 4.6 | Inheritance in style sheets. (Part 2 of 2.)

Grocery store link
with underline

displayed when
user hovers over

the link

Grocery store link
with no decoration

iw3htp5_04_CSS_pt1.fm Page 145 Thursday, November 17, 2011 10:37 AM

146 Chapter 4 Introduction to Cascading Style Sheets™ (CSS): Part 1

hyperlink. The hover pseudo-class is activated dynamically when the user moves the
mouse cursor over (that is, hovers over) an element. Pseudo-classes are separated by a colon
(with no surrounding spaces) from the name of the element to which they’re applied.

Line 13 causes all em elements that are children of li elements to be bold. In the screen
output of Fig. 4.6, Go to the (contained in an em element in line 36) does not appear bold,
because the em element is not nested in an li element. However, the em element containing
with mushrooms (line 33) is nested in an li element, so it’s formatted in bold. The syntax
for applying rules to multiple elements is similar. In line 14, we separate the selectors with
a comma to apply an underline style rule to all h1 and all em elements.

Line 15 assigns a 20-pixel left margin to all ul elements. We’ll discuss the margin prop-
erties in detail in Section 4.10. A pixel is a relative-length measurement—it varies in size,
based on screen resolution. Other relative lengths include em (which, as a measurement,
means the font’s uppercase M height—the most frequently used font measurement), ex (the
font’s x-height—usually set to a lowercase x’s height) and percentages (e.g., font-size:
50%). To set an element to display text at 150 percent of its default text size, you could use

or

Other units of measurement available in CSS are absolute-length measurements—i.e.,
units that do not vary in size based on the system. These units are in (inches), cm (centi-
meters), mm (millimeters), pt (points; 1 pt = 1/72 in) and pc (picas; 1 pc = 12 pt). Line 16
specifies that all nested unordered lists (ul elements that are descendants of ul elements)
are to have font size .8em. [Note: When setting a style property that takes a measurement
(e.g. font-size, margin-left), no units are necessary if the value is zero.]

4.5 Linking External Style Sheets
Style sheets are a convenient way to create a document with a uniform theme. With exter-
nal style sheets (i.e., separate documents that contain only CSS rules), you can provide a
uniform look and feel to an entire website (or to a portion of one). You can also reuse the
same external style sheet across multiple websites. Different pages on a site can all use the
same style sheet. When changes to the styles are required, you need to modify only a single
CSS file to make style changes across all the pages that use those styles. This concept is
sometimes known as skinning. While embedded style sheets separate content from pre-
sentation, both are still contained in a single file, preventing a web designer and a content
author from conveniently working in parallel. External style sheets solve this problem by
separating the content and style into separate files.

Common Programming Error 4.1
Including a space before or after the colon separating a pseudo-class from the name of the
element to which it’s applied prevents the pseudo-class from being applied properly.

font-size: 1.5em

font-size: 150%

Good Programming Practice 4.1
Whenever possible, use relative-length measurements. If you use absolute-length measure-
ments, your document may not scale well on some client browsers (e.g., smartphones).

iw3htp5_04_CSS_pt1.fm Page 146 Thursday, November 17, 2011 10:37 AM

4.5 Linking External Style Sheets 147

Figure 4.7 presents an external style sheet. Lines 1–2 are CSS comments. These may
be placed in any type of CSS code (i.e., inline styles, embedded style sheets and external
style sheets) and always start with /* and end with */. Text between these delimiters is
ignored by the browser. The rules in this external style sheet are the same as those in the
embedded style sheet in Fig. 4.6, lines 10–16.

Figure 4.8 contains an HTML5 document that references the external style sheet.
Lines 9–10 show a link element that uses the rel attribute to specify a relationship
between the current document and another document. Here, we declare the linked docu-
ment to be a stylesheet for this document. The type attribute specifies the related doc-
ument’s MIME type as text/css. The href attribute provides the style sheet document’s
URL. Using just the file name styles.css, as we do here, indicates that styles.css is in
the same directory as external.html. The rendering results are the same as in Fig. 4.6.

1 /* Fig. 4.7: styles.css */
2 /* External style sheet */
3 body { font-family: arial, helvetica, sans-serif; }
4 a.nodec { text-decoration: none; }
5 a:hover { text-decoration: underline; }
6 li em { font-weight: bold; }
7 h1, em { text-decoration: underline; }
8 ul { margin-left: 20px; }
9 ul ul { font-size: .8em; }

Fig. 4.7 | External style sheet.

1 <!DOCTYPE html>
2
3 <!-- Fig. 4.8: external.html -->
4 <!-- Linking an external style sheet. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Linking External Style Sheets</title>
9

10
11 </head>
12 <body>
13 <h1>Shopping list for Monday:</h1>
14
15
16 Milk
17 Bread
18
19 white bread
20 Rye bread
21 Whole wheat bread
22
23

Fig. 4.8 | Linking an external style sheet. (Part 1 of 2.)

<link rel = "stylesheet" type = "text/css"
 href = "styles.css">

iw3htp5_04_CSS_pt1.fm Page 147 Thursday, November 17, 2011 10:37 AM

148 Chapter 4 Introduction to Cascading Style Sheets™ (CSS): Part 1

4.6 Positioning Elements: Absolute Positioning, z-index
Before CSS, controlling element positioning in HTML documents was difficult—the
browser determined positioning. CSS introduced the position property and a capability

24 Carrots
25 Yogurt
26 Pizza with mushrooms
27
28
29 <p>Go to the
30
31 Grocery store
32 </p>
33 </body>
34 </html>

Fig. 4.8 | Linking an external style sheet. (Part 2 of 2.)

iw3htp5_04_CSS_pt1.fm Page 148 Thursday, November 17, 2011 10:37 AM

4.6 Positioning Elements: Absolute Positioning, z-index 149

called absolute positioning, which gives you greater control over how document elements
are displayed. Figure 4.9 demonstrates absolute positioning.

1 <!DOCTYPE html>
2
3 <!-- Fig. 4.9: positioning.html -->
4 <!-- Absolute positioning of elements. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Absolute Positioning</title>
9 <style type = "text/css">

10
11
12
13
14
15
16
17
18
19
20
21
22 font-size: 20pt;
23 font-family: tahoma, geneva, sans-serif; }
24 </style>
25 </head>
26 <body>
27 <p><img src = "background_image.png" class = "background_image"
28 alt = "First positioned image" /></p>
29
30 <p><img src = "foreground_image.png" class = "foreground_image"
31 alt = "Second positioned image" /></p>
32
33 <p class = "text">Positioned Text</p>
34 </body>
35 </html>

Fig. 4.9 | Absolute positioning of elements. (Part 1 of 2.)

.background_image { position: absolute;
 top: 0px;
 left: 0px;
 z-index: 1; }
.foreground_image { position: absolute;
 top: 25px;
 left: 100px;
 z-index: 2; }
.text { position: absolute;
 top: 25px;
 left: 100px;
 z-index: 3;

iw3htp5_04_CSS_pt1.fm Page 149 Thursday, November 17, 2011 10:37 AM

150 Chapter 4 Introduction to Cascading Style Sheets™ (CSS): Part 1

Normally, elements are positioned on the page in the order in which they appear in
the HTML5 document. Lines 10–13 define a style called background_image for the first
img element (background_image.png) on the page. Specifying an element’s position as
absolute removes the element from the normal flow of elements on the page, instead
positioning it according to the distance from the top, left, right or bottom margins of
its containing block-level element. This means that it’s displayed on its own line and has
a virtual box around it. Some examples of block-level elements include section, div, p
and heading elements (h1 through h6). Here, we position the element to be 0 pixels away
from both the top and left margins of its containing element. In line 27, this style is
applied to the image, which is contained in a p element.

The z-index property allows you to layer overlapping elements. Elements that have higher
z-index values are displayed in front of elements with lower z-index values. In this example,
.background_image has the lowest z-index (1), so it displays in the background. The
.foreground_image CSS rule (lines 14–17) gives the circle image (foreground_image.png,
in lines 30–31) a z-index of 2, so it displays in front of background_image.png. The p ele-
ment in line 33 is given a z-index of 3 in line 21, so its content (Positioned Text) displays
in front of the other two. If you do not specify a z-index or if elements have the same z-
index value, the elements are placed from background to foreground in the order in which
they’re encountered in the document. The default z-index value is 0.

4.7 Positioning Elements: Relative Positioning, span
Absolute positioning is not the only way to specify page layout. Figure 4.10 demonstrates
relative positioning, in which elements are positioned relative to other elements.

Setting the position property to relative, as in class super (lines 15–16), lays out
the element on the page and offsets it by the specified top, bottom, left or right value.
Unlike absolute positioning, relative positioning keeps elements in the general flow of ele-
ments on the page, so positioning is relative to other elements in the flow. Recall that ex
(line 16) is the x-height of a font, a relative-length measurement typically equal to the
height of a lowercase x. Class super (lines 15–16) lays out the text at the end of the sen-
tence as superscript, and class sub (lines 17–18) lays out the text as subscript relative to the
other text. Class shiftleft (lines 19–20) shifts the text at the end of the sentence left and
class shiftright (lines 21–22) shifts the text right.

Fig. 4.9 | Absolute positioning of elements. (Part 2 of 2.)

iw3htp5_04_CSS_pt1.fm Page 150 Thursday, November 17, 2011 10:37 AM

4.7 Positioning Elements: Relative Positioning, span 151

1 <!DOCTYPE html>
2
3 <!-- Fig. 4.10: positioning2.html -->
4 <!-- Relative positioning of elements. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Relative Positioning</title>
9 <style type = "text/css">

10 p { font-size: 1.3em;
11 font-family: verdana, arial, sans-serif; }
12 span { color: red;
13 font-size: .6em;
14 height: 1em; }
15
16
17
18
19
20
21
22
23 </style>
24 </head>
25 <body>
26 <p>The text at the end of this sentence
27
28
29 <p>The text at the end of this sentence
30
31
32 <p>The text at the end of this sentence
33
34
35 <p>The text at the end of this sentence
36
37 </body>
38 </html>

v

Fig. 4.10 | Relative positioning of elements.

.super { position: relative;
 top: -1ex; }
.sub { position: relative;
 bottom: -1ex; }
.shiftleft { position: relative;
 left: -1ex; }
.shiftright { position: relative;
 right: -1ex; }

is in superscript.</p>

is in subscript.</p>

is shifted left.</p>

is shifted right.</p>

iw3htp5_04_CSS_pt1.fm Page 151 Thursday, November 17, 2011 10:37 AM

152 Chapter 4 Introduction to Cascading Style Sheets™ (CSS): Part 1

Inline and Block-Level Elements
We introduce the span element in line 27. Lines 12–14 define the CSS rule for all span
elements in this example. The span’s height determines how much vertical space it will
occupy. The font-size determines the size of the text inside the span.

Element span is a grouping element—by default, it does not apply any formatting to
its contents. Its primary purpose is to apply CSS rules or id attributes to a section of text.
Element span is an inline-level element—it does not change the flow of elements in the
document. Examples of inline elements include span, img, a, em and strong. The div ele-
ment is also a grouping element, but it’s a block-level element. We’ll discuss inline and
block-level elements in more detail in Section 4.10.

4.8 Backgrounds
CSS provides control over the backgrounds of block-level elements. CSS can set a back-
ground color or add background images to HTML5 elements. Figure 4.11 adds a corpo-
rate logo to the bottom-right corner of the document. This logo stays fixed in the corner
even when the user scrolls up or down the screen.

background-image Property
The background-image property (line 10) specifies the image URL for the image lo-
go.png in the format url(fileLocation). You can also set the background-color property
(line 14) in case the image is not found (and to fill in areas the image does not cover).

1 <!DOCTYPE html>
2
3 <!-- Fig. 4.11: background.html -->
4 <!-- Adding background images and indentation -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Background Images</title>
9 <style type = "text/css">

10
11
12
13
14
15 p { font-size: 18pt;
16 color: Darkblue;
17 text-indent: 1em;
18 font-family: arial, sans-serif; }
19 .dark { font-weight: bold; }
20 </style>
21 </head>
22 <body>
23 <p>
24 This example uses the background-image,
25 background-position and background-attachment
26 styles to place the Deitel

Fig. 4.11 | Adding background images and indentation. (Part 1 of 2.)

body { background-image: url(logo.png);
 background-position: bottom right;
 background-repeat: no-repeat;
 background-attachment: fixed;
 background-color: lightgrey; }

iw3htp5_04_CSS_pt1.fm Page 152 Thursday, November 17, 2011 10:37 AM

4.8 Backgrounds 153

background-position Property
The background-position property (line 11) places the image on the page. The keywords
top, bottom, center, left and right are used individually or in combination for vertical
and horizontal positioning. You can position an image using lengths by specifying the hor-
izontal length followed by the vertical length. For example, to position the image as hori-
zontally centered (positioned at 50 percent of the distance across the screen) and 30 pixels
from the top, use

background-repeat Property
The background-repeat property (line 12) controls background image tiling, which plac-
es multiple copies of the image next to each other to fill the background. Here, we set the
tiling to no-repeat to display only one copy of the background image. Other values in-
clude repeat (the default) to tile the image vertically and horizontally, repeat-x to tile the
image only horizontally or repeat-y to tile the image only vertically.

background-attachment: fixed Property
The next property setting, background-attachment: fixed (line 13), fixes the image in
the position specified by background-position. Scrolling the browser window will not

27 & Associates, Inc. logo in the
28 bottom-right corner of the page. Notice how the logo
29 stays in the proper position when you resize the
30 browser window. The background-color fills in where
31 there is no image.
32 </p>
33 </body>
34 </html>

background-position: 50% 30px;

Fig. 4.11 | Adding background images and indentation. (Part 2 of 2.)

iw3htp5_04_CSS_pt1.fm Page 153 Thursday, November 17, 2011 10:37 AM

154 Chapter 4 Introduction to Cascading Style Sheets™ (CSS): Part 1

move the image from its position. The default value, scroll, moves the image as the user
scrolls through the document.

text-indent property
Line 17 uses the text-indent property to indent the first line of text in the element by a
specified amount, in this case 1em. You might use this property to create a web page that
reads more like a novel, in which the first line of every paragraph is indented.

font-style property
Another CSS property that formats text is the font-style property, which allows you to
set text to none, italic or oblique (oblique is simply more slanted than italic—the
browser will default to italic if the system or font does not support oblique text).

4.9 Element Dimensions
In addition to positioning elements, CSS rules can specify the actual dimensions of each
page element. Figure 4.12 demonstrates how to set the dimensions of elements.

1 <!DOCTYPE html>
2
3 <!-- Fig. 4.12: width.html -->
4 <!-- Element dimensions and text alignment. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Box Dimensions</title>
9 <style type = "text/css">

10 p { background-color: lightskyblue;
11 margin-bottom: .5em;
12 font-family: arial, helvetica, sans-serif; }
13 </style>
14 </head>
15 <body>
16 Here is some
17 text that goes in a box which is
18 set to stretch across twenty percent
19 of the width of the screen.</p>
20
21
22 Here is some CENTERED text that goes in a box
23 which is set to stretch across eighty percent of
24 the width of the screen.</section>
25
26
27 This box is only twenty percent of
28 the width and has a fixed height.
29 What do we do if it overflows? Set the
30 overflow property to scroll!</p>
31 </body>
32 </html>

Fig. 4.12 | Element dimensions and text alignment. (Part 1 of 2.)

<p style = "width: 20%">

<p style = "width: 80%; text-align: center">

<p style = "width: 20%; height: 150px; overflow: scroll">

iw3htp5_04_CSS_pt1.fm Page 154 Thursday, November 17, 2011 10:37 AM

4.10 Box Model and Text Flow 155

Specifying the width and height of an Element
The inline style in line 16 illustrates how to set the width of an element on screen; here,
we indicate that the p element should occupy 20 percent of the screen width. If not spec-
ified, the width will fit the size of the browser window. The height of an element can be
set similarly, using the height property. The width and height values also can be specified
as relative or absolute lengths. For example,

sets the element’s width to 10 times the font size. This works only for block-level elements.

text-align Property
Most elements are left-aligned by default, but this alignment can be altered. Line 21 sets
text in the element to be center aligned; other values for the text-align property include
left and right.

overflow Property and Scroll Bars
In the third p element, we specify a percentage width and a pixel height. One problem with
setting both dimensions of an element is that the content inside the element can exceed the
set boundaries, in which case the element is simply made large enough for all the content
to fit. However, in line 26, we set the overflow property to scroll, a setting that adds
scroll bars if the text overflows the boundaries.

4.10 Box Model and Text Flow
All block-level HTML5 elements have a virtual box drawn around them, based on what is
known as the box model. When the browser renders an element using the box model, the
content is surrounded by padding, a border and a margin (Fig. 4.13).

width: 10em

Fig. 4.12 | Element dimensions and text alignment. (Part 2 of 2.)

iw3htp5_04_CSS_pt1.fm Page 155 Thursday, November 17, 2011 10:37 AM

156 Chapter 4 Introduction to Cascading Style Sheets™ (CSS): Part 1

CSS controls the border using three properties: border-width, border-color and
border-style. We illustrate these properties in Fig. 4.14.

Fig. 4.13 | Box model for block-level elements.

1 <!DOCTYPE html>
2
3 <!-- Fig. 4.14: borders.html -->
4 <!-- Borders of block-level elements. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Borders</title>
9 <style type = "text/css">

10 div { text-align: center;
11 width: 50%;
12 position: relative;
13 left: 25%;
14 border-width: 6px; }
15
16
17
18
19
20
21
22
23
24
25
26
27
28 </style>
29 </head>
30 <body>
31 <div class = "solid">Solid border</div><hr>
32 <div class = "double">Double border</div><hr>
33 <div class = "groove">Groove border</div><hr>
34 <div class = "ridge">Ridge border</div><hr>
35 <div class = "dotted">Dotted border</div><hr>
36 <div class = "inset">Inset border</div><hr>
37 <div class = "thick dashed">Thick dashed border</div><hr>
38 <div class = "thin red solid">Thin red solid border</div><hr>

Fig. 4.14 | Borders of block-level elements. (Part 1 of 2.)

Margin
Border
Padding

Content

.thick { border-width: thick; }

.medium { border-width: medium; }

.thin { border-width: thin; }

.solid { border-style: solid; }

.double { border-style: double; }

.groove { border-style: groove; }

.ridge { border-style: ridge; }

.dotted { border-style: dotted; }

.inset { border-style: inset; }

.outset { border-style: outset; }

.dashed { border-style: dashed; }

.red { border-color: red; }

.blue { border-color: blue; }

iw3htp5_04_CSS_pt1.fm Page 156 Thursday, November 17, 2011 10:37 AM

4.10 Box Model and Text Flow 157

The border-width property may be set to any valid CSS length (e.g., em, ex, px) or
to the predefined value of thin, medium or thick. The border-color property sets the
color. [Note: This property has different meanings for different border styles—e.g., some
display the border color in multiple shades.] The border-style options are none, hidden,
dotted, dashed, solid, double, groove, ridge, inset and outset. Borders groove and
ridge have opposite effects, as do inset and outset. When border-style is set to none, no
border is rendered. Each border property may be set for an individual side of the box (e.g.,
border-top-style or border-left-color).

Floating Elements
We’ve seen with absolute positioning that it’s possible to remove elements from the normal
flow of text. Floating allows you to move an element to one side of the screen; other content
in the document then flows around the floated element. Figure 4.15 demonstrates how float-
ing elements and the box model can be used to control the layout of an entire page.

Looking at the HTML5 code, we can see that the general structure of this document
consists of a header and two main sections. Each section contains an h1 subheading and
a paragraph of text.

Block-level elements (such as sections) render with a line break before and after their
content, so the header and two sections will render vertically one on top of another. In
the absence of our styles, the h1s that represent our subheadings would also stack vertically
on top of the text in the p tags. However, in line 24 we set the float property to right in
the class floated, which is applied to the h1 headings. This causes each h1 to float to the
right edge of its containing element, while the paragraph of text will flow around it.

39 <div class = "medium blue outset">Medium blue outset border</div>
40 </body>
41 </html>

Fig. 4.14 | Borders of block-level elements. (Part 2 of 2.)

iw3htp5_04_CSS_pt1.fm Page 157 Thursday, November 17, 2011 10:37 AM

158 Chapter 4 Introduction to Cascading Style Sheets™ (CSS): Part 1

1 <!DOCTYPE html>
2
3 <!-- Fig. 4.15: floating.html -->
4 <!-- Floating elements. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Flowing Text Around Floating Elements</title>
9 <style type = "text/css">

10 header { background-color: skyblue;
11 text-align: center;
12 font-family: arial, helvetica, sans-serif;
13 padding: .2em; }
14 p { text-align: justify;
15 font-family: verdana, geneva, sans-serif;
16 }
17 h1 { }
18 { background-color: lightgrey;
19 font-size: 1.5em;
20 font-family: arial, helvetica, sans-serif;
21
22
23
24
25 text-align: right;
26 width: 50%; }
27
28 </style>
29 </head>
30 <body>
31 <header></header>
32 <section>
33 <h1 class = "floated">Corporate Training and Authoring</h1>
34 <p>Deitel & Associates, Inc. is an internationally
35 recognized corporate training and authoring organization
36 specializing in programming languages, Internet/web
37 technology, iPhone and Android app development and
38 object technology education. The company provides courses
39 on Java, C++, C#, Visual Basic, C, Internet and web
40 programming, Object Technology and iPhone and Android
41 app development.</p>
42 </section>
43 <section>
44 <h1 class = "floated">Programming Books and Videos</h1>
45 <p>Through its publishing
46 partnership with Pearson, Deitel & Associates,
47 Inc. publishes leading-edge programming textbooks,
48 professional books and interactive web-based and DVD
49 LiveLessons video courses.</p>
50 </section>
51 </body>
52 </html>

Fig. 4.15 | Floating elements. (Part 1 of 2.)

margin: .5em;
margin-top: 0px;

.floated

padding: .2em;
margin-left: .5em;
margin-bottom: .5em;
float: right;

section { border: 1px solid skyblue; }

iw3htp5_04_CSS_pt1.fm Page 158 Thursday, November 17, 2011 10:37 AM

4.11 Media Types and Media Queries 159

margin and padding Properties
Line 16 assigns a margin of .5em to all paragraph elements. The margin property sets the
space between the outside of an element’s border and all other content on the page. Line
21 assigns .2em of padding to the floated h1s. The padding property determines the dis-
tance between the content inside an element and the inside of the element’s border. Mar-
gins for individual sides of an element can be specified (lines 17, 22 and 23) by using the
properties margin-top, margin-right, margin-left and margin-bottom. Padding can be
specified in the same way, using padding-top, padding-right, padding-left and pad-
ding-bottom. To see the effects of margins and padding, try putting the margin and pad-
ding properties inside comments and observing the difference.

In line 27, we assign a border to the section boxes using a shorthand declaration of
the border properties, which allow you to define all three border properties in one line.
The syntax for this shorthand is

Our border is one pixel thick, solid, and the same color as the background-color prop-
erty of the header (line 10). This allows the border to blend with the header and makes
the page appear as one box with a line dividing its sections.

4.11 Media Types and Media Queries
CSS media types allow you to decide what a page should look like, depending on the kind
of media being used to display the page. The most common media type for a web page is
the screen media type, which is a standard computer screen. Other media types in CSS
include handheld, braille, speech and print. The handheld medium is designed for
mobile Internet devices such as smartphones, while braille is for machines that can read
or print web pages in braille. speech styles allow you to give a speech-synthesizing web

border: width style color

Fig. 4.15 | Floating elements. (Part 2 of 2.)

iw3htp5_04_CSS_pt1.fm Page 159 Thursday, November 17, 2011 10:37 AM

160 Chapter 4 Introduction to Cascading Style Sheets™ (CSS): Part 1

browser more information about the content of a page. The print media type affects a
web page’s appearance when it’s printed. For a complete list of CSS media types, see

Media types allow you to decide how a page should be presented on any one of these
media without affecting the others. Figure 4.16 gives a simple classic example that applies
one set of styles when the document is viewed on all media (including screens) other than a
printer, and another when the document is printed. To see the difference, look at the screen
captures below the paragraph or use the Print Preview feature in your browser if it has one.

http://www.w3.org/TR/REC-CSS2/media.html#media-types

1 <!DOCTYPE html>
2
3 <!-- Fig. 4.16: mediatypes.html -->
4 <!-- CSS media types. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Media Types</title>
9 <style type = "text/css">

10
11 {
12 body { background-color: steelblue; }
13 h1 { font-family: verdana, helvetica, sans-serif;
14 color: palegreen; }
15 p { font-size: 12pt;
16 color: white;
17 font-family: arial, sans-serif; }
18 } /* End @media all declaration. */
19
20 {
21 body { background-color: white; }
22 h1 { color: seagreen; }
23 p { font-size: 14pt;
24 color: steelblue;
25 font-family: "times new roman", times, serif; }
26 } /* End @media print declaration. */
27 </style>
28 </head>
29 <body>
30 <h1>CSS Media Types Example</h1>
31
32 <p>
33 This example uses CSS media types to vary how the page
34 appears in print and how it appears on any other media.
35 This text will appear in one font on the screen and a
36 different font on paper or in a print preview. To see
37 the difference in Internet Explorer, go to the Print
38 menu and select Print Preview. In Firefox, select Print
39 Preview from the File menu.
40 </p>
41 </body>
42 </html>

Fig. 4.16 | CSS media types. (Part 1 of 2.)

@media all

@media print

iw3htp5_04_CSS_pt1.fm Page 160 Thursday, November 17, 2011 10:37 AM

4.11 Media Types and Media Queries 161

In line 10, we begin a block of styles that applies to all media types, declared by @media
all and enclosed in curly braces ({ and }). In lines 10–18, we define some styles for all
media types. Lines 19–26 set styles to be applied only when the page is printed.

The styles we applied for all media types look nice on a screen but would not look
good on a printed page. A colored background would use a lot of ink, and a black-and-
white printer may print a page that’s hard to read because there isn’t enough contrast
between the colors.

Look-and-Feel Observation 4.1
Pages with dark background colors and light text use a lot of ink and may be difficult to
read when printed, especially on a black-and white-printer. Use the print media type to
avoid this.

Look-and-Feel Observation 4.2
In general, sans-serif fonts look better on a screen, while serif fonts look better on paper.
The print media type allows your web page to display a sans-serif font on a screen and
change to a serif font when it’s printed.

Fig. 4.16 | CSS media types. (Part 2 of 2.)

a) Background color appears on the screen.

b) Background color is set to white for the print media type.

iw3htp5_04_CSS_pt1.fm Page 161 Thursday, November 17, 2011 10:37 AM

162 Chapter 4 Introduction to Cascading Style Sheets™ (CSS): Part 1

To solve these problems, we apply specific styles for the print media type. We change
the body’s background-color, the color of the h1 tag, and the font-size, color, and
font-family of the p tag to be more suited for printing and viewing on paper. Notice that
most of these styles conflict with the declarations in the section for all media types. Since
the print media type has higher specificity than the all media type, the print styles over-
ride the all media type’s styles when the page is printed. The h1’s font-family property
is not overridden in the print section, so it retains its old value when the page is printed.

Media Queries
Media queries (covered in detail in Section 5.17) allow you to format your content to spe-
cific output devices. Media queries include a media type and expressions that check the
media features of the output device. Some of the common media features include:

• width—the width of the part of the screen on which the document is rendered,
including any scrollbars

• height—the height of the part of the screen on which the document is rendered,
including any scrollbars

• device-width—the width of the screen of the output device

• device-height—the height of the screen of the output device

• orientation—if the height is greater than the width, orientation is portrait,
and if the width is greater than the height, orientation is landscape

• aspect-ratio—the ratio of width to height

• device-aspect-ratio—the ratio of device-width to device-height

For a complete list of media features and for more information on media queries, see

4.12 Drop-Down Menus
Drop-down menus are a good way to provide navigation links without using a lot of screen
space. In this section, we take a second look at the :hover pseudo-class and introduce the
display property to create a simple drop-down menu using CSS3 and HTML5.

We’ve already seen the :hover pseudo-class used to change a link’s style when the
mouse hovers over it. We’ll use this feature in a more advanced way to cause a menu to
appear when the mouse hovers over a menu button. Another important property is
display, which allows you to decide whether an element is rendered on the page or not.
Possible values include block, inline and none. The block and inline values display the
element as a block element or an inline element, while none stops the element from being
rendered. The code for the drop-down menu is shown in Fig. 4.17.

http://www.w3.org/TR/css3-mediaqueries/

1 <!DOCTYPE html>
2
3 <!-- Fig. 4.17: dropdown.html -->
4 <!-- CSS drop-down menu. -->

Fig. 4.17 | CSS drop-down menu. (Part 1 of 3.)

iw3htp5_04_CSS_pt1.fm Page 162 Thursday, November 17, 2011 10:37 AM

4.12 Drop-Down Menus 163

5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>
9 Drop-Down Menu

10 </title>
11 <style type = "text/css">
12 body { font-family: arial, sans-serif }
13 nav { font-weight: bold;
14 color: white;
15 border: 2px solid royalblue;
16 text-align: center;
17 width: 10em;
18 background-color: royalblue; }
19
20 list-style: none;
21 margin: 0;
22 padding: 0; }
23
24 nav ul li { border-top: 2px solid royalblue;
25 background-color: white;
26 width: 10em;
27 color: black; }
28
29 a { text-decoration: none; }
30 </style>
31 </head>
32 <body>
33 <nav>Menu
34
35 Home
36 News
37 Articles
38 Blog
39 Contact
40
41 </nav>
42 </body>
43 </html>

Fig. 4.17 | CSS drop-down menu. (Part 2 of 3.)

nav ul { display: none;

nav:hover ul { display: block }

nav ul li:hover { background-color: powderblue; }

a) A collapsed menu

iw3htp5_04_CSS_pt1.fm Page 163 Thursday, November 17, 2011 10:37 AM

164 Chapter 4 Introduction to Cascading Style Sheets™ (CSS): Part 1

Lines 33–41 create a nav element containing the the text Menu and an unordered list
(ul) of five links that should appear in the drop-down menu—Home, News, Articles, Blog
and Contact. Initially, Menu is the only text visible on the page. When the mouse cursor
hovers over the nav element, the five links appear below the menu.

The drop-down menu functionality is located in the CSS3 code. Two lines define the
drop-down functionality. Line 19 sets display to none for any unordered list (ul) that’s
nested in a nav. This instructs the browser not to render the ul’s contents. Line 23, which
is similar to line 19, selects only ul elements nested in a nav element that currently has the
mouse hovering over it. Setting display to block specifies that when the mouse is over
the nav, the ul will be displayed as a block-level element.

The style in line 28 is applied only to a li element that’s a child of a ul element in a
nav element, and only when that li has the mouse cursor over it. This style changes the
background-color of the currently highlighted menu option. The rest of the CSS simply
adds style to the menu’s components.

This drop-down menu is just one example of more advanced CSS formatting. Many
additional resources are available online for CSS navigation menus and lists.

4.13 (Optional) User Style Sheets
Users can define their own user style sheets to format pages based on their preferences.
For example, people with visual impairments may want to increase the page’s text size. You

Fig. 4.17 | CSS drop-down menu. (Part 3 of 3.)

b) A drop-down menu
is displayed when the

mouse cursor is
hovered over Menu

c) Hovering the mouse
cursor over a menu link

highlights the link

iw3htp5_04_CSS_pt1.fm Page 164 Thursday, November 17, 2011 10:37 AM

4.13 (Optional) User Style Sheets 165

need to be careful not to inadvertently override user preferences with defined styles. This section
discusses possible conflicts between author styles and user styles. For the purpose of this
section, we demonstrate the concepts in Internet Explorer 9.

Figure 4.18 contains an author style. The font-size is set to 9pt for all <p> tags that
have class note applied to them.

User style sheets are external style sheets. Figure 4.19 shows a user style sheet that sets
the body’s font-size to 20pt, color to yellow and background-color to navy. The font-
size value specified in the user style sheet conflicts with the one in line 10 of Fig. 4.18.

Adding a User Style Sheet
User style sheets are not linked to a document; rather, they’re set in the browser’s options.
To add a user style sheet in IE9, select Internet Options..., located in the Tools menu. In

1 <!DOCTYPE html>
2
3 <!-- Fig. 4.18: user_absolute.html -->
4 <!-- pt measurement for text size. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>User Styles</title>
9 <style type = "text/css">

10
11 </style>
12 </head>
13 <body>
14 <p>Thanks for visiting my website. I hope you enjoy it.
15
16
17 </body>
18 </html>

Fig. 4.18 | pt measurement for text size.

1 /* Fig. 4.19: userstyles.css */
2 /* A user style sheet */
3
4 color: yellow;
5 background-color: navy; }

Fig. 4.19 | A user style sheet.

.note { font-size: 9pt; }

</p><p class = "note">Please Note: This site will be
moving soon. Please check periodically for updates.</p>

body { font-size: 20pt;

iw3htp5_04_CSS_pt1.fm Page 165 Thursday, November 17, 2011 10:37 AM

166 Chapter 4 Introduction to Cascading Style Sheets™ (CSS): Part 1

the Internet Options dialog (Fig. 4.20) that appears, click Accessibility..., check the Format
documents using my style sheet checkbox, and type the location of the user style sheet. IE9
applies the user style sheet to any document it loads. To add a user style sheet in Firefox,
find your Firefox profile using the instructions at www.mozilla.org/support/firefox/
profile#locate and place a style sheet called userContent.css in the chrome subdirec-
tory. For information on adding a user style sheet in Chrome, see www.google.com/
support/forum/p/Chrome/thread?tid=1fa0dd079dbdc2ff&hl=en.

The web page from Fig. 4.18 is displayed in Fig. 4.21, with the user style sheet from
Fig. 4.19 applied.

Defining font-size in a User Style Sheet
In the preceding example, if the user defines font-size in a user style sheet, the author
style has a higher precedence and overrides the user style. The 9pt font specified in the au-
thor style sheet overrides the 20pt font specified in the user style sheet. This small font may

Fig. 4.20 | User style sheet in Internet Explorer 9.

iw3htp5_04_CSS_pt1.fm Page 166 Thursday, November 17, 2011 10:37 AM

4.13 (Optional) User Style Sheets 167

make pages difficult to read, especially for individuals with visual impairments. You can
avoid this problem by using relative measurements (e.g., em or ex) instead of absolute mea-
surements, such as pt. Figure 4.22 changes the font-size property to use a relative mea-
surement (line 10) that does not override the user style set in Fig. 4.19. Instead, the font
size displayed is relative to the one specified in the user style sheet. In this case, text en-
closed in the <p> tag displays as 20pt, and <p> tags that have the class note applied to them
are displayed in 15pt (.75 times 20pt).

Figure 4.23 displays the web page from Fig. 4.22 in Internet Explorer with the user
style sheet from Fig. 4.19 applied. Note that the second line of text displayed is larger than
the same line of text in Fig. 4.21.

Fig. 4.21 | User style sheet applied with pt measurement.

1 <!DOCTYPE html>
2
3 <!-- Fig. 4.22: user_relative.html -->
4 <!-- em measurement for text size. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>User Styles</title>
9 <style type = "text/css">

10
11 </style>
12 </head>
13 <body>
14 <p>Thanks for visiting my website. I hope you enjoy it.
15 </p><p class = "note">Please Note: This site will be
16 moving soon. Please check periodically for updates.</p>
17 </body>
18 </html>

Fig. 4.22 | em measurement for text size.

.note { font-size: .75em; }

iw3htp5_04_CSS_pt1.fm Page 167 Thursday, November 17, 2011 10:37 AM

168 Chapter 4 Introduction to Cascading Style Sheets™ (CSS): Part 1

4.14 Web Resources
http://www.deitel.com/css3
The Deitel CSS3 Resource Center contains links to some of the best CSS3 information on the web.
There you’ll find categorized links to tutorials, references, code examples, demos, videos, and more.
Check out the demos section for more advanced examples of layouts, menus and other web-page
components.

Fig. 4.23 | User style sheet applied with em measurement.

Summary
Section 4.1 Introduction
• Cascading Style Sheets™ 3 (CSS3; p. 138) allows you to specify the presentation of elements on

a web page (e.g., fonts, spacing, sizes, colors, positioning) separately from the structure and con-
tent of the document (section headers, body text, links, etc.).

• This separation of structure from presentation (p. 138) simplifies maintaining and modifying
web pages, especially on large-scale websites.

Section 4.2 Inline Styles
• An inline style (p. 138) allows you to declare a style for an individual element by using the style

attribute (p. 138) in the element’s start tag.

• Each CSS property (such as font-size, p. 139) is followed by a colon and the value of the attri-
bute. Multiple property declarations are separated by a semicolon.

• The color property (p. 139) sets text color. Hexadecimal codes or color names may be used.

Section 4.3 Embedded Style Sheets
• Embedded style sheets (p. 140) enable you to embed an entire CSS3 document in an HTML5

document’s head section.

• Styles that are placed in a style element use selectors (p. 141) to apply style elements throughout
the entire document body.

• An em element indicates that its contents should be emphasized. Browsers usually render em ele-
ments in an italic font.

iw3htp5_04_CSS_pt1.fm Page 168 Thursday, November 17, 2011 10:37 AM

 Summary 169

• style element attribute type specifies the MIME type (the specific encoding format, p. 141) of
the style sheet. Style sheets use text/css.

• Each rule body (p. 141) in a style sheet begins and ends with a curly brace ({ and }).

• The font-weight property (p. 142) specifies the “boldness” of text. Possible values are bold, nor-
mal (the default), bolder (bolder than bold text) and lighter (lighter than normal text).

• Boldness also can be specified with multiples of 100, from 100 to 900. Text specified as normal
is equivalent to 400, and bold text is equivalent to 700.

• Style-class declarations are preceded by a period and are applied to elements of the specific class.
The class attribute (p. 143) applies a style class to an element.

• The CSS rules in a style sheet use the same format as inline styles.

• The background-color attribute specifies the background color of the element.

• The font-family property (p. 142) names a specific font that should be displayed. Generic font
families allow authors to specify a type of font instead of a specific one, in case a browser does
not support a specific font.

• The font-size property (p. 142) specifies the size used to render the font.

• You should end a font list with a generic font family (p. 142) name in case the other fonts are
not installed on the user’s computer.

• In many cases, the styles applied to an element (the parent or ancestor element, p. 143) also apply
to the element’s nested elements (child or descendant elements, p. 143).

Section 4.4 Conflicting Styles
• Styles may be defined by a user, an author or a user agent. A user (p. 143) is a person viewing

your web page, you’re the author (p. 143)—the person who writes the document—and the user
agent (p. 143) is the program used to render and display the document (e.g., a web browser).

• Styles cascade (hence the term “Cascading Style Sheets,” p. 143), or flow together, such that the
ultimate appearance of elements on a page results from combining styles defined in several ways.

• Most styles are inherited from parent elements (p. 143). Styles defined for children (p. 143) have
higher specificity (p. 144) and take precedence over the parent’s styles.

• Pseudo-classes (p. 145) give the author access to information that’s not declared in the docu-
ment, such as whether the mouse is hovering over an element or whether the user has previously
clicked (visited) a particular hyperlink. The hover pseudo-class (p. 146) is activated when the
user moves the mouse cursor over an element.

• The text-decoration property (p. 145) applies decorations to text in an element, such as under-
line, overline and line-through.

• To apply rules to multiple elements, separate the elements with commas in the style sheet.

• To apply rules only to a certain type of element that’s a child of another type, separate the ele-
ment names with spaces.

• A pixel is a relative-length measurement (p. 146): It varies in size based on screen resolution.
Other relative lengths are em (p. 146), ex (p. 146) and percentages.

• The other units of measurement available in CSS are absolute-length measurements (p. 146)—
that is, units that do not vary in size. These units can be in (inches), cm (centimeters, p. 146), mm
(millimeters, p. 146), pt (points; 1 pt = 1/72 in, p. 146) or pc (picas; 1 pc = 12 pt).

Section 4.5 Linking External Style Sheets
• With external style sheets (i.e., separate documents that contain only CSS rules; p. 146), you can

provide a uniform look and feel to an entire website (or to a portion of one).

iw3htp5_04_CSS_pt1.fm Page 169 Thursday, November 17, 2011 10:37 AM

170 Chapter 4 Introduction to Cascading Style Sheets™ (CSS): Part 1

• When you need to change styles, you need to modify only a single CSS file to make style changes
across all the pages that use those styles. This is sometimes known as skinning (p. 146).

• CSS comments (p. 147) may be placed in any type of CSS code (i.e., inline styles, embedded
style sheets and external style sheets) and always start with /* and end with */.

• link’s rel attribute (p. 147) specifies a relationship between two documents (p. 147). For style
sheets, the rel attribute declares the linked document to be a stylesheet (p. 147) for the docu-
ment. The type attribute specifies the MIME type of the related document as text/css. The
href attribute provides the URL for the document containing the style sheet.

Section 4.6 Positioning Elements: Absolute Positioning, z-index
• The CSS position property (p. 148) allows absolute positioning (p. 149), which provides great-

er control over where on a page elements reside. Specifying an element’s position as absolute
removes it from the normal flow of elements on the page and positions it according to distance
from the top, left, right or bottom margin of its parent element.

• The z-index property (p. 150) allows a developer to layer overlapping elements. Elements that
have higher z-index values are displayed in front of elements with lower z-index values.

Section 4.7 Positioning Elements: Relative Positioning, span
• Unlike absolute positioning, relative positioning keeps elements in the general flow on the page

and offsets them by the specified top, left, right or bottom value.

• Element span (p. 152) is a grouping element (p. 152)—it does not apply any inherent formatting
to its contents. Its primary purpose is to apply CSS rules or id attributes to a section of text.

• span is an inline-level element (p. 152)—it applies formatting to text without changing the flow
of the document. Examples of inline elements include span, img, a, em and strong.

• The div element is also a grouping element, but it’s a block-level element. This means it’s dis-
played on its own line and has a virtual box around it. Examples of block-level elements (p. 152)
include div (p. 152), p and heading elements (h1 through h6).

Section 4.8 Backgrounds
• Property background-image specifies the URL of the image, in the format url(fileLocation). The

property background-position (p. 153) places the image on the page using the values top, bot-
tom, center, left and right individually or in combination for vertical and horizontal positioning.
You can also position by using lengths.

• The background-repeat property (p. 153) controls the tiling of the background image (p. 153).
Setting the tiling to no-repeat displays one copy of the background image on screen. The back-
ground-repeat property can be set to repeat (the default) to tile the image vertically and horizon-
tally, to repeat-x to tile the image only horizontally or to repeat-y to tile the image only vertically.

• The background-attachment (p. 153) setting fixed fixes the image in the position specified by
background-position. Scrolling the browser window will not move the image from its set posi-
tion. The default value, scroll, moves the image as the user scrolls the window.

• The text-indent property (p. 154) indents the first line of text in the element by the specified
amount.

• The font-style property (p. 154) allows you to set text to none, italic or oblique.

Section 4.9 Element Dimensions
• An element’s dimensions can be set with CSS by using properties height and width (p. 155).

• Text in an element can be centered using text-align (p. 155); other values for the text-align
property are left and right.

iw3htp5_04_CSS_pt1.fm Page 170 Thursday, November 17, 2011 10:37 AM

 Summary 171

• A problem with setting both vertical and horizontal dimensions of an element is that the content
inside the element might sometimes exceed the set boundaries, in which case the element grows
to fit the content. You can set the overflow property (p. 155) to scroll; this setting adds scroll
bars if the text overflows the boundaries set for it.

Section 4.10 Box Model and Text Flow
• All block-level HTML5 elements have a virtual box drawn around them, based on what is known

as the box model (p. 155).

• When the browser renders elements using the box model, the content of each element is sur-
rounded by padding (p. 155), a border (p. 155) and a margin (p. 155).

• The border-width property (p. 156) may be set to any of the CSS lengths or to the predefined
value of thin, medium or thick.

• The border-styles (p. 156) available are none, hidden, dotted, dashed, solid, double, groove,
ridge, inset and outset.

• The border-color property (p. 156) sets the color used for the border.

• The class attribute allows more than one class to be assigned to an element by separating each
class name from the next with a space.

• Browsers normally place text and elements on screen in the order in which they appear in the
document. Elements can be removed from the normal flow of text. Floating allows you to move
an element to one side of the screen; other content in the document will then flow around the
floated element.

• CSS uses a box model to render elements on screen. The content of each element is surrounded
by padding, a border and margins. The properties of this box are easily adjusted.

• The margin property (p. 159) determines the distance between the outside edge of the element’s
border and any adjacent element.

• Margins for individual sides of an element can be specified by using margin-top, margin-right,
margin-left and margin-bottom.

• The padding property (p. 159) determines the distance between the content inside an element
and the inside edge of the border. Padding also can be set for each side of the box by using pad-
ding-top, padding-right, padding-left and padding-bottom.

Section 4.11 Media Types and Media Queries
• CSS media types (p. 159) allow you to decide what a page should look like depending on the

kind of media being used to display the page. The most commonly used for a web page is the
screen media type (p. 159), which is a standard computer screen.

• A block of styles that applies to all media types is declared by @media all and enclosed in curly
braces. To create a block of styles that apply to a single media type such as print, use @media
print and enclose the style rules in curly braces.

• Other media types in CSS 2 include handheld, braille, aural and print. The handheld medium
(p. 159) is designed for mobile Internet devices, while braille (p. 159) is for machines that can
read or print web pages in braille. aural styles (p. 159) allow the programmer to give a speech-
synthesizing web browser more information about the content of the web page. The print media
type (p. 159) affects a web page’s appearance when it’s printed.

• Media queries (p. 162) allow you to format your content to specific output devices. Media que-
ries include a media type and expressions that check the devices’ media features (p. 162).

Section 4.12 Drop-Down Menus
• The :hover pseudo-class is used to apply styles to an element when the mouse cursor is over it.

iw3htp5_04_CSS_pt1.fm Page 171 Thursday, November 17, 2011 10:37 AM

172 Chapter 4 Introduction to Cascading Style Sheets™ (CSS): Part 1

• The display property (p. 162) allows you to decide whether an element is displayed as a block
element or inline element or not rendered at all (none).

Section 4.13 (Optional) User Style Sheets
• Users can define their own user style sheets (p. 164) to format pages based on their preferences.

• Absolute font-size measurements override user style sheets, while relative font sizes will yield to
a user-defined style.

• If the user defines font size in a user style sheet, the author style (p. 165) has a higher precedence
and overrides the user style.

Self-Review Exercises
4.1 Assume that the size of the base font on a system is 12 points.

a) How big is a 24-point font in ems?
b) How big is a 6-point font in ems?
c) How big is a 48-point font in picas?
d) How big is a 6-point font in inches?
e) How big is a 2-inch font in picas?

4.2 Fill in the blanks in the following statements:
a) The property sets text color.
b) Each CSS property is followed by a(n) and the value of the attribute. Multiple

property declarations are separated by a(n) .
c) A(n) element indicates that its contents should be emphasized.
d) Embedded style sheets enable you to embed an entire CSS3 document in an HTML5

document’s section.
e) The text-decoration property applies decorations to text in an element, such as

, and .
f) The property may be set to any of the CSS lengths or to the predefined value

of thin, medium or thick.
g) If the user defines font-size in a user style sheet, the author style has a(n) pre-

cedence and overrides the user style.
h) The property allows you to decide if an element is displayed as a block ele-

ment, inline element, or is not rendered at all.
i) Each rule body in a style sheet begins and ends with a(n) brace.
j) 1 picas is equal to points.

Answers to Self-Review Exercises
4.1 a) 2 ems. b) 0.50 ems. c) 4 picas. d) 1/2 inch. e) 12 picas.

4.2 a) color. b) colon, semicolon. c) em. d) head. e) underline, overline, line-through. f) border-
width. g) higher. h) display. i) curly. j) 12.

Exercises
4.3 Write a CSS rule that makes all text 3 times larger than the base font of the system and
colors the text green.

4.4 Write a CSS rule that places a background image at the bottom right of the page with no
repeat option. The image should remain in place when the user scrolls up or down.

iw3htp5_04_CSS_pt1.fm Page 172 Thursday, November 17, 2011 10:37 AM

 Exercises 173

4.5 Write a CSS rule that gives all h2 and h3 elements a padding of 0.7 ems, a solid border style
and a margin of 0.7 ems.

4.6 Write a CSS rule that changes the color of all elements containing attribute class = "red-
Move" to red and shifts them down 30 pixels and right 25 pixels.

4.7 Make a layout template that contains two paragraphs. Use float to line up the two para-
graphs as columns side by side. Give both paragraphs a border and a background color of light blue
so you can see where they are.

4.8 Add an embedded style sheet to the HTML5 document in Fig. 2.3. The style sheet should
contain a rule that displays h1 elements in green. In addition, create a rule that displays all links in
red without underlining them. When the mouse hovers over a link, change the link’s background
color to yellow with an underline.

4.9 Make a navigation button using a div with a link inside it. Give it a border, background,
and text color, and make them change when the user hovers the mouse over the button. Use an ex-
ternal style sheet. Make sure your style sheet validates at http://jigsaw.w3.org/css-validator/.
Note that some warnings may be unavoidable, but your CSS should have no errors.

iw3htp5_04_CSS_pt1.fm Page 173 Thursday, November 17, 2011 10:37 AM

5 Introduction to Cascading
Style Sheets™ (CSS): Part 2

Art is when things appear
rounded.
—Maurice Denis

In matters of style, swim with
the current; in matters of
principle, stand like a rock.
—Thomas Jefferson

Everything that we see is a
shadow cast by that which we do
not see.
—Martin Luther King, Jr.

O b j e c t i v e s
In this chapter you’ll:
■ Add text shadows and text-

stroke effects.
■ Create rounded corners.
■ Add shadows to elements.
■ Create linear and radial

gradients, and reflections.
■ Create animations,

transitions and
transformations.

■ Use multiple background
images and image borders.

■ Create a multicolumn layout.
■ Use flexible box model layout

and :nth-child selectors.
■ Use the @font-face rule to

specify fonts for a web page.
■ Use RGBA and HSLA colors.
■ Use vendor prefixes.
■ Use media queries to

customize content to fit
various screen sizes.

iw3htp5_05_CSS_pt2.fm Page 174 Wednesday, November 16, 2011 11:52 AM

5.1 Introduction 175

5.1 Introduction
In the preceding chapter we presented “traditional” CSS capabilities. In this chapter, we
introduce many features new to CSS3 (see the Objectives).

These capabilities are being built into the browsers, resulting in faster and more eco-
nomical web development and better client-side performance. This reduces the need for
JavaScript libraries and sophisticated graphics software packages such as Adobe Photo-
shop, Adobe Illustrator, Corel PaintShop Pro and Gimp to create interesting effects.

CSS3 is still under development. We demonstrate many key CSS3 capabilities that
are in the draft standard, as well as a few nonstandard capabilities that may eventually be
added.

5.2 Text Shadows
The CSS3 text-shadow property makes it easy to add a text shadow effect to any text
(Fig. 5.1). First we add a text-shadow property to our styles (line 12). The property has
four values: -4px, 4px, 6px and DimGrey, which represent:

• Horizontal offset of the shadow—the number of pixels that the text-shadow will
appear to the left or the right of the text. In this example, the horizontal offset of
the shadow is -4px. A negative value moves the text-shadow to the left; a positive
value moves it to the right.

• Vertical offset of the shadow—the number of pixels that the text-shadow will be
shifted up or down from the text. In this example, the vertical offset of the shadow
is 4px. A negative value moves the shadow up, whereas a positive value moves it
down.

• blur radius—the blur (in pixels) of the shadow. A blur-radius of 0px would result
in a shadow with a sharp edge (no blur). The greater the value, the greater the
blurring of the edges. We used a blur radius of 6px.

• color—determines the color of the text-shadow. We used dimgrey.

5.1 Introduction
5.2 Text Shadows
5.3 Rounded Corners
5.4 Color
5.5 Box Shadows
5.6 Linear Gradients; Introducing Vendor

Prefixes
5.7 Radial Gradients
5.8 (Optional: WebKit Only) Text Stroke
5.9 Multiple Background Images

5.10 (Optional: WebKit Only) Reflections
5.11 Image Borders

5.12 Animation; Selectors
5.13 Transitions and Transformations

5.13.1 transition and transform
Properties

5.13.2 Skew
5.13.3 Transitioning Between Images

5.14 Downloading Web Fonts and the
@font-face Rule

5.15 Flexible Box Layout Module and
:nth-child Selectors

5.16 Multicolumn Layout
5.17 Media Queries
5.18 Web Resources

Summary | Self-Review Exercise | Answers to Self-Review Exercises | Exercises

iw3htp5_05_CSS_pt2.fm Page 175 Wednesday, November 16, 2011 11:52 AM

176 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

5.3 Rounded Corners
The border-radius property allows you to add rounded corners to an element (Fig. 5.2).
In this example, we create two rectangles with solid Navy borders. For the first rectangle,
we set the border-radius to 15px (line 17). This adds slightly rounded corners to the rect-
angle. For the second rectangle, we increase the border-radius to 50px (line 27), making
the left and right sides completely round. Any border-radius value greater than half of
the shortest side length produces a completely round end. You can also specify the radius
for each corner with border-top-left-radius, border-top-right-radius, border-
bottom-left-radius and border-bottom-right-radius.

1 <!DOCTYPE html>
2
3 <!-- Fig. 5.1: textshadow.html -->
4 <!-- Text shadow in CSS3. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Text Shadow</title>
9 <style type = "text/css">

10 h1
11 {
12
13 font-size: 400%; /* increasing the font size */
14 }
15 </style>
16 </head>
17 <body>
18 <h1>Text Shadow</h1>
19 </body>
20 </html>

Fig. 5.1 | Text shadow in CSS3.

1 <!DOCTYPE html>
2
3 <!-- Fig. 5.2: roundedcorners.html -->
4 <!-- Using border-radius to add rounded corners to two elements. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">

Fig. 5.2 | Using border-radius to add rounded corners to two elements. (Part 1 of 2.)

text-shadow: -4px 4px 6px dimgrey; /* add shadow */

DimGrey text-
shadow

iw3htp5_05_CSS_pt2.fm Page 176 Wednesday, November 16, 2011 11:52 AM

5.4 Color 177

5.4 Color
CSS3 allows you to express color in several ways in addition to standard color names (such
as Aqua) or hexadecimal RGB values (such as #00FFFF for Aqua). RGB (Red, Green, Blue)
or RGBA (Red, Green, Blue, Alpha) gives you greater control over the exact colors in your
web pages. The value for each color—red, green and blue—can range from 0 to 255. The
alpha value—which represents opacity—can be any value in the range 0.0 (fully transparent)
through 1.0 (fully opaque). For example, if you were to set the background color as follows:

8 <title>Rounded Corners</title>
9 <style type = "text/css">

10 div
11 {
12 border: 3px solid navy;
13 padding: 5px 20px;
14 background: lightcyan;
15 width: 200px;
16 text-align: center;
17
18 margin-bottom: 20px;
19 }
20 #round2
21 {
22 border: 3px solid navy;
23 padding: 5px 20px;
24 background: lightcyan;
25 width: 200px;
26 text-align: center;
27
28 }
29 </style>
30 </head>
31 <body>
32 <div>The border-radius property adds rounded corners
33 to an element.</div>
34 <div id = "round2">Increasing the border-radius rounds the corners
35 of the element more.</div>
36 </body>
37 </html>

Fig. 5.2 | Using border-radius to add rounded corners to two elements. (Part 2 of 2.)

border-radius: 15px; /* adding rounded corners */

border-radius: 50px; /* increasing border-radius */

iw3htp5_05_CSS_pt2.fm Page 177 Wednesday, November 16, 2011 11:52 AM

178 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

the resulting color would be a half-opaque red. Using RGBA colors gives you far more op-
tions than using only the existing HTML color names—there are over 140 HTML color
names, whereas there are 16,777,216 different RGB colors (256 x 256 x 256) and varying
opacities of each.

CSS3 also allows you to express color using HSL (hue, saturation, lightness) or
HSLA (hue, saturation, lightness, alpha) values. The hue is a color or shade expressed as
a value from 0 to 359 representing the degrees on a color wheel (a wheel is 360 degrees).
The colors on the wheel progress in the order of the colors of the rainbow—red, orange,
yellow, green, blue, indigo and violet. The value for red, which is at the beginning of the
wheel, is 0. Green hues have values around 120 and blue hues have values around 240. A
hue value of 359, which is just left of 0 on the wheel, would result in a red hue. The satu-
ration—the intensity of the hue—is expressed as a percentage, where 100% is fully saturated
(the full color) and 0% is gray. Lightness—the intensity of light or luminance of the hue—
is also expressed as a percentage. A lightness of 50% is the actual hue. If you decrease the
amount of light to 0%, the color appears completely dark (black). If you increase the
amount of light to 100%, the color appears completely light (white). For example, if you
wanted to use an hsla value to get the same color red as in our example of an rgba value,
you would set the background property as follows:

The resulting color would be a half-opaque red. An excellent tool that allows you to pick
colors from a color wheel to find the corresponding RGB and HSL values is available at:

5.5 Box Shadows
You can shadow any block-level element in CSS3. Figure 5.3 shows you how to create a
box shadow. The div style in lines 10–19 indicates that divs are 200px-by-200px boxes
with a Plum-colored background (lines 12–14). Next, we add the box-shadow property
with four values (line 15):

• Horizontal offset of the shadow (25px)—the number of pixels that the box-shadow
will appear to the left or the right of the box. A positive value moves the box-shadow
to the right

• Vertical offset of the shadow (25px)—the number of pixels the box-shadow will be
shifted up or down from the box. A positive value moves the box-shadow down.

• Blur radius—A blur-radius of 0px would result in a shadow with a sharp edge (no
blur). The greater the value, the more the edges of the shadow are blurred. We
used a blur radius of 10px.

• Color—the box-shadow’s color (in this case, dimgrey).

In lines 20–26, we create a style that’s applied only to the second div, which changes
the box-shadow’s horizontal offset to -25px and vertical offset to -25px (line 25) to show
the effects of using negative values. A negative horizontal offset value moves the box-
shadow to the left. A negative vertical offset value moves the shadow up.

background: rgba(255, 0, 0, 0.5);

background: hsla(0, 100%, 50%, 0.5);

http://www.workwithcolor.com/hsl-color-schemer-01.htm

iw3htp5_05_CSS_pt2.fm Page 178 Wednesday, November 16, 2011 11:52 AM

5.5 Box Shadows 179

1 <!DOCTYPE html>
2
3 <!-- Fig. 5.3: boxshadow.html -->
4 <!-- Creating box-shadow effects. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Box Shadow</title>
9 <style type = "text/css">

10 div
11 {
12 width: 200px;
13 height: 200px;
14 background-color: plum;
15
16 float: left;
17 margin-right: 120px;
18 margin-top: 40px;
19 }
20 #box2
21 {
22 width: 200px;
23 height: 200px;
24 background-color: plum;
25
26 }
27 h2
28 {
29 text-align: center;
30 }
31 </style>
32 </head>
33 <body>
34 <div><h2>Box Shadow Bottom and Right</h2></div>
35 <div id = "box2"><h2>Box Shadow Top and Left</h2></div>
36 </body>
37 </html>

Fig. 5.3 | Creating box-shadow effects.

box-shadow: 25px 25px 50px dimgrey;

box-shadow: -25px -25px 50px dimgrey;

iw3htp5_05_CSS_pt2.fm Page 179 Wednesday, November 16, 2011 11:52 AM

180 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

5.6 Linear Gradients; Introducing Vendor Prefixes
Linear gradients are a type of image that gradually transitions from one color to the next
horizontally, vertically or diagonally. You can transition between as many colors as you
like and specify the points at which to change colors, called color-stops, represented in
pixels or percentages along the gradient line—the angle at which the gradient extends. You
can use gradients in any property that accepts an image.

Creating Linear Gradients
In Fig. 5.4, we create three linear gradients—vertical, horizontal and diagonal—in separate
rectangles. As you study this example, you’ll notice that the background property for each
of the three linear gradient styles (vertical, horizontal and diagonal) is defined multiple
times in each style—once for WebKit-based browsers, once for Mozilla Firefox and once
using the standard CSS3 syntax for linear gradients. This occurs frequently when working
with CSS3, because many of its features are not yet finalized. In the meantime, many of
the browsers have gone ahead and begun implementing these features so you can use them
now. Later in this section, we’ll discuss the vendor prefixes that allow us to use many of
CSS3’s evolving features.

1 <!DOCTYPE html>
2
3 <!-- Fig. 5.4: lineargradient.html -->
4 <!-- Linear gradients in CSS3. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Linear Gradient</title>
9 <style type = "text/css">

10 div
11 {
12 width: 200px;
13 height: 200px;
14 border: 3px solid navy;
15 padding: 5px 20px;
16 text-align: center;
17
18
19
20
21
22
23
24
25 float: left;
26 margin-right: 15px;
27 }
28 #horizontal
29 {
30 width: 200px;
31 height: 200px;

Fig. 5.4 | Linear gradients in CSS3. (Part 1 of 2.)

background: -webkit-gradient(
 linear, center top, center bottom,
 color-stop(15%, white), color-stop(50%, lightsteelblue),
 color-stop(75%, navy));
background: -moz-linear-gradient(
 top center, white 15%, lightsteelblue 50%, navy 75%);
background: linear-gradient(
 to bottom, white 15%, lightsteelblue 50%, navy 75%);

iw3htp5_05_CSS_pt2.fm Page 180 Wednesday, November 16, 2011 11:52 AM

5.6 Linear Gradients; Introducing Vendor Prefixes 181

32 border: 3px solid orange;
33 padding: 5px 20px;
34 text-align: center;
35
36
37
38
39
40
41
42
43 margin-right: 15px;
44 }
45 #angle
46 {
47 width: 200px;
48 height: 200px;
49 border: 3px solid Purple;
50 padding: 5px 20px;
51 text-align: center;
52
53
54
55
56
57
58
59
60 }
61 </style>
62 </head>
63 <body>
64 <div><h2>Vertical Linear Gradient</h2></div>
65 <div id = "horizontal"><h2>Horizontal Linear Gradient</h2></div>
66 <div id = "angle"><h2>Diagonal Linear Gradient</h2></div>
67 </body>
68 </html>

G

Fig. 5.4 | Linear gradients in CSS3. (Part 2 of 2.)

background: -webkit-gradient(
 linear, left top, right top,
 color-stop(15%, white), color-stop(50%, yellow),
 color-stop(75%, orange));
background: -moz-linear-gradient(
 left, white 15%, yellow 50%, orange 75%);
background: linear-gradient(
 90deg, white 15%, yellow 50%, orange 75%);

background: -webkit-gradient(
 linear, left top, right bottom,
 color-stop(15%, white), color-stop(50%, plum),
 color-stop(75%, purple));
background: -moz-linear-gradient(
 top left, white 15%, plum 50%, purple 75%);
background: linear-gradient(
 45deg, white 15%, plum 50%, purple 75%);

iw3htp5_05_CSS_pt2.fm Page 181 Wednesday, November 16, 2011 11:52 AM

182 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

WebKit Vertical Linear Gradient
The example’s body contains three div elements. The first has a vertical linear gradient
from top to bottom. We’re creating a background gradient, so we begin with the back-
ground property. The linear gradient syntax for WebKit (lines 17–20) differs slightly from
that for Firefox (lines 21–22). For WebKit browsers, we use -webkit-gradient. We then
specify the type of gradient (linear) and the direction of the linear gradient, from center
top to center bottom (line 18). This creates a gradient that gradually changes colors from
the top to the bottom. Next, we specify the color-stops for the linear gradient (lines 19–
20). Within each color-stop are two values—the first is the location of the stop (e.g., 15%,
which is 15% down from the top of the box) and the second is the color (e.g., white). We
transition from White at the top to lightsteelblue in the center to navy at the bottom.
You can use as many color-stops as you like.

Mozilla Vertical Linear Gradient
For Mozilla browsers, we use -moz-linear-gradient (line 21). In line 22, we specify the
gradient-line (top center), which is the direction of the gradient. After the gradient-
line we specify each color and color-stop (line 22).

Standard Vertical Linear Gradient
The standard CSS3 syntax for linear gradients is also slightly different. First, we specify
the linear-gradient (line 23). In line 24, we include the values for the gradient. We
begin with the direction of the gradient (top), followed by each color and color-stop
(line 22).

Horizontal Linear Gradient
In lines 28–44 we create a rectangle with a horizontal (left-to-right) gradient that gradually
changes from white to yellow to orange. For WebKit, the direction of the gradient is
left top to right top (line 36), followed by the colors and color-stops (lines 37–38).
For Mozilla, we specify the gradient-line (left), followed by the colors and color-
stops (line 40). The standard CSS3 syntax begins with the direction (left), indicating
that the gradient changes from left to right, followed by the colors and color-stops (lines
42–43). The direction can also be specified in degrees, with 0 degrees straight up and pos-
itive degrees progressing clockwise. For a left-to-right gradient, you’d specify 90deg. For
top-to-bottom, you’d specify 0deg.

Diagonal Linear Gradient
In the third rectangle we create a diagonal linear gradient that gradually changes from
white to plum to purple (lines 45–60). For WebKit, the direction of the gradient is left
top to right bottom (line 53), followed by the colors and color-stops (lines 54–55). For
Mozilla, we specify the gradient-line (top left), followed by the colors and color-
stops (line 57). The standard CSS3 syntax begins with the direction (135deg), indicating
that the gradient changes at a 45-degree angle, followed by the colors and color-stops
(line 59).

Vendor Prefixes
In this example (Fig. 5.4), lines 17–24, 35–42 and 52–59 each define three versions of the
background style for defining the linear gradients. The versions in lines 17, 35, and 52 and

iw3htp5_05_CSS_pt2.fm Page 182 Wednesday, November 16, 2011 11:52 AM

5.7 Radial Gradients 183

lines 21, 39 and 56 contain the prefixes -webkit- and -moz-, respectively. These are ven-
dor prefixes (Fig. 5.5) and are used for properties that are still being finalized in the CSS
specification but have already been implemented in various browsers.

Prefixes are not available for every browser or for every property. For example, at the
time of this writing, linear gradients were implemented only in WebKit-based browsers
and Mozilla Firefox. If we remove the prefixed versions of the linear gradient styles in this
example, the gradients will not appear when the page is rendered in a WebKit-based
browser or Firefox. If you run this program in browsers that don’t support gradients yet,
the gradients will not appear. It’s good practice to include the multiple prefixes when
they’re available so that your pages render properly in the various browsers. As the CSS3
features are finalized and incorporated fully into the browsers, the prefixes will become
unnecessary. For example, we did not use any prefixes for the box-shadow example
(Fig. 5.3) because it’s fully implemented in WebKit-based, Firefox, Opera and Internet
Explorer browsers. Many of the new CSS3 features have not yet been implemented in
Internet Explorer—we expect this to change with IE 10.

When using vendor prefixes in styles, always place them before the nonprefixed ver-
sion (as in lines 17–22 of Fig. 5.4). The last version of the style that a given browser sup-
ports takes precedence and the browser will use it. So, by listing the standard non-prefixed
version last, the browser will use the standard version over the prefixed version when the
standard version is supported. To save space in the remainder of this chapter, we do not
include all vendor prefixes for every example. Some online tools that can help you add the
appropriate vendor prefixes to your code are:

There are also several sites that list the CSS3 and HTML5 features supported in each
of the major browsers, including:

5.7 Radial Gradients
Radial gradients are similar to linear gradients, but the color changes gradually from an
inner point (the start) to an outer circle (the end) (Fig. 5.6). In this example, the radial-

Vendor prefix Browsers

-ms- Internet Explorer

-moz- Mozilla-based browsers, including Firefox

-o- Opera and Opera Mobile

-webkit- WebKit-based browsers, including Google Chrome,
Safari (and Safari on the iPhone) and Android

Fig. 5.5 | Vendor prefixes.

http://prefixmycss.com/
http://cssprefixer.appspot.com/

http://caniuse.com/
http://findmebyip.com/litmus/

iw3htp5_05_CSS_pt2.fm Page 183 Wednesday, November 16, 2011 11:52 AM

184 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

gradient property (lines 16–18) has three values. The first is the position of the start of
the radial gradient—in this case, the center of the rectangle. Other possible values for the
position include top, bottom, left and right. The second value is the start color (yellow),
and the third is the end color (red). The resulting effect is a box with a yellow center that
gradually changes to red in a circle around the starting position. In this case, notice that
other than the vendor prefixes, the syntax of the gradient is identical for WebKit browsers,
Mozilla and the standard CSS3 radial-gradient.

1 <!DOCTYPE html>
2
3 <!-- Fig. 5.6: radialgradient.html -->
4 <!-- Radial gradients in CSS3. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Radial Gradient</title>
9 <style type = "text/css">

10 div
11 {
12 width: 200px;
13 height: 200px;
14 padding: 5px;
15 text-align: center;
16
17
18
19 }
20 </style>
21 </head>
22 <body>
23 <div><h2>Radial Gradient</h2></div>
24 </body>
25 </html>

Fig. 5.6 | Radial gradients in CSS3.

background: -webkit-radial-gradient(center, yellow, red);
background: -moz-radial-gradient(center, yellow, red);
background: radial-gradient(center, yellow, red);

Radial gradient
begins with

yellow in the
center, then

changes to red in
a circle as it moves
toward the edges of

the box

iw3htp5_05_CSS_pt2.fm Page 184 Wednesday, November 16, 2011 11:52 AM

5.8 (Optional: WebKit Only) Text Stroke 185

5.8 (Optional: WebKit Only) Text Stroke
The -webkit-text-stroke property is a nonstandard property for WebKit-based brows-
ers that allows you to add an outline (text stroke) around text. Four of the seven browsers
we use in this book are WebKit based—Safari and Chrome on the desktop and the mobile
browsers in iOS and Android. Currently, the CSS3 specification is evolving and this prop-
erty is not likely to appear as part of the standard in the short term. However, WebKit
tends to be leading edge, so it’s possible that this feature could be added later.

Line 12 in Fig. 5.7 sets the color of the h1 text to LightCyan. We add a -webkit-text-
stroke with two values (line 13)—the outline thickness (2px) and the color of the text stroke
(black). We used the font-size 500% here so you could see the outline better. This non-
standard effect can be implemented for a one pixel stroke—with a bit more effort—using
pure CSS3 as shown at http://css-tricks.com/7405-adding-stroke-to-web-text/.

5.9 Multiple Background Images
CSS3 allows you to add multiple background images to an element (Fig. 5.8). The style
at lines 10–16 begins by adding two background-images—logo.png and ocean.png (line

1 <!DOCTYPE html>
2
3 <!-- Fig. 5.7: textstroke.html -->
4 <!-- Text stroke in CSS3. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Text Stroke</title>
9 <style type = "text/css">

10 h1
11 {
12 color: lightcyan;
13
14 font-size: 500%; /* increasing the font size */
15 }
16 </style>
17 </head>
18 <body>
19 <h1>Text Stroke</h1>
20 </body>
21 </html>

Fig. 5.7 | A text-stroke rendered in Chrome.

-webkit-text-stroke: 2px black; /* vendor prefix */

 color is
lightcyan

text-stroke
is 2px black

iw3htp5_05_CSS_pt2.fm Page 185 Wednesday, November 16, 2011 11:52 AM

186 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

12). Next, we specify each image’s placement using property background-position (line
13). The comma-separated list of values matches the order of the comma-separated list of
images in the background-image property. The first value—bottom right—places the
first image, logo.png, in the bottom-right corner of the background in the border-box.
The last value—100% center—centers the entire second image, ocean.png, in the con-
tent-box so that it appears behind the content and stretches to fill the content-box. The
background-origin (line 14) determines where each image is placed using the box model
we discussed in Fig. 4.13. The first image (logo.png) is in the outermost border-box, and
the second image (ocean.png) is in the innermost content-box.

1 <!DOCTYPE html>
2
3 <!-- Fig. 5.8: multiplebackgrounds.html -->
4 <!-- Multiple background images in CSS3. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Multiple Backgrounds</title>
9 <style type = "text/css">

10 div.background
11 {
12
13
14
15
16 }
17 div.content
18 {
19 padding: 10px 15px;
20 color: white;
21 font-size: 150%;
22 }
23 </style>
24 </head>
25 <body>
26 <div class = "background">
27 <div class = "content">
28 <p>Deitel & Associates, Inc., is an internationally recognized
29 authoring and corporate training organization. The company
30 offers instructor-led courses delivered at client sites
31 worldwide on programming languages and other software topics
32 such as C++, Visual C++^{®}, C, Java™,
33 C#^{®}, Visual Basic^{®},
34 Objective-C^{®}, XML^{®},
35 Python^{®}, JavaScript, object technology,
36 Internet and web programming, and Android and iPhone app
37 development.</p>
38 </div></div>
39 </body>
40 </html>

Fig. 5.8 | Multiple background images in CSS3. (Part 1 of 2.)

background-image: url(logo.png), url(ocean.png);
background-position: bottom right, 100% center;
background-origin: border-box, content-box;
background-repeat: no-repeat, repeat;

iw3htp5_05_CSS_pt2.fm Page 186 Wednesday, November 16, 2011 11:52 AM

5.10 (Optional: WebKit Only) Reflections 187

5.10 (Optional: WebKit Only) Reflections
Figure 5.9 shows how to add a simple reflection of an image using the -webkit-box-re-
flect property (lines 13–17 and 20–23). Like -webkit-text-stroke, this is a nonstan-
dard property that’s available only in WebKit-based browsers for now, but it’s an elegant
effect that we wanted to show.

The -webkit-box-reflect property’s first value is the direction of the reflection—in
this case, below (line 13) or right (line 20). The direction value may be above, below,
left, or right. The second value is the offset, which determines the space between the
image and its reflection. In this example, the offset is 5px, so there’s a small space
between the image and its reflection. Optionally, you can specify a gradient to apply to the
reflection. The gradient in lines 14–16 causes the bottom reflection to fade away from top
to bottom. The gradient in lines 21–23 causes the right reflection to fade away from left
to right. The reflection effects shown here can be accomplished using pure CSS3—with a
lot more code. For one example of this, see http://www.xhtml-lab.com/css/create-
reflection-effect-using-css3.

1 <!DOCTYPE html>
2
3 <!-- Fig. 5.9: reflection.html -->
4 <!-- Reflections in CSS3. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Reflection</title>
9 <style type = "text/css">

Fig. 5.9 | Reflections in CSS3. (Part 1 of 2.)

Fig. 5.8 | Multiple background images in CSS3. (Part 2 of 2.)

The first image
(logo.png) is placed
at the bottom right
with no repeat

The second image
(ocean.png) is
centered behind the
content and stretched
as needed to fill the
background

iw3htp5_05_CSS_pt2.fm Page 187 Wednesday, November 16, 2011 11:52 AM

188 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

5.11 Image Borders
The CSS3 border-image property uses images to place a border around any block-level
element (Fig. 5.10). In line 12, we set a div’s border-width to 30px, which is the thickness

10 img { margin: 10px; }
11 img.below
12 {
13
14
15
16
17 }
18 img.right
19 {
20
21
22
23
24 }
25 </style>
26 </head>
27 <body>
28 <img class = "below" src = "jhtp.png" width = "138" height = "180"
29 alt = "Java How to Program book cover">
30 <img class = "right" src = "jhtp.png" width = "138" height = "180"
31 alt = "Java How to Program book cover">
32 </body>
33 </html>

Fig. 5.9 | Reflections in CSS3. (Part 2 of 2.)

-webkit-box-reflect: below 5px
 -webkit-gradient(
 linear, left top, left bottom,
 from(transparent), to(white));

-webkit-box-reflect: right 5px
 -webkit-gradient(
 linear, right top, left top,
 from(transparent), to(white));

Horizontal
reflection

 Vertical reflection

iw3htp5_05_CSS_pt2.fm Page 188 Wednesday, November 16, 2011 11:52 AM

5.11 Image Borders 189

of the border we’re placing around the element. Next, we specify a width of 234px, which
is the width of the entire rectangular border (line 13).

Stretching an Image Border
In this example, we create two image border styles. In the first (lines 16–22), we stretch
(and thus distort) the sides of the image to fit around the element while leaving the corners
of the border image unchanged (not stretched). The border-image property has six values
(lines 18–21):

• border-image-source—the URL of the image to use in the border (in this case,
url(border.png)).

1 <!DOCTYPE html>
2
3 <!-- Fig. 5.10: imageborder.html -->
4 <!-- Stretching and repeating an image to create a border. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Image Border</title>
9 <style type = "text/css">

10 div
11 {
12
13
14 padding: 20px 20px;
15 }
16 #stretch
17 {
18
19
20
21
22 }
23 #repeat
24 {
25
26
27
28
29 }
30 </style>
31 </head>
32 <body>
33 <h2>Image Borders</h2>
34
35 <p><div id="stretch">Stretching the image border</div></p>
36 <p><div id="repeat">Repeating the image border</div></p>
37 </body>
38 </html>

Fig. 5.10 | Stretching and repeating an image to create a border. (Part 1 of 2.)

border-width: 30px;
width: 234px;

-webkit-border-image: url(border.png) 80 80 80 80 stretch;
-moz-border-image: url(border.png) 80 80 80 80 stretch;
-o-border-image: url(border.png) 80 80 80 80 stretch;
border-image: url(border.png) 80 80 80 80 stretch;

-webkit-border-image:url(border.png) 34% 34% repeat;
-moz-border-image:url(border.png) 34% 34% repeat;
-o-border-image:url(border.png) 34% 34% repeat;
border-image:url(border.png) 34% 34% repeat;

iw3htp5_05_CSS_pt2.fm Page 189 Wednesday, November 16, 2011 11:52 AM

190 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

• border-image-slice—expressed with four space-separated values in pixels (in
this case, 80 80 80 80). These values are the inward offsets from the top, right, bot-
tom and left sides of the image. Since our original image is square, we used the
same value for each. The border-image-slice divides the image into nine
regions: four corners, four sides and a middle, which is transparent unless other-
wise specified. These regions may overlap. If you use values that are larger than
the actual image size, the border-image-slice values will be interpreted as 100%.
You may not use negative values. We could express the border-image-slice in two
values—80 80—in which case the first value would represent the top and bottom,
and the second value the left and right. The border-image-slice may also be ex-
pressed in percentages, which we demonstrate in the second part of this example.

• border-image-repeat—specifies how the regions of the border image are scaled
and tiled (repeated). By indicating stretch just once, we create a border that will
stretch the top, right, bottom and left regions to fit the area. You may specify two
values for the border-image-repeat property. For example, if we specified

Fig. 5.10 | Stretching and repeating an image to create a border. (Part 2 of 2.)

Original image used to
create the image border

Corners of the image
remain the same but
the four sides of the
image are stretched

Corners of the image
remain the same but
the four sides of the

image are repeated

iw3htp5_05_CSS_pt2.fm Page 190 Wednesday, November 16, 2011 11:52 AM

5.12 Animation; Selectors 191

stretch repeat, the top and bottom regions of the image border would be
stretched, and the right and left regions of the border would be repeated (i.e., tiled)
to fit the area. Other possible values for the border-image-repeat property in-
clude round and space. If you specify round, the regions are repeated using only
whole tiles, and the border image is scaled to fit the area. If you specify space, the
regions are repeated to fill the area using only whole tiles, and any excess space is
distributed evenly around the tiles.

Repeating an Image Border
In lines 23–29 we create an image border by repeating the regions to fit the space. The
border-image property includes four values:

• border-image-source—the URL of the image to use in the border (once again,
url(border.png)).

• border-image-slice—in this case, we provided two values expressed in percent-
ages (34% 34%) for the top/bottom and left/right, respectively.

• border-image-repeat—the value repeat specifies that the tiles are repeated to
fit the area, using partial tiles to fill the excess space.

For additional information about the border-image property, see

5.12 Animation; Selectors
In Fig. 5.11, we create a simple animation of an image that moves in a diamond pattern
as it changes opacity.

http://www.w3.org/TR/2002/WD-css3-border-20021107/
 #the-border-image-uri

1 <!DOCTYPE html>
2
3 <!-- Fig. 5.11: animation.html -->
4 <!-- Animation in CSS3. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Animation</title>
9 <style type = "text/css">

10 img
11 {
12 position: relative;
13
14
15
16 }
17
18
19

Fig. 5.11 | Animation in CSS3. The dotted lines show the diamond path that the image takes,
(Part 1 of 2.)

-webkit-animation: movingImage linear 10s 1s 2 alternate;
-moz-animation: movingImage linear 10s 1s 2 alternate;
animation: movingImage linear 10s 2 1s alternate;

@-webkit-keyframes movingImage
{
 0% {opacity: 0; left: 50px; top: 0px;}

iw3htp5_05_CSS_pt2.fm Page 191 Wednesday, November 16, 2011 11:52 AM

192 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 </style>
42 </head>
43 <body>
44 <img src = "jhtp.png" width = "138" height = "180"
45 alt = "Java How to Program book cover">
46 <div></div>
47 </body>
48 </html>

Fig. 5.11 | Animation in CSS3. The dotted lines show the diamond path that the image takes,
(Part 2 of 2.)

 25% {opacity: 1; left: 0px; top:5 0px;}
 50% {opacity: 0; left: 50px; top: 100px;}
 75% {opacity: 1; left: 100px; top: 50px;}
 100% {opacity: 0; left: 50px; top: 0px;}
}
@-moz-keyframes movingImage
{
 0% {opacity: 0; left: 50px; top: 0px;}
 25% {opacity: 1; left: 0px; top:5 0px;}
 50% {opacity: 0; left: 50px; top: 100px;}
 75% {opacity: 1; left: 100px; top: 50px;}
 100% {opacity: 0; left: 50px; top: 0px;}
}
@keyframes movingImage
{
 0% {opacity: 0; left: 50px; top: 0px;}
 25% {opacity: 1; left: 0px; top: 50px;}
 50% {opacity: 0; left: 50px; top: 100px;}
 75% {opacity: 1; left: 100px; top: 50px;}
 100% {opacity: 0; left: 50px; top: 0px;}
}

The animation starts and
ends at the top of the
diamond, moving the image
in the counterclockwise
direction initially. When the
animation reaches the top of
the diamond, the animation
reverses, continuing in the
clockwise direction. The
animation terminates when
the image reaches the top of
the diamond for a second
time.

iw3htp5_05_CSS_pt2.fm Page 192 Wednesday, November 16, 2011 11:52 AM

5.12 Animation; Selectors 193

animation Property
The animation property (lines 13–15) allows you to represent several animation properties
in a shorthand notation, rather than specifying each separately, as in:

In the shorthand notation, the values are listed in the following order:

• animation-name—represents the name of the animation (movingImage). This
name associates the animation with the keyframes that define various properties
of the element being animated at different stages of the animation. We’ll discuss
keyframes shortly.

• animation-timing-function (lines 13–15)—determines how the animation
progresses in one cycle of its duration. Possible values include linear, ease,
ease-in, ease-out, ease-in-out, cubic-bezier. The value linear, which we
use in this example, specifies that the animation will move at the same speed from
start to finish. The default value, ease, starts slowly, increases speed, then ends
slowly. The ease-in value starts slowly, then speeds up, whereas the ease-out
value starts faster, then slows down. The ease-in-out starts and ends slowly. Fi-
nally, the cubic-bezier value allows you to customize the timing function with
four values between 0 and 1, such as cubic-bezier(1,0,0,1).

• animation-duration—specifies the time in seconds (s) or milliseconds (ms) that
the animation takes to complete one iteration (10s in this case). The default du-
ration is 0.

• animation-delay—specifies the number of seconds (1s in this case) or millisec-
onds after the page loads before the animation begins. The default value is 0. If
the animation-delay is negative, such as -3s, the animation will begin three sec-
onds into its cycle.

• animation-iteration-count—specifies the number of times the animation will
run. The default is 1. You may use the value infinite to repeat the animation
continuously.

• animation-direction—specifies the direction in which the animation will run.
The value alternate used here specifies that the animation will run in alternat-
ing directions—in this case, counterclockwise (as we define with our keyframes),
then clockwise. The default value, normal, would run the animation in the same
direction for each cycle.

The shorthand animation property cannot be used with the animation-play-state
property—it must be specified separately. If you do not include the animation-play-
state, which specifies whether the animation is paused or running, it defaults to running.

@keyframes Rule and Selectors
For the element being animated, the @keyframes rule (lines 17, 25 and 33) defines the
element’s properties that will change during the animation, the values to which those

animation-name: movingImage;
animation-timing-function: linear;
animation-duration: 10s;
animation-delay: 1s;
animation-iteration-count: 2;
animation-direction: alternate;

iw3htp5_05_CSS_pt2.fm Page 193 Wednesday, November 16, 2011 11:52 AM

194 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

properties will change, and when they’ll change. The @keyframes rule is followed by the
name of the animation (movingImage) to which the keyframes are applied. CSS rules con-
sist of one or more selectors followed by a declaration block in curly braces ({}). Selectors
enable you to apply styles to elements of a particular type or attribute. A declaration block
consists of one or more declarations, each of which includes the property name followed
by a colon (:), a value and a semicolon (;). You may include multiple declarations in a
declaration block. For example, consider line 19:

The selector, 0%, is followed by a declaration block with three declarations—opacity,
left and right.

In this example, the @keyframes rule includes five selectors to represent the points-in-
time for our animation. Recall that our animation will take 10 seconds (10s in lines 13–
15) to complete. In that context, 0% indicates the beginning of a single animation cycle,
25% represents 2.5 seconds into the animation, 50% represents 5 seconds into the anima-
tion, 75% represents 7.5 seconds into the animation and 100% represents the end of a single
animation cycle. You can break down the animation into as many points as you like. At
each point, we specify the opacity of the image and the image position in pixels from the
left and from the top. We begin and end the animation at the same point—left: 50px;

top: 0px;—creating a diamond pattern along which the image moves.

5.13 Transitions and Transformations
With CSS3 transitions, you can change an element’s style over a specified duration—for
example, you can vary an element’s opacity from opaque to transparent over a duration of
one second. CSS3 transformations allow you to move, rotate, scale and skew elements. And
you can make transitions and transformations occur simultaneously, doing things like hav-
ing objects grow and change their color at once. Note that transitions are similar in con-
cept to the animations (Section 5.12), but transitions allow you to specify only the starting
and ending values of the CSS properties being changed. An animation’s keyframes enable
you to control intermediate states throughout the animation’s duration.

5.13.1 transition and transform Properties
Figure 5.12 uses the transition and transform properties to scale and rotate an image
360 degrees when the cursor hovers over it. We begin by defining the transition (line 16).
For each property that will change, the transition property specifies the duration of that
change. In this case, we indicate that a transform (discussed shortly) will take four sec-
onds, but we could specify a comma-separated list of property names that will change and
the individual durations over which each property will change. For example:

indicates that a transform takes four seconds to apply and the opacity changes over two
seconds—thus, the transform will continue for another two seconds after the opacity
change completes. In this example, we define the transform only when the user hovers the
mouse over the image.

0% {opacity: 0; left: 50px; top 0px;}

transition: transform 4s, opacity 2s;

iw3htp5_05_CSS_pt2.fm Page 194 Wednesday, November 16, 2011 11:52 AM

5.13 Transitions and Transformations 195

The :hover pseudo-class (lines 18–24) formerly worked only for anchor elements but
now works with any element. In this example, we use :hover to begin the rotation and
scaling of the image. The transform property (line 23) specifies that the image will rotate
360deg and will scale to twice its original width and height when the mouse hovers over
the image. The transform property uses transformation functions, such as rotate and

1 <!DOCTYPE html>
2
3 <!-- Fig. 5.12: transitions.html -->
4 <!-- Transitions in CSS3. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Transitions</title>
9 <style type = "text/css">

10 img
11 {
12 margin: 80px;
13
14
15
16
17 }
18
19 {
20
21
22
23
24 }
25 </style>
26 </head>
27 <body>
28 <img src = "cpphtp.png" width = "76" height = "100"
29 alt = "C++ How to Program book cover">
30 </body>
31 </html>

Fig. 5.12 | Transitioning an image over a four-second duration and applying rotate and scale
transforms.

-webkit-transition: -webkit-transform 4s;
-moz-transition: -moz-transform 4s;
-o-transition: -o-transform 4s;
transition: transform 4s;

img:hover

-webkit-transform: rotate(360deg) scale(2, 2);
-moz-transform: rotate(360deg) scale(2, 2);
-o-transform: rotate(360deg) scale(2, 2);
transform: rotate(360deg) scale(2, 2);

a) b) c) d)

iw3htp5_05_CSS_pt2.fm Page 195 Wednesday, November 16, 2011 11:52 AM

196 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

scale, to perform the transformations. The rotate transformation function receives the
number of degrees. Negative values cause the element to rotate left. A value of 720deg
would cause the element to rotate clockwise twice. The scale transformation function
specifies how to scale the width and height. The value 1 represents the original width or
original height, so values greater than 1 increase the size and values less than 1 decrease the
size. A complete list of CSS3 transformation functions can be found at:

5.13.2 Skew
CSS3 transformations also allow you to skew block-level elements, slanting them at an an-
gle either horizontally (skewX) or vertically (skewY). In the following example, we use the
animation and transform properties to skew an element (a rectangle and text) horizon-
tally by 45 degrees (Fig. 5.13). First we create a rectangle with a LightGreen background,
a solid DarkGreen border and rounded corners. The animation property (lines 21–23)
specifies that the element will skew in a three-second (3s) interval for an infinite dura-
tion. The fourth value, linear, is the animation-timing-function.

www.w3.org/TR/css3-2d-transforms/#transform-functions

1 <!DOCTYPE html>
2
3 <!-- Fig. 5.13: skew.html -->
4 <!-- Skewing and transforming elements in CSS3. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Skew</title>
9 <style type = "text/css">

10 .skew .textbox
11 {
12 margin-left: 75px;
13 background: lightgreen;
14 height: 100px;
15 width: 200px;
16 padding: 25px 0;
17 text-align: center;
18 font-size: 250%;
19 border: 3px solid DarkGreen;
20 border-radius: 15px;
21
22
23
24 }
25 @-webkit-keyframes skew
26 {
27 from { -webkit-transform: skewX(0deg); }
28 25% { -webkit-transform: skewX(45deg); }
29 50% { -webkit-transform: skewX(0); }
30 75% { -webkit-transform: skewX(-45deg); }
31 to { -webkit-transform: skewX(0); }
32 }

Fig. 5.13 | Skewing and transforming elements in CSS3. (Part 1 of 2.)

-webkit-animation: skew 3s infinite linear;
-moz-animation: skew 3s infinite linear;
animation: skew 3s infinite linear;

iw3htp5_05_CSS_pt2.fm Page 196 Wednesday, November 16, 2011 11:52 AM

5.13 Transitions and Transformations 197

Next, we use the @keyframes rule and selectors to specify the angle of the skew trans-
formation at different intervals (lines 25–48). When the page is rendered, the element is
not skewed (0deg; lines 27, 35 and 43). The transformation then skews the element 45
degrees (45deg) to the right (lines 28, 36 and 44), back to 0deg (lines 29, 37 and 45) and
then left by 45deg (lines 30, 38 and 46) and back to 0deg (lines 31, 39 and 47).

5.13.3 Transitioning Between Images
We can also use the transition property to create the visually beautiful effect of melting
one image into another (Fig. 5.14). The transition property includes three values. First,
we specify that the transition will occur on the opacity of the image. The second value,
4s, is the transition-duration. The third value, ease-in-out, is the transition-
timing-function. Next, we define :hover with an opacity of 0, so when the cursor hov-
ers over the top image, its opacity becomes fully transparent, revealing the bottom image

33 @-moz-keyframes skew
34 {
35 from { -webkit-transform: skewX(0deg); }
36 25% { -webkit-transform: skewX(45deg); }
37 50% { -webkit-transform: skewX(0); }
38 75% { -webkit-transform: skewX(-45deg); }
39 to { -webkit-transform: skewX(0); }
40 }
41
42
43
44
45
46
47
48
49 </style>
50 </head>
51 <body>
52 <div class = "box skew">
53 <div class = "textbox">Skewing Text</div>
54 </div>
55 </body>
56 </html>

Fig. 5.13 | Skewing and transforming elements in CSS3. (Part 2 of 2.)

@-keyframes skew
{
 from { -webkit-transform: skewX(0deg); }
 25% { -webkit-transform: skewX(45deg); }
 50% { -webkit-transform: skewX(0); }
 75% { -webkit-transform: skewX(-45deg); }
 to { -webkit-transform: skewX(0); }
}

a) Bordered div at skewed left position b) Bordered div at centered
position

c) Bordered div at skewed right position

iw3htp5_05_CSS_pt2.fm Page 197 Wednesday, November 16, 2011 11:52 AM

198 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

directly behind it (lines 22–23). In lines 28–29 we add the bottom and top images, placing
one directly behind the other.

5.14 Downloading Web Fonts and the @font-face Rule
Using the @font-face rule, you can specify fonts for a web page, even if they’re not in-
stalled on the user's system. You can use downloadable fonts to help ensure a uniform look

1 <!DOCTYPE html>
2
3 <!-- Fig. 5.14: meltingimages.html -->
4 <!-- Melting one image into another using CSS3. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Melting Images</title>
9 <style type = "text/css">

10 #cover
11 {
12 position: relative;
13 margin: 0 auto;
14 }
15 #cover img
16 {
17 position: absolute;
18 left: 0;
19 -webkit-transition: opacity 4s ease-in-out;
20 transition: opacity 4s ease-in-out;
21 }
22 #cover img.top:hover
23 { opacity:0; }
24 </style>
25 </head>
26 <body>
27 <div id = "cover">
28
29
30 </div>
31 </body>
32 </html>

Fig. 5.14 | Melting one image into another using CSS3.

a) b) c)

iw3htp5_05_CSS_pt2.fm Page 198 Wednesday, November 16, 2011 11:52 AM

5.14 Downloading Web Fonts and the @font-face Rule 199

across client sites. In Fig. 5.15, we use the Google web font named “Calligraffitti.” You
can find numerous free, open-source web fonts at http://www.google.com/webfonts.
Make sure the fonts you get from other sources have no legal encumbrances.

To get Google’s Calligraffitti font, go to http://www.google.com/webfonts and use
the search box on the site to find the font “Calligraffitti.” You can find this by using the
search box on the site. Next, click Quick-use to get the link to the style sheet that contains
the @font-face rule. Paste that link element into the head section of your document
(lines 9–10). The referenced CSS style sheet contains the following CSS rules:

1 <!DOCTYPE html>
2
3 <!-- Fig. 5.15: embeddedfonts.html -->
4 <!-- Embedding fonts for use in your web page. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Embedded Fonts</title>
9

10
11 <style type = "text/css">
12 body
13 {
14
15 font-size: 48px;
16 text-shadow: 3px 3px 3px DimGrey;
17 }
18 </style>
19 </head>
20 <body>
21 <div>
22 Embedding the Google web font "Calligraffitti"
23 </div>
24 </body>
25 </html>

Fig. 5.15 | Embedding fonts for use in your web page.

<link href = 'http://fonts.googleapis.com/css?family=Calligraffitti'
 rel = 'stylesheet' type = 'text/css'>

font-family: "Calligraffitti";

iw3htp5_05_CSS_pt2.fm Page 199 Wednesday, November 16, 2011 11:52 AM

200 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

The @media screen rule specifies that the font will be used when the document is ren-
dered on a computer screen (as discussed in Section 4.11). The @font-face rule includes
the font-family (Calligraffitti), font-style (normal) and font-weight (normal).
You may include multiple fonts with varying styles and weights. The @font-face rule also
includes the location of the font.

5.15 Flexible Box Layout Module and :nth-child
Selectors
Flexible Box Layout Module (FBLM) makes it easy to align the contents of boxes, change
their size, change their order dynamically, and lay out the contents in any direction. In the
example of Fig. 5.16, we create flexible divs for four of our programming tips. When the
mouse hovers over one of the divs, the div expands, the text changes from black to white,
the background color changes and the layout of the text changes.

Lines 48–66 define a div to which we apply the flexbox CSS class. That div contains
four other divs. The flexbox class’s display property is set to the new CSS3 value box
(lines 16–17). The box-orient property specifies the orientation of the box layout (lines
18–19). The default value is horizontal (which we specified anyway). You can also use
vertical. For the nested divs, we specify a one-second ease-out transition (lines 23–
24). This will take effect when these the :hover pseudo-class style (lines 38–39) is applied
to one of these divs to expand it.

@media screen {
@font-face {
 font-family: 'Calligraffitti';
 font-style: normal;
 font-weight: normal;
 src: local('Calligraffiti'),
 url('http://themes.googleusercontent.com/static/fonts/
 calligraffitti/v1/vLVN2Y-z65rVu1R7lWdvyKIZAuDcNtpCWuPSaIR0Ie8
 .woff') format('woff');
}
}

1 <!DOCTYPE html>
2
3 <!-- Fig. 5.16: fblm.html -->
4 <!-- Flexible Box Layout Module. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Flexible Box Layout Model</title>
9 <link href = 'http://fonts.googleapis.com/css?family=Rosario'

10 rel = 'stylesheet' type = 'text/css'>
11 <style type = "text/css">
12 .flexbox
13 {
14 width: 600px;
15 height: 420px;

Fig. 5.16 | Flexible Box Layout Module. (Part 1 of 3.)

iw3htp5_05_CSS_pt2.fm Page 200 Wednesday, November 16, 2011 11:52 AM

5.15 Flexible Box Layout Module and :nth-child Selectors 201

16
17
18
19
20 }
21 .flexbox > div
22 {
23
24
25 -webkit-border-radius: 10px;
26 border-radius: 10px;
27 border: 2px solid black;
28 width: 120px;
29 margin: 10px -10px 10px 0px;
30 padding: 20px 20px 20px 20px;
31 box-shadow: 10px 10px 10px dimgrey;
32 }
33
34
35
36
37
38
39
40
41
42
43
44
45 </style>
46 </head>
47 <body>
48 <div class = "flexbox">
49 <div>
50 <p>Good Programming Practices call attention to techniques that
51 will help you produce programs that are clearer, more
52 understandable and more maintainable.</p></div>
53 <div>
54 <p>Error-Prevention Tips contain suggestions for exposing bugs
55 and removing them from your programs; many describe aspects of
56 programming that prevent bugs from getting into programs in
57 the first place.</p></div>
58 <div>
59 <p>Common Programming Errors point out the errors that students
60 tend to make frequently. These Common Programming Errors reduce
61 the likelihood that you'll make the same mistakes.</p></div>
62 <div><p>Software Engineering Observations
63 highlight architectural and design issues that affect the
64 construction of software systems, especially large-scale
65 systems.</p></div>
66 </div>
67 </body>
68 </html>

Fig. 5.16 | Flexible Box Layout Module. (Part 2 of 3.)

display: -webkit-box;
display: box;
-webkit-box-orient: horizontal;
box-orient: horizontal;

-webkit-transition: 1s ease-out;
transition: 1s ease-out;

.flexbox > div:nth-child(1){ background-color: lightgrey; }

.flexbox > div:nth-child(2){ background-color: lightgrey; }

.flexbox > div:nth-child(3){ background-color: lightgrey; }

.flexbox > div:nth-child(4){ background-color: lightgrey; }

.flexbox > div:hover {
 width: 200px; color: white; font-weight: bold; }
.flexbox > div:nth-child(1):hover { background-color: royalblue; }
.flexbox > div:nth-child(2):hover { background-color: crimson; }
.flexbox > div:nth-child(3):hover { background-color: crimson; }
.flexbox > div:nth-child(4):hover { background-color: darkgreen; }
p { height: 250px; overflow: hidden; font-family: "Rosario" }

iw3htp5_05_CSS_pt2.fm Page 201 Wednesday, November 16, 2011 11:52 AM

202 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

:nth-child Selectors
In CSS3, you can use selectors to easily select elements to style based on their attributes.
For example, you could select every other row in a table and change the background color

Fig. 5.16 | Flexible Box Layout Module. (Part 3 of 3.)

a) Each nested div has a light background color and black text to start. Some of the text is hidden.

b) When the mouse hovers over :nth-child(2), the flexbox expands, the background-color
changes to Crimson, the overflow text is revealed and the text changes to a bold white font

iw3htp5_05_CSS_pt2.fm Page 202 Wednesday, November 16, 2011 11:52 AM

5.16 Multicolumn Layout 203

to blue, making the table easier to read. You can also use selectors to enable or disable input
elements. In lines 33–36 we use :nth-child selectors to select each of the four div ele-
ments in the flexbox div to style. The style in line 33 uses div:nth-child(1) to select
the div element that’s the first child of its parent and applies the background-color
LightBlue. Similarly, div:nth-child(2) selects the div element that’s the second child of
its parent, div:nth-child(3) selects the third child of its parent, and div:nth-child(4)
selects the fourth child of its parent—each applies a specified background-color.

Next, lines 38–43 define styles that are applied to the nested div elements when the
mouse hovers over them. The style at lines 38–39 sets the width (200px), color (white)
and font-weight (bold). Next, we use :nth-child selectors to specify a new background
color for each nested div (line 40–43).

Finally, we style the p element—the text within each div (line 44). We specify a para-
graph height of 250px and the overflow as hidden, which hides any text that does not fit
in the specified paragraph height. In the output, notice that the text in the second child
element (the Error-Prevention Tips), the overflow text is hidden. When the mouse hovers
over the element, all of the text is revealed. We also specify the Google font "Rosario",
which we embedded in our style sheet (lines 9–10).

Selectors are a large topic. In later chapters, we’ll demonstrate additional CSS3
selector capabilities. To learn more about their powerful capabilities, visit:

5.16 Multicolumn Layout
CSS3 allows you to easily create multicolumn layouts. In Figure 5.17, we create a three-
column layout by setting the column-count property to 3 (lines 15–18) and the column-
gap property (the spacing between columns) to 30px (lines 20-23). We then add a thin
black line between each column using the column-rule property (lines 25–28). When you
run this example, try resizing your browser window. You’ll notice that the width of the
columns changes to fit the three-column layout in the browser. In Section 5.17, we’ll show
you how to use media queries to modify this example so the number of columns varies dy-
namically based on the size of the device screen or browser window, allowing you to cus-
tomize the layout for devices such as smartphones, tablets, notebooks, desktops and more.

http://www.w3.org/TR/css3-selectors/

1 <!DOCTYPE html>
2
3 <!-- Fig. 5.17: multicolumns.html -->
4 <!-- Multicolumn text in CSS3. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Multicolumns</title>
9 <style type = "text/css">

10 p
11 { margin:0.9em 0em; }
12 .multicolumns
13 {

Fig. 5.17 | Multicolumn text in CSS3. (Part 1 of 3.)

iw3htp5_05_CSS_pt2.fm Page 203 Wednesday, November 16, 2011 11:52 AM

204 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

14 /* setting the number of columns to 3 */
15
16
17
18
19 /* setting the space between columns to 30px */
20
21
22
23
24 /* adding a 1px black line between each column */
25
26
27
28
29 }
30 </style>
31 </head>
32 <body>
33 <header>
34 <h1>Computers, Hardware and Software<h1/>
35 </header>
36 <div class = "multicolumns">
37 <p>A computer is a device that can perform computations and make
38 logical decisions phenomenally faster than human beings can.
39 Many of today's personal computers can perform billions of
40 calculations in one second—more than a human can perform
41 in a lifetime. Supercomputers are already performing thousands
42 of trillions (quadrillions) of instructions per second! To put
43 that in perspective, a quadrillion-instruction-per-second
44 computer can perform in one second more than 100,000
45 calculations for every person on the planet! And—these
46 "upper limits" are growing quickly!</p>
47 <p>Computers process data under the control of sets of
48 instructions called computer programs. These programs guide
49 the computer through orderly sets of actions specified by
50 people called computer programmers. The programs that run on a
51 computer are referred to as software. In this book, you'll
52 learn today's key programming methodology that's enhancing
53 programmer productivity, thereby reducing software-development
54 costs—object-oriented programming.</p>
55 <p>A computer consists of various devices referred to as hardware
56 (e.g., the keyboard, screen, mouse, hard disks, memory, DVDs
57 and processing units). Computing costs are dropping
58 dramatically, owing to rapid developments in hardware and
59 software technologies. Computers that might have filled large
60 rooms and cost millions of dollars decades ago are now
61 inscribed on silicon chips smaller than a fingernail, costing
62 perhaps a few dollars each. Ironically, silicon is one of the
63 most abundant materials—it's an ingredient in common
64 sand. Silicon-chip technology has made computing so economical
65 that more than a billion general-purpose computers are in use
66 worldwide, and this is expected to double in the next few

Fig. 5.17 | Multicolumn text in CSS3. (Part 2 of 3.)

-webkit-column-count: 3;
-moz-column-count: 3;
-o-column-count: 3;
column-count: 3;

-webkit-column-gap: 30px;
-moz-column-gap: 30px;
-o-column-gap: 30px;
column-gap: 30px;

-webkit-column-rule: 1px outset black;
-moz-column-rule: 1px outset black;
-o-column-rule: 1px outset black;
column-rule: 1px outset black;

iw3htp5_05_CSS_pt2.fm Page 204 Wednesday, November 16, 2011 11:52 AM

5.17 Media Queries 205

5.17 Media Queries
With CSS media types (Section 4.11), you can vary your styling based on the type of device
on which your page is being presented. The classic examples are varying font styles and
sizes, based on whether a page is printed or displayed on a screen. Users generally prefer
sans-serif fonts on screens and serif fonts on paper. With CSS3 media queries you can de-
termine the finer attributes of the media on which the user is viewing the page, such as the
length and width of the viewing area on the screen, to better customize your presentation.

67 years.</p>
68 <p>Computer chips (microprocessors) control countless devices.
69 These embedded systems include anti-lock brakes in cars,
70 navigation systems, smart home appliances, home security
71 systems, cell phones and smartphones, robots, intelligent
72 traffic intersections, collision avoidance systems, video game
73 controllers and more. The vast majority of the microprocessors
74 produced each year are embedded in devices other than general-
75 purpose computers.</p>
76 <footer>
77 © 2012 by Pearson Education, Inc.
78 All Rights Reserved.
79 </footer>
80 </div>
81 </body>
82 </html>

Fig. 5.17 | Multicolumn text in CSS3. (Part 3 of 3.)

iw3htp5_05_CSS_pt2.fm Page 205 Wednesday, November 16, 2011 11:52 AM

206 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

In Section 5.16 we created a page with a multicolumn layout that included three col-
umns of text and a thin black rule between each column. No matter how you resized your
browser window, the text was still rendered in three columns, even if the columns had to
be extremely narrow. In Fig. 5.18, we modify that multicolumn example to alter the num-
bers of columns and the rules between columns based on the screen size of the device on
which the page is viewed.

@media-Rule
The @media rule is used to determine the type and size of device on which the page is ren-
dered. When the browser looks at the rule, the result is either true or false. The rule’s styles
are applied only if the result is true. First, we use the @media rule to determine whether the
page is being rendered on a handheld device (e.g., a smartphone) with a max-width of
480px, or a device with a screen that has a max-device-width of 480px, or on a screen hav-
ing max-width of 480px (lines 13–15). If this is true, we set the column-count to 1—the
page will be rendered in a single column on handheld devices such as an iPhone or in
browser windows that have been resized to 480px or less (lines 17–19).

1 <!DOCTYPE html>
2
3 <!-- Fig. 5.18: mediaqueries.html -->
4 <!-- Using media queries to reformat a page based on the device width. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Media Queries</title>
9 <style type = "text/css">

10 p
11 { margin: 0.9em 0em; }
12 /* styles for smartphones with screen widths 480px or smaller */
13
14
15
16 {
17 div {
18
19
20 }
21 /* styles for devices with screen widths of 481px to 1024px */
22
23
24 {
25 div {
26
27
28
29
30
31
32 }

Fig. 5.18 | Using media queries to reformat a page based on the device width. (Part 1 of 4.)

@media handheld and (max-width: 480px),
 screen and (max-device-width: 480px),
 screen and (max-width: 480px)

-webkit-column-count: 1;
column-count: 1; }

@media only screen and (min-width: 481px) and
 (max-width: 1024px)

-webkit-column-count: 2;
column-count: 2;
-webkit-column-gap: 30px;
column-gap: 30px;
-webkit-column-rule: 1px outset black;
column-rule: 1px outset black; }

iw3htp5_05_CSS_pt2.fm Page 206 Wednesday, November 16, 2011 11:52 AM

5.17 Media Queries 207

33 /* styles for devices with screen widths of 1025px or greater */
34
35 {
36 div {
37
38
39
40
41
42
43 }
44 </style>
45 </head>
46 <body>
47 <header>
48 <h1>Computers, Hardware and Software</h1>
49 </header>
50 <div>
51 <p>A computer is a device that can perform computations and make
52 logical decisions phenomenally faster than human beings can.
53 Many of today's personal computers can perform billions of
54 calculations in one second—more than a human can perform
55 in a lifetime. Supercomputers are already performing thousands
56 of trillions (quadrillions) of instructions per second! To put
57 that in perspective, a quadrillion-instruction-per-second
58 computer can perform in one second more than 100,000
59 calculations for every person on the planet! And—these
60 "upper limits" are growing quickly!</p>
61 <p>Computers process data under the control of sets of
62 instructions called computer programs. These programs guide
63 the computer through orderly sets of actions specified by
64 people called computer programmers. The programs that run on a
65 computer are referred to as software. In this book, you'll
66 learn today's key programming methodology that's enhancing
67 programmer productivity, thereby reducing software-development
68 costs—object-oriented programming.</p>
69 <p>A computer consists of various devices referred to as hardware
70 (e.g., the keyboard, screen, mouse, hard disks, memory, DVDs
71 and processing units). Computing costs are dropping
72 dramatically, owing to rapid developments in hardware and
73 software technologies. Computers that might have filled large
74 rooms and cost millions of dollars decades ago are now
75 inscribed on silicon chips smaller than a fingernail, costing
76 perhaps a few dollars each. Ironically, silicon is one of the
77 most abundant materials—it's an ingredient in common
78 sand. Silicon-chip technology has made computing so economical
79 that more than a billion general-purpose computers are in use
80 worldwide, and this is expected to double in the next few
81 years.</p>
82 <p>Computer chips (microprocessors) control countless devices.
83 These embedded systems include anti-lock brakes in cars,
84 navigation systems, smart home appliances, home security
85 systems, cell phones and smartphones, robots, intelligent

Fig. 5.18 | Using media queries to reformat a page based on the device width. (Part 2 of 4.)

@media only screen and (min-width: 1025px)

-webkit-column-count: 3;
column-count: 3;
-webkit-column-gap: 30px;
column-gap: 30px;
-webkit-column-rule: 1px outset black;
column-rule: 1px outset black; }

iw3htp5_05_CSS_pt2.fm Page 207 Wednesday, November 16, 2011 11:52 AM

208 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

86 traffic intersections, collision avoidance systems, video game
87 controllers and more. The vast majority of the microprocessors
88 produced each year are embedded in devices other than general-
89 purpose computers.</p>
90 <footer>
91 © 2012 by Pearson Education, Inc.
92 All Rights Reserved.
93 </footer>
94 </div>
95 </body>
96 </html>

Fig. 5.18 | Using media queries to reformat a page based on the device width. (Part 3 of 4.)

a) Styles for smartphones
with screen widths
480px or smaller

b) Styles for devices with screen widths of 481px to 1024px

iw3htp5_05_CSS_pt2.fm Page 208 Wednesday, November 16, 2011 11:52 AM

5.18 Web Resources 209

If the condition in lines 13–15 is false, a second @media rule determines whether the
page is being rendered on devices with a min-width of 481px and a max-width of 1024px
(lines 22–23). If this condition is true, we set the column-count to 2 (lines 26–27), the
column-gap (the space between columns) to 30px (lines 28–29) and the column-rule (the
vertical line between the columns) to 1px outset black (lines 30–31).

If the conditions in the first two @media rules are false, we use a third @media rule to
determine whether the page is being rendered on devices with a min-width of 1025px (line
34). If the condition of this rule is true, we set the column-count to 3 (lines 37–38), the
column-gap to 30px (lines 39–40) and the column-rule to 1px outset black (lines 41–42).

5.18 Web Resources
http://www.w3.org/Style/CSS/

W3C home page for CSS3.
http://www.deitel.com/css3/

The Deitel CSS3 Resource Center includes links to tutorials, examples, the W3C standards docu-
mentation and more.
http://layerstyles.org
http://www.colorzilla.com/gradient-editor/
http://css3generator.com/
http://css3please.com/

Sites that help you generate cross-browser CSS3 code.
http://findmebyip.com/litmus/

Find the CSS3 features that are supported by each of the major browsers.
http://cssprefixer.appspot.com/

The CSSPrefixer tool helps you add vendor prefixes to your CSS3 code.
http://css-tricks.com/examples/HSLaExplorer/
A CSS demo that allows you to play with HSLA colors.

Fig. 5.18 | Using media queries to reformat a page based on the device width. (Part 4 of 4.)

c) Styles for devices with screen widths of 1024px or greater

iw3htp5_05_CSS_pt2.fm Page 209 Wednesday, November 16, 2011 11:52 AM

210 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

Summary
Section 5.2 Text Shadows
• The CSS3 text-shadow property (p. 175) makes it easy to add a text-shadow effect to any text.

The shadow’s horizontal offset is the number of pixels that the text-shadow will appear to the
left or the right of the text. A negative value moves the text-shadow to the left; a positive value
moves it to the right. The vertical offset is the number of pixels that the text-shadow will be shift-
ed up or down from the text. A negative value moves the shadow up, whereas a positive value
moves it down.

• The blur radius (p. 175) has a value of 0 (no shadow) or greater.

Section 5.3 Rounded Corners
• The border-radius property (p. 176) adds rounded corners (p. 176) to any element.

Section 5.4 Color
• RGBA (Red, Green, Blue, Alpha, p. 177) gives you greater control over the exact colors in your

web pages. The value for each color—red, green and blue—can range from 0 to 255. The alpha
value—which represents opacity—can be any value in the range 0.0 (fully transparent) through
1.0 (fully opaque).

• CSS3 also allows you to express color using HSLA (hue, saturation, lightness, alpha) values
(p. 178).

• The hue is a color or shade expressed as a value from 0 to 359 representing the degrees on a color
wheel (a wheel is 360 degrees). The colors on the wheel progress in the order of the colors of the
rainbow—red, orange, yellow, green, blue, indigo and violet.

• The saturation (p. 178)—the intensity of the hue—is expressed as a percentage, where 100% is
fully saturated (the full color) and 0% is gray.

• Lightness (p. 178)—the intensity of light or luminance of the hue—is also expressed as a per-
centage. A lightness of 50% is the actual hue. If you decrease the amount of light to 0%, the color
appears completely dark (black). If you increase the amount of light to 100%, the color appears
completely light (white).

Section 5.5 Box Shadows
• The box-shadow property (p. 178) adds a shadow to an element.

• The horizontal offset of the shadow defines the number of pixels that the box-shadow will appear
to the left or the right of the box. The vertical offset of the shadow defines the number of pixels
the box-shadow will be shifted up or down from the box.

• The blur radius of the shadow can have a value of 0 (no shadow) or greater.

Section 5.6 Linear Gradients; Introducing Vendor Prefixes
• Linear gradients (p. 180) are a type of image that gradually transitions from one color to the next

horizontally, vertically or diagonally.

• You can transition between as many colors as you like and specify the points at which to change
colors, called color-stops (p. 180), represented in pixels or percentages along the so-called gra-
dient line.

• You can use gradients in any property that accepts an image.

• Browsers currently implement gradients differently, so you’ll need vendor prefixes and different
syntax for each browser.

iw3htp5_05_CSS_pt2.fm Page 210 Wednesday, November 16, 2011 11:52 AM

 Summary 211

• Vendor prefixes (e.g., -webkit- and -moz-, p. 183) are used for properties that are still being fi-
nalized in the CSS specification but have already been implemented in various browsers.

• Prefixes are not available for every browser or for every property.

• It’s good practice to include the multiple prefixes when they’re available so that your pages render
properly in the various browsers.

• Always place vendor-prefixed styles before the nonprefixed version. The last version of the style
that a given browser supports takes precedence and will be used by the browser.

Section 5.7 Radial Gradients
• Radial gradients (p. 183) are similar to linear gradients, but the color changes gradually from an

inner circle (the start) to an outer circle (the end).

• The radial-gradient property (p. 183) has three values. The first is the position of the start of
the radial gradient (center). Other possible values for the position include top, bottom, left and
right. The second value is the start color, and the third is the end color.

• Other than the vendor prefixes, the syntax of the gradient is identical for WebKit browsers,
Mozilla Firefox and the standard CSS3 radial-gradient.

Section 5.8 (Optional: WebKit Only) Text Stroke
• The -webkit-text-stroke property (p. 185) is a nonstandard property for WebKit-based brows-

ers that allows you to add an outline (text stroke) around text. The -webkit-text-stroke prop-
erty has two values—the thickness of the outline and the color of the text stroke.

Section 5.9 Multiple Background Images
• CSS3 allows you to add multiple background images (p. 185) to an element.

• We specify each image’s placement using property background-position. The comma-separated
list of values matches the order of the comma-separated list of images in the background-image
property.

• The background-origin (p. 154) determines where each image is placed using the box model.

Section 5.10 (Optional: WebKit Only) Reflections
• The -webkit-box-reflect property (p. 187) allows you to add a simple reflection (p. 187) of an

image. Like -webkit-text-stroke, this is a nonstandard property that’s available only in Web-
Kit-based browsers for now.

• The property’s first value is the direction of the reflection. The direction value may be above, be-
low, left, or right.

• The second value is the offset, which determines the space between the image and its reflection.

• Optionally, you can specify a gradient to apply to the reflection.

Section 5.11 Image Borders
• The CSS3 border-image property (p. 188) uses images to place a border around any element.

• The border-width is the thickness of the border being placed around the element. The width is
the width of the entire rectangular border.

• The border-image-source (p. 189) is the URL of the image to use in the border.

• The border-image-slice (p. 190) specifies the inward offsets from the top, right, bottom and
left sides of the image.

• The border-image-slice divides the image into nine regions: four corners, four sides and a mid-
dle, which is transparent unless otherwise specified. You may not use negative values.

iw3htp5_05_CSS_pt2.fm Page 211 Wednesday, November 16, 2011 11:52 AM

212 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

• We can express the border-image-slice in just two values, in which case the first value repre-
sents the top and bottom, and the second value the left and right.

• The border-image-slice may be expressed in pixels or percentages.

• border-image-repeat (p. 190) specifies how the regions of the border image are scaled and tiled
(repeated). By indicating stretch just once, we create a border that will stretch the top, right,
bottom and left regions to fit the area.

• You may specify two values for the border-image-repeat property. For example, if we specified
stretch repeat, the top and bottom regions of the image border would be stretched, and the
right and left regions of the border would be repeated (i.e., tiled) to fit the space, using partial
tiles to fill the excess space.

• Other possible values for the border-image-repeat property include round and space. If you
specify round, the regions are repeated using only whole tiles, and the border image is scaled to
fit the area. If you specify space, the regions are repeated to fill the area using only whole tiles,
and any excess space is distributed evenly around the tiles.

Section 5.12 Animation; Selectors
• The animation property (p. 193) allows you to represent several animation properties in a short-

hand notation, rather than specifying each animation property separately.

• The animation-name (p. 193) represents the name of the animation. This name associates the an-
imation with the keyframes that define various properties of the element being animated at dif-
ferent stages of the animation.

• The animation-timing-function (p. 193) determines how the animation progresses in one cycle
of its duration. Possible values include linear, ease, ease-in, ease-out, ease-in-out, cubic-
bezier. The value linear specifies that the animation will move at the same speed from start to
finish. The default value, ease, starts slowly, increases speed, then ends slowly. The ease-in value
starts slowly, then speeds up, whereas the ease-out value starts faster, then slows down. The
ease-in-out starts and ends slowly. Finally, the cubic-bezier value allows you to customize the
timing function with four values between 0 and 1, such as cubic-bezier(1,0,0,1).

• The animation-duration (p. 193) specifies the time in seconds (s) or milliseconds (ms) that the
animation takes to complete one iteration. The default duration is 0.

• The animation-delay (p. 193) specifies the number of seconds or milliseconds after the page
loads before the animation begins. The default value is 0. If the animation-delay is negative,
such as -3s, the animation begins three seconds into its cycle.

• The animation-iteration-count (p. 193) specifies the number of times the animation will run.
The default is 1. You may use the value infinite to repeat the animation continuously.

• The animation-direction (p. 193) specifies the direction in which the animation will run. The
value alternate used here specifies that the animation will run in alternating directions. The de-
fault value, normal, would run the animation in the same direction for each cycle.

• The shorthand animation property cannot be used with the animation-play-state property
(p. 193)—it must be specified separately. If you do not include the animation-play-state,
which specifies whether the animation is paused or running, it defaults to running.

• For the element being animated, the @keyframes rule (p. 193) defines the element’s properties
that will change during the animation, the values to which those properties will change, and
when they’ll change.

• The @keyframes rule is followed by the name of the animation to which the keyframes are ap-
plied. Rules (p. 194) consist of one or more selectors (p. 194) followed by a declaration block
(p. 194) in curly braces ({}).

iw3htp5_05_CSS_pt2.fm Page 212 Wednesday, November 16, 2011 11:52 AM

 Summary 213

• Selectors enable you to apply styles to elements of a particular type or attribute.

• A declaration block consists of one or more declarations, each of which includes the property
name followed by a colon (:), a value and a semicolon (;). You may include multiple declarations
in a declaration block.

Section 5.13 Transitions and Transformations
• With CSS3 transitions (p. 194), you can change an element’s style over a specified duration.

• CSS3 transformations (p. 194) allow you to move, rotate, scale and skew elements.

• Transitions are similar in concept to animations, but transitions allow you to specify only the
starting and ending values of the CSS properties being changed. An animation’s keyframes en-
able you to control intermediate states throughout the animation’s duration.

• For each property that will change, the transition property (p. 194) specifies the duration of
that change.

• As of CSS3, the :hover pseudo-class now works with any element.

• The transform property (p. 194) uses transformation functions (p. 195), such as rotate (p. 195)
and scale (p. 196), to perform the transformations.

• The rotate transformation function receives number of degrees. Negative values cause the ele-
ment to rotate left. A value of 720deg would cause the element to rotate clockwise twice.

• The scale transformation function specifies how to scale the width and height. The value 1 rep-
resents the original width or original height, so values greater than 1 increase the size and values
less than 1 decrease the size.

• CSS3 transformations also allow you to skew (p. 196) block-level elements, slanting them at an
angle either horizontally (skewX) or vertically (skewY).

• The transition-duration is the amount of time it takes to complete the transition.

• The transition-timing-function determines how the transition progresses in one cycle of its
duration.

Section 5.14 Downloading Web Fonts and the @font-face Rule
• Using the @font-face rule (p. 198), you can specify fonts for a web page, even if they’re not in-

stalled on the user’s system. Downloadable fonts help ensure a uniform look across client sites.

• You can find numerous free, open-source web fonts at http://www.google.com/webfonts. Make
sure the fonts you get from other sources have no legal encumbrances.

• The @media screen rule specifies that the font will be used when the document is rendered on a
computer screen.

• The @font-face rule includes the font-family, font-style and font-weight. Multiple fonts can
be specified with varying styles and weights. The @font-face rule also includes the font’s location.

Section 5.15 Flexible Box Layout Module and :nth-child Selectors
• Flexible Box Layout Module (FBLM, p. 200) makes it easy to align the contents of boxes, change

their size, change their order dynamically, and lay out the contents in any direction.

• The box-orient property (p. 200) specifies the orientation of the box layout. The default value
is horizontal. You can also use vertical.

• In CSS3, you can use selectors to easily style attributes. For example, you can select every other
row in a table and change the background color to blue, making the table easier to read. You can
also use selectors to enable or disable input elements.

iw3htp5_05_CSS_pt2.fm Page 213 Wednesday, November 16, 2011 11:52 AM

214 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

• We use :nth-child selectors (p. 203) to select each of the for the four div elements in the flex-
box div to style.

• div:nth-child(1) selects the div element that’s the first child of its parent and applies the spec-
ified style. Similarly, div:nth-child(2) selects the div element that’s the second child of its par-
ent, div:nth-child(3) selects the third child of its parent, and div:nth-child(4) selects the
fourth child of its parent.

• Setting the overflow to hidden hides any text that does not fit in the specified paragraph height.

Section 5.16 Multicolumn Layout
• CSS3 allows you to easily create multicolumn layouts (p. 203) using the column-count property

(p. 203).

• The column-gap property (p. 203) specifies the spacing between columns.

• Add lines between columns using the column-rule property (p. 203).

• Resizing your browser window changes the width of the columns to fit the three-column layout
in the browser.

Section 5.17 Media Queries
• With CSS3 media queries you can determine the finer attributes of the media on which the user

is viewing the page, such as the length and width of the viewing area on the screen, to customize
your presentation.

• The @media rule (p. 206) is used to determine the type and size of device on which the page is
rendered. When the browser looks at the rule, the result is either true or false. The rule’s styles
are applied only if the result is true.

Self-Review Exercises
5.1 Fill in the blanks in the following statements:

a) The property makes it easy to add a text shadow effect to any text.
b) The property allows you to add rounded corners to any element.
c) CSS3 includes two new ways to express color— and .
d) The defines the number of pixels that the box-shadow will appear to the left

or the right of the box.
e) are similar to linear gradients, but the color changes gradually from an inner

circle (the start) to an outer circle (the end).
f) The divides the image into nine regions: four corners, four sides and a middle,

which is transparent unless otherwise specified.
g) The animation-timing-function determines how the animation progresses in one cy-

cle of its duration. Possible values include , , , ,
 and .

h) For the element being animated, the defines the element’s properties that will
change during the animation, the values to which those properties will change, and
when they’ll change.

i) are similar in concept to animations, but they allow you to specify only the
starting and ending values of the CSS properties being changed. An animation’s key-
frames enable you to control intermediate states throughout the animation’s duration.

j) CSS3 allow you to move, rotate, scale and skew elements.
k) consist of one or more selectors followed by a declaration block in curly braces

({}).
l) In CSS3, you can use to easily style attributes.

iw3htp5_05_CSS_pt2.fm Page 214 Wednesday, November 16, 2011 11:52 AM

 Answers to Self-Review Exercises 215

5.2 State whether each of the following is true or false. If false, explain why.
a) The @font-face rule specifies that an embedded font will be used when the document

is rendered on a computer screen.
b) You can use gradients in any property that accepts an image.
c) A horizontal gradient gradually changes from top to bottom.
d) You can add lines between columns using the column-gap property.
e) The @media rule determines the type and size of device on which the page is rendered.

When the browser looks at the rule, the result is either true or false. The rule’s styles are
applied only if the result is false.

f) To add multiple background images to an element, use the background-position to
specify where each image is placed using the box model.

Answers to Self-Review Exercises
5.1 a) text-shadow. b) border-radius. c) RGBA and HSLA. d) horizontal offset. e) Radial gra-
dients. f) border-image-slice. g) linear, ease, ease-in, ease-out, ease-in-out, cubic-bezier.
h) @keyframes rule. i) Transitions. j) transformations. k) Rules. l) selectors.

5.2 a) False. The @media screen rule specifies that an embedded font will be used when the
document is rendered on a computer screen. b) True. c) False. A horizontal gradient gradually
changes from left to right. d) False. You can add lines between columns using the column-rule prop-
erty. e) The @media rule’s styles are applied only if the result is true. f) False. The background-origin
specifies where each image is placed using the box model.

Exercises
For each of the following, build and render a web page that makes the indicated effect(s) appear.
Validate your page with the following validators:

1. For CSS3: http://jigsaw.w3.org/css-validator/ (under More Options > Profile, select
CSS level 3) [Note: Many CSS3 properties will not validate because they’re not yet stan-
dardized.]

2. For HTML5: http://validator.w3.org/#validate_by_upload

Also, test your page with as many as possible of the seven browsers we’re using in this book.

5.3 (Text Shadow) Create a text shadow on the phrase "New features in CSS3" with an offset-x
of 4px, an offset-y of 10px, a blur radius of 12px and a text-shadow color red.

5.4 (Text Stroke) Create a text stroke on the phrase "New WebKit features". Make the color of
the text green. Use a 5px Navy text-stroke and set the font-size to 600%.

5.5 (Rounded Corners) Create three div elements, each with a width and height of 200px. On
the first element, create slightly rounded corners using a border of 6px black and border-radius of
20px. On the second element, use a border of 6px black and increase the border-radius to 100px.
On the third, use a border of 6px black and increase the border-radius to 200px. Make the back-
ground-color of each element red. Inside of each element, display the value of the border-radius
in normal text.

5.6 (Box Shadow) Create three div elements of varying colors, each with a width and height of
400px. On the first box, add a DimGrey box-shadow with an offset-x of 30px and offset-y of 30px a blur
radius of 30px. On the second box, add a DimGrey box-shadow with an offset-x of -30px and offset-y
of -30px a blur radius of 60px. On the third box, add a DimGrey box-shadow with an offset-x of 30px
and offset-y of 30px a blur radius of 20px.

iw3htp5_05_CSS_pt2.fm Page 215 Wednesday, November 16, 2011 11:52 AM

216 Chapter 5 Introduction to Cascading Style Sheets™ (CSS): Part 2

5.7 (Linear Gradient) Create a div element with a width and height of 400px. Create a diago-
nal linear gradient using five colors.

5.8 (Radial Gradient) Create a div element with a width and height of 400px. Create a radial
gradient with four colors. Start the gradient in the bottom-left corner with the colors changing as
they move along the gradient line to the right.

5.9 (Animation) Create an infinite animation of an element moving in a square pattern.

5.10 (Skew) Modify the skew example in Fig. 5.13 to skew the element top to bottom 15 deg,
then left to right 15 deg, alternating infinitely.

5.11 (Melting Images) Modify the example in Fig. 5.14 using five pictures. It might be interest-
ing to try pictures of you or a family member at different ages or a landscape at various times. Set
the transition-duration to 3s and a transition-timing-function to linear.

5.12 (Multicolumn Text) Change the format of the example in Fig. 5.17 to four columns,
add an author name and increase the space between columns to 40px color and thickness of the
column-rule.

5.13 (FBLM) Modify the example in Fig. 5.16 to use a vertical flexbox.

5.14 (Transformation with :hover) Create a transformation program that includes four images.
When the user hovers over an image, the size of the image increases by 30%.

5.15 (Reflection) Create a reflection of an image 5px to the right of the original image.

5.16 (Media Queries) Create your own multicolumn web page and use media queries to adjust
the formatting to use one column for mobile devices that have a maximum width of 480px.

iw3htp5_05_CSS_pt2.fm Page 216 Wednesday, November 16, 2011 11:52 AM

6JavaScript: Introduction to
Scripting

Comment is free, but facts are
sacred.
—C. P. Scott

The creditor hath a better
memory than the debtor.
—James Howell

When faced with a decision, I
always ask, “What would be the
most fun?”
—Peggy Walker

O b j e c t i v e s
In this chapter you will:

■ Write simple JavaScript
programs.

■ Use input and output
statements.

■ Learn basic memory
concepts.

■ Use arithmetic operators.

■ Learn the precedence of
arithmetic operators.

■ Write decision-making
statements to choose among
alternative courses of action.

■ Use relational and equality
operators to compare data
items.

iw3htp5_06_JSIntro.fm Page 217 Wednesday, November 16, 2011 11:52 AM

218 Chapter 6 JavaScript: Introduction to Scripting

6.1 Introduction
In this chapter, we begin our introduction to the JavaScript1 scripting language, which is
used to enhance the functionality and appearance of web pages.2

In Chapters 6–11, we present a detailed discussion of JavaScript—the de facto stan-
dard client-side scripting language for web-based applications due to its highly portable
nature. Our treatment of JavaScript serves two purposes—it introduces client-side
scripting (used in Chapters 6–18), which makes web pages more dynamic and interactive,
and it provides the programming foundation for the server-side scripting presented later
in the book.

Before you can run code examples with JavaScript on your computer, you may need
to change your browser’s security settings. By default, Internet Explorer 9 prevents scripts
on your local computer from running, and displays a warning message. To allow scripts to
run in files on your computer, select Internet Options from the Tools menu. Click the
Advanced tab and scroll down to the Security section of the Settings list. Check the box
labeled Allow active content to run in files on My Computer. Click OK and restart Internet
Explorer. HTML5 documents on your own computer that contain JavaScript code will
now run properly. Firefox, Chrome, Opera, Safari (including on the iPhone) and the
Android browser have JavaScript enabled by default.

6.2 Your First Script: Displaying a Line of Text with
JavaScript in a Web Page
We begin with a simple script (or program) that displays the text "Welcome to JavaScript
Programming!" in the HTML5 document. All major web browsers contain JavaScript in-
terpreters, which process the commands written in JavaScript. The JavaScript code and its
result are shown in Fig. 6.1.

6.1 Introduction
6.2 Your First Script: Displaying a Line of

Text with JavaScript in a Web Page
6.3 Modifying Your First Script
6.4 Obtaining User Input with prompt

Dialogs
6.4.1 Dynamic Welcome Page
6.4.2 Adding Integers

6.5 Memory Concepts
6.6 Arithmetic
6.7 Decision Making: Equality and

Relational Operators
6.8 Web Resources

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1. Many people confuse the scripting language JavaScript with the programming language Java. Java is
a full-fledged object-oriented programming language. Java is popular for developing large-scale dis-
tributed enterprise applications and web applications. JavaScript is a browser-based scripting lan-
guage developed by Netscape and implemented in all major browsers.

2. JavaScript was originally created by Netscape. Both Netscape and Microsoft have been instrumental
in the standardization of JavaScript by ECMA International—formerly the European Computer
Manufacturers’ Association—as ECMAScript (www.ecma-international.org/publications/
standards/ECMA-262.htm). The latest version of JavaScript is based on ECMAScript 5.

iw3htp5_06_JSIntro.fm Page 218 Wednesday, November 16, 2011 11:52 AM

6.2 Your First Script: Displaying a Line of Text with JavaScript in a Web Page 219

Lines 11–12 do the “real work” of the script, namely, displaying the phrase Welcome
to JavaScript Programming! as an h1 heading in the web page.

Line 6 starts the <head> section of the document. For the moment, the JavaScript
code we write will appear in the <head> section. The browser interprets the contents of the
<head> section first, so the JavaScript programs we write there execute before the <body>
of the HTML5 document displays. In later chapters on JavaScript, we illustrate inline
scripting, in which JavaScript code is written in the <body> of an HTML5 document.

The script Element and Commenting Your Scripts
Line 9 uses the <script> tag to indicate to the browser that the text which follows is part
of a script. The type attribute specifies the MIME type of the script as well as the scripting
language used in the script—in this case, a text file written in javascript. In HTML5,
the default MIME type for a <script> is "text/html", so you can omit the type attribute
from your <script> tags. We’ve introduced this here, because you’ll see it in legacy
HTML documents with embedded JavaScripts.

Strings
Lines 11–12 instruct the browser’s JavaScript interpreter to perform an action, namely, to
display in the web page the string of characters contained between the double quotation
(") marks (also called a string literal). Individual white-space characters between words in
a string are not ignored by the browser. However, if consecutive spaces appear in a string,

1 <!DOCTYPE html>
2
3 <!-- Fig. 6.1: welcome.html -->
4 <!-- Displaying a line of text. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>A First Program in JavaScript</title>
9

10
11
12
13
14
15 </head><body></body>
16 </html>

Fig. 6.1 | Displaying a line of text.

<script type = "text/javascript">

 document.writeln(
 "<h1>Welcome to JavaScript Programming!</h1>");

</script>

Script result

iw3htp5_06_JSIntro.fm Page 219 Wednesday, November 16, 2011 11:52 AM

220 Chapter 6 JavaScript: Introduction to Scripting

browsers condense them to a single space. Also, browsers ignore leading white-space char-
acters (i.e., white space at the beginning of a string).

Using the document Object
Lines 11–12 use the browser’s document object, which represents the HTML5 document
the browser is currently displaying. This object allows you to specify text to display in the
HTML5 document. The browser creates a set of objects that allow you to access and ma-
nipulate every element of an HTML5 document. In the next several chapters, we overview
some of these objects as we discuss the Document Object Model (DOM).

An object resides in the computer’s memory and contains information used by the
script. The term object normally implies that attributes (data) and behaviors (methods)
are associated with the object. The object’s methods use the attributes to perform useful
actions for the client of the object (i.e., the script that calls the methods). A method may
require additional information (arguments) to perform its actions; this information is
enclosed in parentheses after the name of the method in the script. In lines 11–12, we call
the document object’s writeln method to write a line of HTML5 markup in the HTML5
document. The parentheses following the method name writeln contain the one argu-
ment that method writeln requires (in this case, the string of HTML5 that the browser
is to display). Method writeln instructs the browser to write the argument string into the
web page for rendering. If the string contains HTML5 elements, the browser interprets
these elements and renders them on the screen. In this example, the browser displays the
phrase Welcome to JavaScript Programming! as an h1-level HTML5 heading, because the
phrase is enclosed in an h1 element.

Statements
The code elements in lines 11–12, including document.writeln, its argument in the pa-
rentheses (the string) and the semicolon (;), together are called a statement. Every state-
ment ends with a semicolon (also known as the statement terminator)—although this
practice is not required by JavaScript, it’s recommended as a way of avoiding subtle prob-
lems. Line 14 indicates the end of the script. In line 15, the tags <body> and </body> spec-
ify that this HTML5 document has an empty body.

Open the HTML5 document in your browser. If the script contains no syntax errors,
it should produce the output shown in Fig. 6.1.

Software Engineering Observation 6.1
Strings in JavaScript can be enclosed in either double quotation marks (") or single
quotation marks (').

Good Programming Practice 6.1
Terminate every statement with a semicolon. This notation clarifies where one statement
ends and the next statement begins.

Common Programming Error 6.1
Forgetting the ending </script> tag for a script may prevent the browser from interpret-
ing the script properly and may prevent the HTML5 document from loading properly.

iw3htp5_06_JSIntro.fm Page 220 Wednesday, November 16, 2011 11:52 AM

6.3 Modifying Your First Script 221

A Note About document.writeln
In this example, we displayed an h1 HTML5 element in the web browser by using
document.writeln to write the element into the web page. For simplicity in Chapters 6–
9, we’ll continue to do this as we focus on presenting fundamental JavaScript program-
ming concepts. Typically, you’ll display content by modifying an existing element in a web
page—a technique we’ll begin using in Chapter 10.

A Note About Embedding JavaScript Code into HTML5 Documents
In Section 4.5, we discussed the benefits of placing CSS3 code in external style sheets and
linking them to your HTML5 documents. For similar reasons, JavaScript code is typically
placed in a separate file, then included in the HTML5 document that uses the script. This
makes the code more reusable, because it can be included into any HTML5 document—as
is the case with the many JavaScript libraries used in professional web development today.
We’ll begin separating both CSS3 and JavaScript into separate files starting in Chapter 10.

6.3 Modifying Your First Script
This section continues our introduction to JavaScript programming with two examples
that modify the example in Fig. 6.1.

Displaying a Line of Colored Text
A script can display Welcome to JavaScript Programming! in many ways. Figure 6.2 dis-
plays the text in magenta, using the CSS color property. Most of this example is identical
to Fig. 6.1, so we concentrate only on lines 11–13 of Fig. 6.2, which display one line of text
in the document. The first statement uses document method write to display a string. Unlike
writeln, write does not position the output cursor in the HTML5 document at the begin-
ning of the next line after writing its argument. [Note: The output cursor keeps track of where
the next character appears in the document’s markup, not where the next character appears
in the web page as rendered by the browser.] The next character written in the document
appears immediately after the last character written with write. Thus, when lines 12–13 ex-
ecute, the first character written, “W,” appears immediately after the last character displayed

Common Programming Error 6.2
JavaScript is case sensitive. Not using the proper uppercase and lowercase letters is a syn-
tax error. A syntax error occurs when the script interpreter cannot recognize a statement.
The interpreter normally issues an error message to help you locate and fix the incorrect
statement. Syntax errors are violations of the rules of the programming language. The in-
terpreter notifies you of a syntax error when it attempts to execute the statement containing
the error. Each browser has its own way to display JavaScript Errors. For example, Firefox
has the Error Console (in its Web Developer menu) and Chrome has the JavaScript con-
sole (in its Tools menu). To view script errors in IE9, select Internet Options… from the
Tools menu. In the dialog that appears, select the Advanced tab and click the checkbox
labeled Display a notification about every script error under the Browsing category.

Error-Prevention Tip 6.1
When the interpreter reports a syntax error, sometimes the error is not in the line indicated
by the error message. First, check the line for which the error was reported. If that line
does not contain errors, check the preceding several lines in the script.

iw3htp5_06_JSIntro.fm Page 221 Wednesday, November 16, 2011 11:52 AM

222 Chapter 6 JavaScript: Introduction to Scripting

with write (the > character inside the right double quote in line 11). Each write or writeln
statement resumes writing characters where the last write or writeln statement stopped
writing characters. So, after a writeln statement, the next output appears on the beginning
of the next line. Thus, the two statements in lines 11–13 result in one line of HTML5 text.
Remember that statements in JavaScript are separated by semicolons (;). Therefore, lines
12–13 represent only one complete statement. JavaScript allows large statements to be split
over many lines. The + operator (called the “concatenation operator” when used in this man-
ner) in line 12 joins two strings together—it’s explained in more detail later in this chapter.

The preceding discussion has nothing to do with the actual rendering of the HTML5
text. Remember that the browser does not create a new line of text unless the browser
window is too narrow for the text being rendered or the browser encounters an HTML5
element that explicitly starts a new line—for example, <p> to start a new paragraph.

1 <!DOCTYPE html>
2
3 <!-- Fig. 6.2: welcome2.html -->
4 <!-- Printing one line with multiple statements. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Printing a Line with Multiple Statements</title>
9 <script type = "text/javascript">

10 <!--
11
12
13
14 // -->
15 </script>
16 </head><body></body>
17 </html>

Fig. 6.2 | Printing one line with separate statements.

Common Programming Error 6.3
Splitting a JavaScript statement in the middle of a string is a syntax error.

Common Programming Error 6.4
Many people confuse the writing of HTML5 text with the rendering of HTML5 text.
Writing HTML5 text creates the HTML5 that will be rendered by the browser for
presentation to the user.

document.write("<h1 style = ’color: magenta’>");
document.write("Welcome to JavaScript " +
 "Programming!</h1>");

Magenta text

iw3htp5_06_JSIntro.fm Page 222 Wednesday, November 16, 2011 11:52 AM

6.3 Modifying Your First Script 223

Nesting Quotation Marks
Recall that a string can be delimited by single (') or double (") quote characters. Within
a string, you can’t nest quotes of the same type, but you can nest quotes of the other type.
A string that’s delimited by double quotes, can contain single quotes. Similarly. a string
that’s delimited by single quotes, can contain nest double quotes. Line 11 nests single
quotes inside a double-quoted string to quote the style attribute’s value in the h1 element.

Displaying Text in an Alert Dialog
The first two scripts in this chapter display text in the HTML5 document. Sometimes it’s
useful to display information in windows called dialogs (or dialog boxes) that “pop up”
on the screen to grab the user’s attention. Dialogs typically display important messages to
users browsing the web page. JavaScript allows you easily to display a dialog box contain-
ing a message. The script in Fig. 6.3 displays Welcome to JavaScript Programming! as
three lines in a predefined dialog called an alert dialog.

The window Object
Line 11 in the script uses the browser’s window object to display an alert dialog. The argu-
ment to the window object’s alert method is the string to display. Executing the preceding
statement displays the dialog shown in Fig. 6.3. The title bar of this Chrome dialog con-
tains the string JavaScript Alert to indicate that the browser is presenting a message to the
user. The dialog provides an OK button that allows the user to dismiss (i.e., close) the di-
alog by clicking the button. To dismiss the dialog, position the mouse cursor (also called

1 <!DOCTYPE html>
2
3 <!-- Fig. 6.3: welcome3.html -->
4 <!-- Alert dialog displaying multiple lines. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Printing Multiple Lines in a Dialog Box</title>
9 <script type = "text/javascript">

10 <!--
11
12 // -->
13 </script>
14 </head>
15 <body>
16 <p>Click Refresh (or Reload) to run this script again.</p>
17 </body>
18 </html>

Fig. 6.3 | Alert dialog displaying multiple lines.

window.alert("Welcome to\nJavaScript\nProgramming!");

Clicking the OK button
dismisses the dialog.

Title bar

Mouse cursor

iw3htp5_06_JSIntro.fm Page 223 Wednesday, November 16, 2011 11:52 AM

224 Chapter 6 JavaScript: Introduction to Scripting

the mouse pointer) over the OK button and click the mouse, or simply press the Enter key.
The contents of the dialog vary by browser. You can refresh the page to run the script
again.

Escape Sequences
The alert dialog in this example contains three lines of plain text. Normally, a dialog dis-
plays a string’s characters exactly as they appear. However, the dialog does not display the
characters \n (line 11). The backslash (\) in a string is an escape character. It indicates that
a “special” character is to be used in the string. When a backslash is encountered in a string,
the next character is combined with the backslash to form an escape sequence. The escape
sequence \n is the newline character, which causes the cursor (i.e., the current screen po-
sition indicator) to move to the beginning of the next line in the dialog. Some other com-
mon JavaScript escape sequences are listed in Fig. 6.4. The \n and \t escape sequences in
the table do not affect HTML5 rendering unless they’re in a pre element (this element
displays the text between its tags in a fixed-width font exactly as it’s formatted between the
tags, including leading white-space characters and consecutive white-space characters).

6.4 Obtaining User Input with prompt Dialogs
Scripting gives you the ability to generate part or all of a web page’s content at the time
it’s shown to the user. A script can adapt the content based on input from the user or other
variables, such as the time of day or the type of browser used by the client. Such web pages
are said to be dynamic, as opposed to static, since their content has the ability to change.
The next two subsections use scripts to demonstrate dynamic web pages.

6.4.1 Dynamic Welcome Page
Our next script creates a dynamic welcome page that obtains the user’s name, then displays
it on the page. The script uses another predefined dialog box from the window object—a
prompt dialog—which allows the user to enter a value that the script can use. The script

Escape sequence Description

\n New line—position the screen cursor at the beginning of the next line.

\t Horizontal tab—move the screen cursor to the next tab stop.

\\ Backslash—used to represent a backslash character in a string.

\" Double quote—used to represent a double-quote character in a string
contained in double quotes. For example,

window.alert("\"in double quotes\"");

displays "in double quotes" in an alert dialog.

\' Single quote—used to represent a single-quote character in a string. For
example,

window.alert('\'in single quotes\'');

displays 'in single quotes' in an alert dialog.

Fig. 6.4 | Some common escape sequences.

iw3htp5_06_JSIntro.fm Page 224 Wednesday, November 16, 2011 11:52 AM

6.4 Obtaining User Input with prompt Dialogs 225

asks the user to enter a name, then displays the name in the HTML5 document.
Figure 6.5 presents the script and sample output. In later chapters, we’ll obtain inputs via
GUI components in HTML5 forms, as introduced in Chapters 2–3.]

Declarations, Keywords and Variables
Line 11 is a declaration that contains the JavaScript keyword var. Keywords are words
that have special meaning in JavaScript. The keyword var at the beginning of the state-
ment indicates that the word name is a variable. A variable is a location in the computer’s
memory where a value can be stored for use by a script. All variables have a name and value,
and should be declared with a var statement before they’re used in a script.

1 <!DOCTYPE html>
2
3 <!-- Fig. 6.5: welcome4.html -->
4 <!-- Prompt box used on a welcome screen -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Using Prompt and Alert Boxes</title>
9 <script type = "text/javascript">

10 <!--
11 // string entered by the user
12
13 // read the name from the prompt box as a string
14
15
16 document.writeln("<h1>Hello " + name +
17 ", welcome to JavaScript programming!</h1>");
18 // -->
19 </script>
20 </head><body></body>
21 </html>

Fig. 6.5 | Prompt box used on a welcome screen.

var name;

name = window.prompt("Please enter your name");

iw3htp5_06_JSIntro.fm Page 225 Wednesday, November 16, 2011 11:52 AM

226 Chapter 6 JavaScript: Introduction to Scripting

Identifiers and Case Sensitivity
The name of a variable can be any valid identifier. An identifier is a series of characters con-
sisting of letters, digits, underscores (_) and dollar signs ($) that does not begin with a digit
and is not a reserved JavaScript keyword. [Note: A complete list of reserved keywords can be
found in Fig. 7.2.] Identifiers may not contain spaces. Some valid identifiers are Welcome,
$value, _value, m_inputField1 and button7. The name 7button is not a valid identifier,
because it begins with a digit, and the name input field is not valid, because it contains a
space. Remember that JavaScript is case sensitive—uppercase and lowercase letters are con-
sidered to be different characters, so name, Name and NAME are different identifiers.

Declarations end with a semicolon and can be split over several lines with each variable
in the declaration separated by a comma—known as a comma-separated list of variable
names. Several variables may be declared either in one or in multiple declarations.

JavaScript Comments
It’s helpful to indicate the purpose of each variable in the script by placing a JavaScript
comment at the end of each line in the declaration. In line 11, a single-line comment that
begins with the characters // states the purpose of the variable in the script. This form of
comment is called a single-line comment because it terminates at the end of the line in
which it appears. A // comment can begin at any position in a line of JavaScript code and
continues until the end of the line. Comments do not cause the browser to perform any
action when the script is interpreted; rather, comments are ignored by the JavaScript inter-
preter.

Multiline Comments
You can also write multiline comments. For example,

Good Programming Practice 6.2
Choosing meaningful variable names helps a script to be “self-documenting” (i.e., easy to
understand by simply reading the script).

Good Programming Practice 6.3
By convention, variable-name identifiers begin with a lowercase first letter. Each subse-
quent word should begin with a capital first letter. For example, identifier itemPrice has
a capital P in its second word, Price.

Common Programming Error 6.5
Splitting a statement in the middle of an identifier is a syntax error.

Good Programming Practice 6.4
Although it’s not required, declare each variable on a separate line. This allows for easy
insertion of a comment next to each declaration. This is a widely followed professional
coding standard.

/* This is a multiline
 comment. It can be
 split over many lines. */

iw3htp5_06_JSIntro.fm Page 226 Wednesday, November 16, 2011 11:52 AM

6.4 Obtaining User Input with prompt Dialogs 227

is a multiline comment spread over several lines. Such comments begin with the delimiter
/* and end with the delimiter */. All text between the delimiters of the comment is ignored
by the interpreter.

JavaScript adopted comments delimited with /* and */ from the C programming lan-
guage and single-line comments delimited with // from the C++ programming language.
JavaScript programmers generally prefer C++-style single-line comments over C-style
comments. Throughout this book, we use C++-style single-line comments.

window Object’s prompt Method
Line 13 is a comment indicating the purpose of the statement in the next line. Line 14
calls the window object’s prompt method, which displays the dialog in Fig. 6.6. The dialog
allows the user to enter a string representing the user’s name.

The argument to prompt specifies a message telling the user what to type in the text
field. This message is called a prompt because it directs the user to take a specific action.
An optional second argument, separated from the first by a comma, may specify the
default string displayed in the text field; our code does not supply a second argument. In
this case, most browsers leave the text field empty, and Internet Explorer displays the
default value undefined. The user types characters in the text field, then clicks the OK
button to submit the string to the script. We normally receive input from a user through
a GUI component such as the prompt dialog, as in this script, or through an HTML5 form
GUI component, as we’ll see in later chapters.

The user can type anything in the text field of the prompt dialog. For this script, what-
ever the user enters is considered the name. If the user clicks the Cancel button, no string
value is sent to the script. Instead, the prompt dialog submits the value null, a JavaScript
keyword signifying that a variable has no value. Note that null is not a string literal, but
rather a predefined term indicating the absence of value. Writing a null value to the doc-
ument, however, displays the word null in the web page.

Assignment Operator
The statement in line 14 assigns the value returned by the window object’s prompt method (a
string containing the characters typed by the user—or the default value or null if the Cancel
button is clicked) to variable name by using the assignment operator, =. The statement is read
as, “name gets the value returned by window.prompt("Please enter your name").” The =

Fig. 6.6 | Prompt dialog displayed by the window object’s prompt method.

This is the text
field in which the
user types the
value

When the user clicks OK, the
value typed by the user is returned
to the program as a string

This is the
prompt to the

user

This is the value the user
types into the alert dialog

iw3htp5_06_JSIntro.fm Page 227 Wednesday, November 16, 2011 11:52 AM

228 Chapter 6 JavaScript: Introduction to Scripting

operator is called a binary operator because it has two operands—name and the result of the
expression window.prompt("Please enter your name"). This entire statement is called an
assignment because it assigns a value to a variable. The expression to the right of the assign-
ment operator is always evaluated first.

String Concatenation
Lines 16–17 use document.writeln to display the new welcome message. The expression
inside the parentheses uses the operator + to “add” a string (the literal "<h1>Hello, "), the
variable name (the string that the user entered in line 14) and another string (the literal ",
welcome to JavaScript programming!</h1>"). JavaScript has a version of the + operator
for string concatenation that enables a string and a value of another data type (including
another string) to be combined. The result of this operation is a new (and normally longer)
string. If we assume that name contains the string literal "Jim", the expression evaluates as
follows: JavaScript determines that the two operands of the first + operator (the string
"<h1>Hello, " and the value of variable name) are both strings, then concatenates the two
into one string. Next, JavaScript determines that the two operands of the second + opera-
tor (the result of the first concatenation operation, the string "<h1>Hello, Jim", and the
string ", welcome to JavaScript programming!</h1>") are both strings and concatenates
the two. This results in the string "<h1>Hello, Jim, welcome to JavaScript program-
ming!</h1>". The browser renders this string as part of the HTML5 document. Note that
the space between Hello, and Jim is part of the string "<h1>Hello, ".

As you’ll see later, the + operator used for string concatenation can convert other vari-
able types to strings if necessary. Because string concatenation occurs between two strings,
JavaScript must convert other variable types to strings before it can proceed with the oper-
ation. For example, if a variable age has an integer value equal to 21, then the expression
"my age is " + age evaluates to the string "my age is 21". JavaScript converts the value of
age to a string and concatenates it with the existing string literal "my age is ".

After the browser interprets the <head> section of the HTML5 document (which con-
tains the JavaScript), it then interprets the <body> of the HTML5 document (which is
empty; line 20) and renders the HTML5. The HTML5 page is not rendered until the
prompt is dismissed because the prompt pauses execution in the head, before the body is
processed. If you reload the page after entering a name, the browser will execute the script
again and so you can change the name.

6.4.2 Adding Integers
Our next script illustrates another use of prompt dialogs to obtain input from the user.
Figure 6.7 inputs two integers (whole numbers, such as 7, –11, 0 and 31914) typed by a
user at the keyboard, computes the sum of the values and displays the result.

Lines 11–15 declare the variables firstNumber, secondNumber, number1, number2
and sum. Single-line comments state the purpose of each of these variables. Line 18
employs a prompt dialog to allow the user to enter a string representing the first of the two
integers that will be added. The script assigns the first value entered by the user to the vari-

Good Programming Practice 6.5
Place a space on each side of a binary operator. This format makes the operator stand out
and makes the script more readable.

iw3htp5_06_JSIntro.fm Page 228 Wednesday, November 16, 2011 11:52 AM

6.4 Obtaining User Input with prompt Dialogs 229

able firstNumber. Line 21 displays a prompt dialog to obtain the second number to add
and assigns this value to the variable secondNumber.

1 <!DOCTYPE html>
2
3 <!-- Fig. 6.7: addition.html -->
4 <!-- Addition script. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>An Addition Program</title>
9 <script type = "text/javascript">

10 <!--
11 var firstNumber; // first string entered by user
12 var secondNumber; // second string entered by user
13 var number1; // first number to add
14 var number2; // second number to add
15 var sum; // sum of number1 and number2
16
17 // read in first number from user as a string
18
19
20 // read in second number from user as a string
21
22
23 // convert numbers from strings to integers
24
25
26
27 sum = number1 + number2; // add the numbers
28
29 // display the results
30 document.writeln("<h1>The sum is " + sum + "</h1>");
31 // -->
32 </script>
33 </head><body></body>
34 </html>

Fig. 6.7 | Addition script. (Part 1 of 2.)

firstNumber = window.prompt("Enter first integer");

secondNumber = window.prompt("Enter second integer");

number1 = parseInt(firstNumber);
number2 = parseInt(secondNumber);

iw3htp5_06_JSIntro.fm Page 229 Wednesday, November 16, 2011 11:52 AM

230 Chapter 6 JavaScript: Introduction to Scripting

As in the preceding example, the user can type anything in the prompt dialog. For this
script, if the user either types a non-integer value or clicks the Cancel button, a logic error
will occur, and the sum of the two values will appear in the HTML5 document as NaN
(meaning not a number). A logic error is caused by syntactically correct code that produces
an incorrect result. In Chapter 11, we discuss the Number object and its methods that can
determine whether a value is a number.

Recall that a prompt dialog returns to the script as a string the value typed by the user.
Lines 24–25 convert the two strings input by the user to integer values that can be used in
a calculation. Function parseInt converts its string argument to an integer. Line 24
assigns to the variable number1 the integer that function parseInt returns. Similarly, line
25 assigns an integer value to variable number2. Any subsequent references to number1 and
number2 in the script use these integer values. We refer to parseInt as a function rather
than a method because we do not precede the function call with an object name (such as
document or window) and a dot (.). The term method means that the function belongs to
a particular object. For example, method writeln belongs to the document object and
method prompt belongs to the window object.

Line 27 calculates the sum of the variables number1 and number2 using the addition
operator, +, and assigns the result to variable sum by using the assignment operator, =.
Notice that the + operator can perform both addition and string concatenation. In this
case, the + operator performs addition, because both operands contain integers. After line
27 performs this calculation, line 30 uses document.writeln to display the result of the
addition on the web page.

Validating JavaScript
As discussed in the Preface, we validated our code using HTML5, CSS3 and JavaScript
validation tools. Browsers are generally forgiving and don’t typically display error messages
to the user. As a programmer, you should thoroughly test your web pages and validate
them. Validation tools report two types of messages—errors and warnings. Typically, you
must resolve errors; otherwise, your web pages probably won’t render or execute correctly.

Common Programming Error 6.6
Confusing the + operator used for string concatenation with the + operator used for addi-
tion often leads to undesired results. For example, if integer variable y has the value 5, the
expression "y + 2 = " + y + 2 results in "y + 2 = 52", not "y + 2 = 7", because first the value
of y (i.e., 5) is concatenated with the string "y + 2 = ", then the value 2 is concatenated
with the new, larger string "y + 2 = 5". The expression "y + 2 = " + (y + 2) produces the
string "y + 2 = 7" because the parentheses ensure that y + 2 is calculated.

Fig. 6.7 | Addition script. (Part 2 of 2.)

iw3htp5_06_JSIntro.fm Page 230 Wednesday, November 16, 2011 11:52 AM

6.5 Memory Concepts 231

Pages with warnings normally render and execute correctly; however, some organizations
have strict protocols indicating that all pages must be free of both warnings and errors be-
fore they can be posted on a live website.

When you validate this example at www.javascriptlint.com, lines 24–25 produce
the warning message:

Function parseInt has an optional second parameter, known as the radix, that specifies
the base number system that’s used to parse the number (e.g., 8 for octal, 10 for decimal
and 16 for hexadecimal). The default is base 10, but you can specify any base from 2 to
32. For example, the following statement indicates that firstNumber should be treated as
a decimal (base 10) integer:

This prevents numbers in other formats like octal (base 8) from being converted to incor-
rect values.

6.5 Memory Concepts
Variable names such as number1, number2 and sum actually correspond to locations in the
computer’s memory. Every variable has a name, a type and a value.

In the addition script in Fig. 6.7, when line 24 executes, the string firstNumber (pre-
viously entered by the user in a prompt dialog) is converted to an integer and placed into
a memory location to which the name number1 has been assigned by the interpreter. Sup-
pose the user entered the string 45 as the value for firstNumber. The script converts
firstNumber to an integer, and the computer places the integer value 45 into location
number1, as shown in Fig. 6.8. Whenever a value is placed in a memory location, the value
replaces the previous value in that location. The previous value is lost.

Suppose that the user enters 72 as the second integer. When line 25 executes, the
script converts secondNumber to an integer and places that integer value, 72, into location
number2; then the memory appears as shown in Fig. 6.9.

Once the script has obtained values for number1 and number2, it adds the values and
places the sum into variable sum. The statement

parseInt missing radix parameter

number1 = parseInt(firstNumber, 10);

Fig. 6.8 | Memory location showing the name and value of variable number1.

Fig. 6.9 | Memory locations after inputting values for variables number1 and number2.

45number1

45

72

number1

number2

iw3htp5_06_JSIntro.fm Page 231 Wednesday, November 16, 2011 11:52 AM

232 Chapter 6 JavaScript: Introduction to Scripting

performs the addition and also replaces sum’s previous value. After sum is calculated, the
memory appears as shown in Fig. 6.10. Note that the values of number1 and number2 ap-
pear exactly as they did before they were used in the calculation of sum. These values were
used, but not destroyed, when the computer performed the calculation—when a value is
read from a memory location, the process is nondestructive.

Data Types in JavaScript
Unlike its predecessor languages C, C++ and Java, JavaScript does not require variables to have
a declared type before they can be used in a script. A variable in JavaScript can contain a value
of any data type, and in many situations JavaScript automatically converts between values of
different types for you. For this reason, JavaScript is referred to as a loosely typed language.
When a variable is declared in JavaScript, but is not given a value, the variable has an unde-
fined value. Attempting to use the value of such a variable is normally a logic error.

When variables are declared, they’re not assigned values unless you specify them.
Assigning the value null to a variable indicates that it does not contain a value.

6.6 Arithmetic
Many scripts perform arithmetic calculations. Figure 6.11 summarizes the arithmetic op-
erators. Note the use of various special symbols not used in algebra. The asterisk (*) indi-
cates multiplication; the percent sign (%) is the remainder operator, which will be
discussed shortly. The arithmetic operators in Fig. 6.11 are binary operators, because each
operates on two operands. For example, the expression sum + value contains the binary
operator + and the two operands sum and value.

sum = number1 + number2;

Fig. 6.10 | Memory locations after calculating the sum of number1 and number2.

JavaScript
operation

Arithmetic
operator

Algebraic
expression

JavaScript
expression

Addition + f + 7 f + 7

Subtraction - p – c p - c

Multiplication * bm b * m

Division / x/y or or x ÷ y x / y

Remainder % r mod s r % s

Fig. 6.11 | Arithmetic operators.

45

72

117

number1

number2

sum

x
y--

iw3htp5_06_JSIntro.fm Page 232 Wednesday, November 16, 2011 11:52 AM

6.6 Arithmetic 233

Remainder Operator, %
JavaScript provides the remainder operator, %, which yields the remainder after division.
The expression x % y yields the remainder after x is divided by y. Thus, 17 % 5 yields 2 (i.e.,
17 divided by 5 is 3, with a remainder of 2), and 7.4 % 3.1 yields 1.2. In later chapters,
we consider applications of the remainder operator, such as determining whether one
number is a multiple of another. There’s no arithmetic operator for exponentiation in
JavaScript. (Chapter 8 shows how to perform exponentiation in JavaScript using the Math
object’s pow method.)

Arithmetic expressions in JavaScript must be written in straight-line form to facilitate
entering scripts into the computer. Thus, expressions such as “a divided by b” must be
written as a / b, so that all constants, variables and operators appear in a straight line. The
following algebraic notation is generally not acceptable to computers:

Parentheses are used to group expressions in the same manner as in algebraic expres-
sions. For example, to multiply a times the quantity b + c we write:

Operator Precedence
JavaScript applies the operators in arithmetic expressions in a precise sequence determined
by the following rules of operator precedence, which are generally the same as those fol-
lowed in algebra:

1. Multiplication, division and remainder operations are applied first. If an expres-
sion contains several multiplication, division and remainder operations, opera-
tors are applied from left to right. Multiplication, division and remainder
operations are said to have the same level of precedence.

2. Addition and subtraction operations are applied next. If an expression contains
several addition and subtraction operations, operators are applied from left to
right. Addition and subtraction operations have the same level of precedence.

The rules of operator precedence enable JavaScript to apply operators in the correct order.
When we say that operators are applied from left to right, we’re referring to the associativ-
ity of the operators—the order in which operators of equal priority are evaluated. We’ll see
that some operators associate from right to left. Figure 6.12 summarizes the rules of oper-
ator precedence. The table in Fig. 6.12 will be expanded as additional JavaScript operators
are introduced. A complete precedence chart is included in Appendix C.

a * (b + c)

Operator(s) Operation(s) Order of evaluation (precedence)

*, / or % Multiplication
Division
Remainder

Evaluated first. If there are several such opera-
tions, they’re evaluated from left to right.

+ or - Addition
Subtraction

Evaluated last. If there are several such operations,
they’re evaluated from left to right.

Fig. 6.12 | Precedence of arithmetic operators.

a
b
--

iw3htp5_06_JSIntro.fm Page 233 Wednesday, November 16, 2011 11:52 AM

234 Chapter 6 JavaScript: Introduction to Scripting

Let’s consider several algebraic expressions. Each example lists an algebraic expression
and the equivalent JavaScript expression.

The following is an example of an arithmetic mean (average) of five terms:

Parentheses are required to group the addition operators, because division has higher pre-
cedence than addition. The entire quantity (a + b + c + d + e) is to be divided by 5. If the
parentheses are erroneously omitted, we obtain a + b + c + d + e / 5, which evaluates as

and would not lead to the correct answer.
The following is an example of the equation of a straight line:

No parentheses are required. The multiplication operator is applied first, because multi-
plication has a higher precedence than addition. The assignment occurs last, because it has
a lower precedence than multiplication and addition.

As in algebra, it’s acceptable to use unnecessary parentheses in an expression to make
the expression clearer. These are also called redundant parentheses. For example, the pre-
ceding second-degree polynomial might be parenthesized as follows:

6.7 Decision Making: Equality and Relational Operators
This section introduces a version of JavaScript’s if statement that allows a script to make
a decision based on the truth or falsity of a condition. If the condition is met (i.e., the con-
dition is true), the statement in the body of the if statement is executed. If the condition
is not met (i.e., the condition is false), the statement in the body of the if statement is not
executed. We’ll see an example shortly.

Conditions in if statements can be formed by using the equality operators and rela-
tional operators summarized in Fig. 6.13. The relational operators all have the same level
of precedence and associate from left to right. The equality operators both have the same
level of precedence, which is lower than the precedence of the relational operators. The
equality operators also associate from left to right. Each comparison results in a value of
true or false.

Algebra:

JavaScript: m = (a + b + c + d + e) / 5;

Algebra:

JavaScript: y = m * x + b;

 y = (a * x * x) + (b * x) + c;

Common Programming Error 6.7
Confusing the equality operator, ==, with the assignment operator, =, is a logic error. The
equality operator should be read as “is equal to,” and the assignment operator should be
read as “gets” or “gets the value of.” Some people prefer to read the equality operator as
“double equals” or “equals equals.”

m a b c d e+ + + +
5

---------------------------------------=

a b c d e
5
---+ + + +

y mx b+=

iw3htp5_06_JSIntro.fm Page 234 Wednesday, November 16, 2011 11:52 AM

6.7 Decision Making: Equality and Relational Operators 235

The script in Fig. 6.14 uses four if statements to display a time-sensitive greeting on
a welcome page. The script obtains the local time from the user’s computer and converts
it from 24-hour clock format (0–23) to a 12-hour clock format (0–11). Using this value,
the script displays an appropriate greeting for the current time of day. The script and
sample output are shown in Fig. 6.14. Lines 11–13 declare the variables used in the script.
Also note that JavaScript allows you to assign a value to a variable when it’s declared.

Creating and Using a New Date Object
Line 12 sets the variable now to a new Date object, which contains information about the
current local time. In Section 6.2, we introduced the document object, which encapsulates
data pertaining to the current web page. Here, we use JavaScript’s built-in Date object to ac-
quire the current local time. We create a new object by using the new operator followed by
the type of the object, in this case Date, and a pair of parentheses. Some objects require that
arguments be placed in the parentheses to specify details about the object to be created. In

Standard algebraic
equality operator or
relational operator

JavaScript equality
or relational
operator

Sample
JavaScript
condition

Meaning of
JavaScript condition

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Fig. 6.13 | Equality and relational operators.

1 <!DOCTYPE html>
2
3 <!-- Fig. 6.14: welcome5.html -->
4 <!-- Using equality and relational operators. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Using Relational Operators</title>
9 <script type = "text/javascript">

10 <!--
11 var name; // string entered by the user
12 var // current date and time
13 var // current hour (0-23)
14
15 // read the name from the prompt box as a string
16 name = window.prompt("Please enter your name");

Fig. 6.14 | Using equality and relational operators. (Part 1 of 2.)

now = new Date();
hour = now.getHours();

iw3htp5_06_JSIntro.fm Page 235 Wednesday, November 16, 2011 11:52 AM

236 Chapter 6 JavaScript: Introduction to Scripting

this case, we leave the parentheses empty to create a default Date object containing informa-
tion about the current date and time. After line 12 executes, the variable now refers to the new
Date object. We did not need to use the new operator when we used the document and win-
dow objects because these objects always are created by the browser. Line 13 sets the variable
hour to an integer equal to the current hour (in a 24-hour clock format) returned by the Date
object’s getHours method. Chapter 11 presents a more detailed discussion of the Date ob-
ject’s attributes and methods, and of objects in general. The script uses window.prompt to
allow the user to enter a name to display as part of the greeting (line 16).

Decision-Making with the if Statement
To display the correct time-sensitive greeting, the script must determine whether the user
is visiting the page during the morning, afternoon or evening. The first if statement (lines

17
18 // determine whether it’s morning
19
20 document.write("<h1>Good Morning, ");
21
22 // determine whether the time is PM
23
24 {
25 // convert to a 12-hour clock
26
27
28 // determine whether it is before 6 PM
29
30 document.write("<h1>Good Afternoon, ");
31
32 // determine whether it is after 6 PM
33
34 document.write("<h1>Good Evening, ");
35 } // end if
36
37 document.writeln(name +
38 ", welcome to JavaScript programming!</h1>");
39 // -->
40 </script>
41 </head><body></body>
42 </html>

Fig. 6.14 | Using equality and relational operators. (Part 2 of 2.)

if (hour < 12)

if (hour >= 12)

hour = hour - 12;

if (hour < 6)

if (hour >= 6)

iw3htp5_06_JSIntro.fm Page 236 Wednesday, November 16, 2011 11:52 AM

6.7 Decision Making: Equality and Relational Operators 237

19–20) compares the value of variable hour with 12. If hour is less than 12, then the user
is visiting the page during the morning, and the statement at line 20 outputs the string
"Good morning". If this condition is not met, line 20 is not executed. Line 23 determines
whether hour is greater than or equal to 12. If hour is greater than or equal to 12, then the
user is visiting the page in either the afternoon or the evening. Lines 24–35 execute to de-
termine the appropriate greeting. If hour is less than 12, then the JavaScript interpreter
does not execute these lines and continues to line 37.

Blocks and Decision-Making with Nested if Statements
The brace { in line 24 begins a block of statements (lines 24–35) that are executed together
if hour is greater than or equal to 12. Line 26 subtracts 12 from hour, converting the cur-
rent hour from a 24-hour clock format (0–23) to a 12-hour clock format (0–11). The if
statement (line 29) determines whether hour is now less than 6. If it is, then the time is
between noon and 6 PM, and line 30 outputs the beginning of an HTML5 h1 element
("<h1>Good Afternoon, "). If hour is greater than or equal to 6, the time is between 6 PM
and midnight, and the script outputs the greeting "Good Evening" (lines 33–34). The
brace } in line 35 ends the block of statements associated with the if statement in line 23.
Note that if statements can be nested—one if statement can be placed inside another.
The if statements that determine whether the user is visiting the page in the afternoon or
the evening (lines 29–30 and lines 33–34) execute only if the script has already established
that hour is greater than or equal to 12 (line 23). If the script has already determined the
current time of day to be morning, these additional comparisons are not performed.
Chapter 7 discusses blocks and nested if statements. Finally, lines 37–38 output the rest
of the HTML5 h1 element (the remaining part of the greeting), which does not depend
on the time of day.

Note the indentation of the if statements throughout the script. Such indentation
enhances script readability.

The Empty Statement
Note that there’s no semicolon (;) at the end of the first line of each if statement. Includ-
ing such a semicolon would result in a logic error at execution time. For example,

would actually be interpreted by JavaScript erroneously as

Good Programming Practice 6.6
Include comments after the closing curly brace of control statements (such as if statements)
to indicate where the statements end, as in line 35 of Fig. 6.14.

Good Programming Practice 6.7
Indent the statement in the body of an if statement to make the body of the statement
stand out and to enhance script readability.

if (hour < 12) ;
 document.write("<h1>Good Morning, ");

if (hour < 12)
 ;

document.write("<h1>Good Morning, ");

iw3htp5_06_JSIntro.fm Page 237 Wednesday, November 16, 2011 11:52 AM

238 Chapter 6 JavaScript: Introduction to Scripting

where the semicolon on the line by itself—called the empty statement—is the statement
to execute if the condition in the if statement is true. When the empty statement executes,
no task is performed in the script. The script then continues with the next statement,
which executes regardless of whether the condition is true or false. In this example,
"<h1>Good Morning, " would be printed regardless of the time of day.

Validating This Example’s Script
When you validate this example with www.javascriptlint.com, the following warning
message is displayed for the if statements in lines 19, 29 and 33:

You saw that an if statement’s body may contain multiple statements in a block that’s de-
limited by curly braces (lines 23–35). The curly braces are not required for an if statement
that has a one-statement body, such as the ones in lines 19, 29 and 33. Many programmers
consider it a good practice to enclose every if statement’s body in curly braces—in fact,
many organizations require this. For this reason, the validator issues the preceding warning
message. You can eliminate this example’s warning messages by enclosing the if statement
bodies in curly braces. For example, the if at lines 19–20 can be written as:

The Strict Equals (===) and Strict Does Not Equal (!==) Operators
As we mentioned in Section 6.5, JavaScript can convert between types for you. This in-
cludes cases in which you’re comparing values. For example, the comparison "75" == 75

yields the value true because JavaScript converts the string "75" to the number 75 before
performing the equality (==) comparison. To prevent implicit conversions in comparisons,
which can lead to unexpected results, JavaScript provides the strict equals (===) and strict
does not equal (!==) operators. The comparison "75" === 75 yields the value false be-
cause one operand is a string and the other is a number. Similarly, 75" !== 75 yields true
because the operand’s types are not equal, therefore the values are not equal. If you do not
use these operators when comparing values to null, 0, true, false or the empty string
(""), javascriptlint.com’s JavaScript validator displays warnings of potential implicit
conversions.

Operator Precedence Chart
The chart in Fig. 6.15 shows the precedence of the operators introduced in this chapter.
The operators are shown from top to bottom in decreasing order of precedence. Note that
all of these operators, with the exception of the assignment operator, =, associate from left
to right. Addition is left associative, so an expression like x + y + z is evaluated as if it had

Error-Prevention Tip 6.2
A lengthy statement may be spread over several lines. If a single statement must be split
across lines, choose breaking points that make sense, such as after a comma in a comma-
separated list or after an operator in a lengthy expression. If a statement is split across two
or more lines, indent all subsequent lines.

block statement without curly braces

if (hour < 12)
{
 document.write("<h1>Good Morning, ");
}

iw3htp5_06_JSIntro.fm Page 238 Wednesday, November 16, 2011 11:52 AM

6.8 Web Resources 239

been written as (x + y) + z. The assignment operator, =, associates from right to left, so an
expression like x = y = 0 is evaluated as if it had been written as x = (y = 0), which first
assigns the value 0 to variable y, then assigns the result of that assignment, 0, to x.

6.8 Web Resources
www.deitel.com/javascript

The Deitel JavaScript Resource Center contains links to some of the best JavaScript resources on the
web. There you’ll find categorized links to JavaScript tools, code generators, forums, books, libraries,
frameworks and more. Also check out the tutorials for all skill levels, from introductory to advanced.

Good Programming Practice 6.8
Refer to the operator precedence chart when writing expressions containing many opera-
tors. Confirm that the operations are performed in the order in which you expect them to
be performed. If you’re uncertain about the order of evaluation, use parentheses to force
the order, exactly as you would do in algebraic expressions. Be sure to observe that some
operators, such as assignment (=), associate from right to left rather than from left to right.

Operators Associativity Type

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != === !=== left to right equality

= right to left assignment

Fig. 6.15 | Precedence and associativity of the operators discussed so far.

Summary
Section 6.1 Introduction
• JavaScript (p. 218) is used to enhance the functionality and appearance of web pages.

Section 6.2 Your First Script: Displaying a Line of Text with JavaScript in a Web Page
• Often, JavaScripts appear in the <head> section of the HTML5 document.

• The browser interprets the contents of the <head> section first.

• The <script> tag indicates to the browser that the text that follows is part of a script (p. 218).
Attribute type (p. 219) specifies the MIME type of the scripting language used in the script—
such as text/javascript.

• A string of characters (p. 219) can be contained between double (") quotation marks (p. 219).

• A string (p. 219) is sometimes called a character string, a message or a string literal.

• The browser’s document object (p. 220) represents the HTML5 document the browser is currently
displaying. The document object allows a you to specify HTML5 text to display in the document.

• The browser creates a complete set of objects that allow you to access and manipulate every ele-
ment of an HTML5 document.

iw3htp5_06_JSIntro.fm Page 239 Wednesday, November 16, 2011 11:52 AM

240 Chapter 6 JavaScript: Introduction to Scripting

• An object (p. 220) resides in the computer’s memory and contains information used by the
script. The term object normally implies that attributes (data) (p. 220) and behaviors (methods)
(p. 220) are associated with the object. The object’s methods use the attributes’ data to perform
useful actions for the client of the object (i.e., the script that calls the methods).

• The document object’s writeln method (p. 220) writes a line of HTML5 text in a document.

• Every statement ends with a semicolon (also known as the statement terminator; p. 220), al-
though this practice is not required by JavaScript.

• JavaScript is case sensitive. Not using the proper uppercase and lowercase letters is a syntax error.

Section 6.3 Modifying Your First Script
• Sometimes it’s useful to display information in windows called dialogs (or dialog boxes; p. 223)

that “pop up” on the screen to grab the user’s attention. Dialogs typically display important mes-
sages to the user browsing the web page.

• The browser’s window object (p. 223) uses method alert (p. 223) to display an alert dialog.

• The escape sequence \n is the newline character (p. 224). It causes the cursor in the HTML5 doc-
ument to move to the beginning of the next line.

Section 7.4 Obtaining User Input with prompt Dialogs
• Keywords (p. 225) are words with special meaning in JavaScript.

• The keyword var (p. 225) at the beginning of the statement indicates that the word name is a
variable. A variable (p. 225) is a location in the computer’s memory where a value can be stored
for use by a script. All variables have a name and value, and should be declared with a var state-
ment before they’re used in a script.

• The name of a variable can be any valid identifier consisting of letters, digits, underscores (_)
and dollar signs ($) that does not begin with a digit and is not a reserved JavaScript keyword.

• Declarations end with a semicolon and can be split over several lines with each variable in the
declaration separated by a comma—known as a comma-separated list of variable names. Several
variables may be declared in one declaration or in multiple declarations.

• It’s helpful to indicate the purpose of a variable in the script by placing a JavaScript comment at
the end of the variable’s declaration. A single-line comment (p. 226) begins with the characters
// and terminates at the end of the line. Comments do not cause the browser to perform any
action when the script is interpreted; rather, comments are ignored by the JavaScript interpreter.

• Multiline comments begin with the delimiter /* and end with the delimiter */. All text between
the delimiters of the comment is ignored by the interpreter.

• The window object’s prompt method displays a dialog into which the user can type a value. The
first argument is a message (called a prompt) that directs the user to take a specific action. An
optional second argument, separated from the first by a comma, may specify the default string
to be displayed in the text field.

• A variable is assigned a value with an assignment (p. 228), using the assignment operator, =. The
= operator is called a binary operator (p. 228), because it has two operands (p. 228).

• JavaScript has a version of the + operator for string concatenation (p. 228) that enables a string
and a value of another data type (including another string) to be concatenated.

Section 6.5 Memory Concepts
• Every variable has a name, a type and a value.

• When a value is placed in a memory location, the value replaces the previous value in that loca-
tion. When a value is read out of a memory location, the process is nondestructive.

iw3htp5_06_JSIntro.fm Page 240 Wednesday, November 16, 2011 11:52 AM

 Self-Review Exercises 241

• JavaScript does not require variables to have a declared type before they can be used in a script.
A variable in JavaScript can contain a value of any data type, and in many situations, JavaScript
automatically converts between values of different types for you. For this reason, JavaScript is re-
ferred to as a loosely typed language (p. 232).

• When a variable is declared in JavaScript, but is not given a value, it has an undefined value
(p. 232). Attempting to use the value of such a variable is normally a logic error.

• When variables are declared, they’re not assigned default values, unless you specify them. To in-
dicate that a variable does not contain a value, you can assign the value null to it.

Section 6.6 Arithmetic
• The basic arithmetic operators (+, -, *, /, and %; p. 232) are binary operators, because each op-

erates on two operands.

• Parentheses can be used to group expressions in the same manner as in algebraic expressions.

• JavaScript applies the operators in arithmetic expressions in a precise sequence determined by the
following rules of operator precedence (p. 233).

• When we say that operators are applied from left to right, we’re referring to the associativity of
the operators (p. 233). Some operators associate from right to left.

Section 6.7 Decision Making: Equality and Relational Operators
• JavaScript’s if statement (p. 234) allows a script to make a decision based on the truth or falsity

of a condition. If the condition is met (i.e., the condition is true; p. 234), the statement in the
body of the if statement is executed. If the condition is not met (i.e., the condition is false), the
statement in the body of the if statement is not executed.

• Conditions in if statements can be formed by using the equality operators (p. 234) and relation-
al operators (p. 234).

Self-Review Exercises
6.1 Fill in the blanks in each of the following statements:

a) begins a single-quote character in a string.
b) Every JavaScript comment should start with a(n) .
c) Multiline comments begin with delimiter .
d) The document uses writeln method.
e) The name of a variable can be any valid .
f) In JavaScript the operator for remainder, not equal to and equal to are ,

 and respectively.

6.2 State whether each of the following is true or false. If false, explain why.
a) Comments cause the computer to print the text after the // on the screen when the

script is executed.
b) JavaScript considers the variables number and NuMbEr to be identical.
c) The remainder operator (%) can be used only with numeric operands.
d) The arithmetic operators *, /, %, + and - all have the same level of precedence.
e) Method parseInt converts an integer to a string.

6.3 Write JavaScript statements to accomplish each of the following tasks:
a) Declare variables a, itIsAVariable, p79356 and number3.
b) Display a dialog asking the user to enter a number. Show a default value of 5 in the text

field.
c) Convert a string to an integer, and store the converted value in variable newValue.

Assume that the string is stored in oldValue.

iw3htp5_06_JSIntro.fm Page 241 Wednesday, November 16, 2011 11:52 AM

242 Chapter 6 JavaScript: Introduction to Scripting

d) If the variable number is greater than 17, display "The variable number is greater
than 17" in a message dialog.

e) Output a line of HTML5 text using a document.write statement that will display the
message "This is a JavaScript program" in the HTML5 document.

6.4 Identify and correct the errors in each of the following statements:
a) if (c !< 17);

 window.alert("c is not less than 17");
b) if (c =< 17)

 window.alert("c is equal to or less than 17");

6.5 Write a statement (or comment) to accomplish each of the following tasks:
a) Give a comment that a script will calculate the sum of three integers. [Hint: Use text

that helps to document a script.]
b) Declare the variables i, j, k and sum.
c) Declare the variables iVal, jVal and kVal.
d) Prompt the user to enter the first integer value, read the value from the user and store

it in the variable iVal, with default value 0.
e) Prompt the user to enter the second value, read the value from the user and store it in

the variable jVal, with default value 5.
f) Prompt the user to enter the third value, read the value from the user and store it in the

variable kVal, with default value 10.
g) Convert iVal to an integer, and store the result in the variable i.
h) Convert jVal to an integer, and store the result in the variable j.
i) Convert kVal to an integer, and store the result in the variable k.
j) Compute the sum of the three integers contained in variables i, j and k, and assign

the sum to the variable result.
k) Write a line of HTML5 text containing the string "The sum is” followed by the

value of the variable sum.

6.6 Using the statements you wrote in Exercise 6.5, write a complete script that calculates and
prints the sum of three integers.

Answers to Self-Review Exercises
6.1 a) \'. b) <!--. c) /*. d) object. e) identifier. f) %, !=, ==.

6.2 a) False. Comments do not cause any action to be performed when the script is executed.
They’re used to document scripts and improve their readability. b) False. JavaScript is case sensitive,
so these variables are distinct. c) True. d) False. The operators *, / and % are on the same level of
precedence, and the operators + and - are on a lower level of precedence. e) False. Function par-
seInt converts a string to an integer value.

6.3 a) var a, itIsAVariable, p79356, number3;

b) value = window.prompt("Enter a number", "5");

c) var newValue = parseInt(oldValue);

d) if (number > 17)

e) document.write("This is a JavaScript program");

6.4 a) Error: There should not be an exclamation sign in the condition of the if statement.
Correction: Remove the exclamation sign in the condition of the if statement.

iw3htp5_06_JSIntro.fm Page 242 Wednesday, November 16, 2011 11:52 AM

 Answers to Self-Review Exercises 243

[Note: This is a syntax error. There is no logical operator of “not less than”. We only
have the logical operator of “not equal to”, i.e. !=.]

b) Error: The relational operator =< is incorrect.
Correction: Change =< to <=.

6.5 a) // Calculate the sum of three integers

b) var i, j, k, sum;
c) var iVal, jVal, kVal;
d) iVal = window.prompt("Enter first integer:", "0");
e) jVal = window.prompt("Enter second integer:", "5");
f) kVal = window.prompt("Enter third integer:", "10");
g) i = parseInt(iVal);
h) j = parseInt(jVal);
i) k = parseInt(kVal);
j) sum = i * j * k;
k) document.writeln("<h1>The sum is " + sum + "</h1>");

6.6 The script is as follows:

1 <!DOCTYPE html>
2
3 <!-- Exercise 7.6: sum.html -->
4 <html>
5 <head>
6 <meta charset = "utf-8">
7 <title> Sum of Three Integers</title>
8 <script type = "text/javascript">
9 <!--

10 // Calculate the sum of three integers
11 var i, j, k, sum;
12 var iVal, jVal, kVal;
13
14 iVal = window.prompt("Enter first integer:", "0");
15 jVal = window.prompt("Enter second integer:", "5");
16 kVal = window.prompt("Enter third integer:", "10");
17
18 i = parseInt(iVal);
19 j = parseInt(jVal);
20 k = parseInt(kVal);
21
22 sum = i + j + k;
23 document.writeln("<h1>The sum is " + sum + "<h1>");
24 // -->
25 </script>
26 </head><body></body>
27 </html>

iw3htp5_06_JSIntro.fm Page 243 Wednesday, November 16, 2011 11:52 AM

244 Chapter 6 JavaScript: Introduction to Scripting

Exercises
6.7 Fill in the blanks in each of the following statements:

a) are words with special meaning in JavaScript.
b) Conditions in if statements can be formed by using the operators and

 operators.
c) When a value is read out of a memory location, the process is .
d) Function converts its string argument to an integer.
e) Every variable has a , a and a value.

6.8 Write JavaScript statements that accomplish each of the following tasks:
a) Display the message "Enter three numbers" using the document object.
b) Assign the sum of variables x and y to variable z.
c) State that a program performs a simple result calculation.

6.9 State whether each of the following is true or false. If false, explain why.
a) JavaScript is case insensitive.
b) The following are all valid variable names: a_under_bal_, k998034_m, t85, jk897,

his_sales$9, her_$account_total_bal, x, y$, z, ij, z_0.
c) The keyword variable at the beginning of the statement indicates that the word name is

a variable.
d) The following are all invalid variable names: 5u, 96, 75k7, p45, 8c.

6.10 Fill in the blanks in each of the following statements:
a) If an expression contains several multiplication, division and remainder operations,

operators are applied from .
b) The window object’s method displays a dialog into which the user can type

a value.
c) The browser interprets the contents of the section first.

6.11 What displays in the message dialog when each of the given JavaScript statements is performed?
Assume that x = 5 and y = 7.
a) window.alert("x = " + x + “Y = ” + y);
b) window.alert("The value of Y + Y is " + (y + y) + “, double of Y”);
c) window.alert("x =" + “5”);
d) window.alert((y - x) + " = " + (y - x));

6.12 Which of the following JavaScript statements contain variables whose values are changed?
a) a = a + b + c + 17;

b) window.alert("x = " + x);

c) document.write("a = 5");

d) stringText = window.prompt("Enter a text:");

6.13 Given y = ax2 + 9x, which of the following are correct JavaScript statements for this equation?
a) y = a * x * x + 9 * x;
b) y = a * x * x * (x + 9);
c) y = (a * x) * x * (x + 9);
d) y = (a * x) * x + x * 9;

iw3htp5_06_JSIntro.fm Page 244 Wednesday, November 16, 2011 11:52 AM

 Exercises 245

e) y = a * (x * x) + 9 * x;
f) y = a * x * (x * x + 9 * x);

6.14 State the order of evaluation of the operators in each of the following JavaScript statements,
and show the value of x after each statement is performed.

a) x = 8 + 2 * 3 / 2 - 3;

b) x = 3 % 3 + 3 * 3 - 3 / 3;

c) x = (2 * 4 * (2 + (4 * 2 / (2))));

6.15 Write a script that displays the letters A to D on the same line, with each pair of adjacent
letters separated by two spaces. Write the script using the following methods:

a) Using one document.write statement.
b) Using two document.write statements.

6.16 Write a script that asks the user to enter two numbers, obtains the two numbers from the
user and outputs text that displays the sum, product, difference and quotient of the two numbers.
Use the techniques shown in Fig. 6.7.

6.17 Write a script that asks the user to enter two integers, obtains the numbers from the user
and outputs text that displays the smaller number followed by the words “is smaller” in an alert
dialog. If the numbers are equal, output HTML5 text that displays the message “These numbers
are equal.” Use the techniques shown in Fig. 6.14.

6.18 Write a script that takes four integers from the user and displays the sum, average, product,
smallest and largest of the numbers in an alert dialog.

6.19 Write a script that gets from the user the radius of a circle and outputs HTML5 text that
displays the circle’s diameter, circumference and area. Use the constant value 3.14159 for π. Use
the GUI techniques shown in Fig. 6.7. [Note: You may also use the predefined constant Math.PI for
the value of π. This constant is more precise than the value 3.14159. The Math object is defined by
Java-Script and provides many common mathematical capabilities.] Use the following formulas (r
is the radius): diameter = 2r, circumference = 2πr, area = πr2.

6.20 Write a script that reads four integers and determines and outputs HTML5 text that displays
the multiplication of the largest and smallest integers in the group. Use only the scripting techniques
you learned in this chapter.

6.21 Write a script that reads an integer and determines and outputs HTML5 text that displays
whether it can be divided by 5 or 7. [Hint: Use the remainder operator.]

6.22 Write a script that reads in two integers and determines and outputs HTML5 text that dis-
plays whether the first is a square of the second. [Hint: Use the division operator.]

6.23 Write a script that inputs three numbers and determines and outputs HTML5 text that dis-
plays the count of how many numbers are greater than 10, how many numbers are less than 10, and
how many numbers are equal to of 10.

6.24 Write a script that calculates the squares and cubes of the numbers from 6 to 11 and outputs
HTML5 text that displays the resulting values in an HTML5 table format, as show below in
Fig.6.16. [Note: This script does not require any input from the user.]

Number square cube

6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000
11 121 1331

iw3htp5_06_JSIntro.fm Page 245 Wednesday, November 16, 2011 11:52 AM

7 JavaScript: Control
Statements I

Let’s all move one place on.
—Lewis Carroll

The wheel is come full circle.
—William Shakespeare

How many apples fell on
Newton’s head before he took the
hint!
—Robert Frost

O b j e c t i v e s
In this chapter you will:

■ Learn basic problem-solving
techniques.

■ Develop algorithms through
the process of top-down,
stepwise refinement.

■ Use the if and if…else
selection statements to
choose among alternative
actions.

■ Use the while repetition
statement to execute
statements in a script
repeatedly.

■ Implement counter-
controlled repetition and
sentinel-controlled repetition.

■ Use the increment,
decrement and assignment
operators.

iw3htp5_07_JSCS1.fm Page 246 Wednesday, November 16, 2011 11:52 AM

7.1 Introduction 247

7.1 Introduction
Before writing a script to solve a problem, we must have a thorough understanding of the
problem and a carefully planned approach to solving it. When writing a script, it’s equally
essential to understand the types of building blocks that are available and to employ prov-
en program-construction principles. In this chapter and Chapter 8, we discuss these issues
as we present the theory and principles of structured programming.

7.2 Algorithms
Any computable problem can be solved by executing a series of actions in a specific order.
A procedure for solving a problem in terms of

1. the actions to be executed, and

2. the order in which the actions are to be executed

is called an algorithm. Correctly specifying the order in which the actions are to execute
is important—this is called program control. In this chapter and Chapter 8, we investigate
the program-control capabilities of JavaScript.

7.3 Pseudocode
Pseudocode is an informal language that helps you develop algorithms. The pseudocode
we present here is useful for developing algorithms that will be converted to structured
portions of JavaScript programs. Pseudocode is similar to everyday English; it’s convenient
and user friendly, although it’s not an actual computer programming language.

7.4 Control Statements
Normally, statements in a script execute one after the other in the order in which they’re
written. This process is called sequential execution. Various JavaScript statements we’ll

7.1 Introduction
7.2 Algorithms
7.3 Pseudocode
7.4 Control Statements
7.5 if Selection Statement
7.6 if…else Selection Statement
7.7 while Repetition Statement
7.8 Formulating Algorithms: Counter-

Controlled Repetition

7.9 Formulating Algorithms: Sentinel-
Controlled Repetition

7.10 Formulating Algorithms: Nested
Control Statements

7.11 Assignment Operators
7.12 Increment and Decrement Operators
7.13 Web Resources

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Software Engineering Observation 7.1
Pseudocode is often used to “think out” a script during the script-design process. Carefully
prepared pseudocode can easily be converted to JavaScript.

iw3htp5_07_JSCS1.fm Page 247 Wednesday, November 16, 2011 11:52 AM

248 Chapter 7 JavaScript: Control Statements I

soon discuss enable you to specify that the next statement to execute may not necessarily
be the next one in sequence. This is known as transfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control
was the root of much difficulty experienced by software development groups. The finger
of blame was pointed at the goto statement, which allowed the programmer to specify a
transfer of control to one of a wide range of possible destinations in a program. Research
demonstrated that programs could be written without goto statements. The notion of so-
called structured programming became almost synonymous with “goto elimination.”
JavaScript does not have a goto statement. Structured programs are clearer, easier to debug
and modify and more likely to be bug free in the first place.

Research determined that all programs could be written in terms of only three control
structures, namely the sequence structure, the selection structure and the repetition
structure. The sequence structure is built into JavaScript—unless directed otherwise, the
computer executes JavaScript statements one after the other in the order in which they’re
written (i.e., in sequence). The flowchart segment of Fig. 7.1 illustrates a typical sequence
structure in which two calculations are performed in order.

A flowchart is a graphical representation of an algorithm or of a portion of an algo-
rithm. Flowcharts are drawn using certain special-purpose symbols, such as rectangles, dia-
monds, ovals and small circles; these symbols are connected by arrows called flowlines,
which indicate the order in which the actions of the algorithm execute.

Like pseudocode, flowcharts often are useful for developing and representing algo-
rithms, although many programmers prefer pseudocode. Flowcharts show clearly how
control structures operate; that’s all we use them for in this text.

Consider the flowchart segment for the sequence structure in Fig. 7.1. For simplicity,
we use the rectangle symbol (or action symbol) to indicate any type of action, including
a calculation or an input/output operation. The flowlines in the figure indicate the order
in which the actions are performed—the first action adds grade to total, then the second
action adds 1 to counter. JavaScript allows us to have as many actions as we want in a
sequence structure. Anywhere a single action may be placed, as we’ll soon see, we may
place several actions in sequence.

In a flowchart that represents a complete algorithm, oval symbols containing the words
“Begin” and “End” represent the start and end of the algorithm, respectively. In a flow-
chart that shows only a portion of an algorithm, as in Fig. 7.1, the oval symbols are
omitted in favor of using small circle symbols, also called connector symbols.

Fig. 7.1 | Flowcharting JavaScript’s sequence structure.

add grade to total total = total + grade;

add 1 to counter counter = counter + 1;

iw3htp5_07_JSCS1.fm Page 248 Wednesday, November 16, 2011 11:52 AM

7.4 Control Statements 249

Perhaps the most important flowcharting symbol is the diamond symbol, also called
the decision symbol, which indicates that a decision is to be made. We discuss the dia-
mond symbol in the next section.

JavaScript provides three types of selection structures; we discuss each in this chapter
and in Chapter 8. The if selection statement performs (selects) an action if a condition is
true or skips the action if the condition is false. The if…else selection statement performs
an action if a condition is true and performs a different action if the condition is false. The
switch selection statement (Chapter 8) performs one of many different actions,
depending on the value of an expression.

The if statement is called a single-selection statement because it selects or ignores a
single action (or, as we’ll soon see, a single group of actions). The if…else statement is
a double-selection statement because it selects between two different actions (or groups of
actions). The switch statement is a multiple-selection statement because it selects among
many different actions (or groups of actions).

JavaScript provides four repetition statements—while, do…while, for and for…in.
(do…while and for are covered in Chapter 8; for…in is covered in Chapter 10.) Each
of the words if, else, switch, while, do, for and in is a JavaScript keyword. These words
are reserved by the language to implement various features, such as JavaScript’s control
structures. In addition to keywords, JavaScript has other words that are reserved for use by
the language, such as the values null, true and false, and words that are reserved for pos-
sible future use. A complete list of JavaScript reserved words is shown in Fig. 7.2.

As we’ve shown, JavaScript has only eight control statements: sequence, three types of
selection and four types of repetition. A script is formed by combining control statements
as necessary to implement the script’s algorithm. Each control statement is flowcharted

Common Programming Error 7.1
Using a keyword as an identifier (e.g., for variable names) is a syntax error.

JavaScript reserved keywords

break case catch continue default

delete do else false finally

for function if in instanceof

new null return switch this

throw true try typeof var

void while with

Keywords that are reserved but not used by JavaScript

class const enum export extends

implements import interface let package

private protected public static super

yield

Fig. 7.2 | JavaScript reserved keywords.

iw3htp5_07_JSCS1.fm Page 249 Wednesday, November 16, 2011 11:52 AM

250 Chapter 7 JavaScript: Control Statements I

with two small circle symbols, one at the entry point to the control statement and one at
the exit point.

Single-entry/single-exit control statements make it easy to build scripts; the control
statements are attached to one another by connecting the exit point of one to the entry
point of the next. This process is similar to the way in which a child stacks building blocks,
so we call it control-statement stacking. We’ll learn that there’s only one other way in
which control statements may be connected—control-statement nesting. Thus, algo-
rithms in JavaScript are constructed from only eight different types of control statements
combined in only two ways.

7.5 if Selection Statement
A selection statement is used to choose among alternative courses of action in a script. For
example, suppose that the passing grade on an examination is 60 (out of 100). Then the
pseudocode statement

determines whether the condition “student’s grade is greater than or equal to 60” is true
or false. If the condition is true, then “Passed” is printed, and the next pseudocode state-
ment in order is “performed” (remember that pseudocode is not a real programming lan-
guage). If the condition is false, the print statement is ignored, and the next pseudocode
statement in order is performed.

Note that the second line of this selection statement is indented. Such indentation is
optional but is highly recommended, because it emphasizes the inherent structure of struc-
tured programs. The JavaScript interpreter ignores white-space characters—blanks, tabs
and newlines used for indentation and vertical spacing.

The preceding pseudocode If statement can be written in JavaScript as

The JavaScript code corresponds closely to the pseudocode. This similarity is the reason
that pseudocode is a useful script-development tool. The statement in the body of the if
statement outputs the character string "Passed" in the HTML5 document.

The flowchart in Fig. 7.3 illustrates the single-selection if statement. This flowchart
contains what is perhaps the most important flowcharting symbol—the diamond symbol
(or decision symbol), which indicates that a decision is to be made. The decision symbol con-
tains an expression, such as a condition, that can be either true or false. The decision
symbol has two flowlines emerging from it. One indicates the path to follow in the script
when the expression in the symbol is true; the other indicates the path to follow in the
script when the expression is false. A decision can be made on any expression that evaluates
to a value of JavaScript’s boolean type (i.e., any expression that evaluates to true or
false—also known as a boolean expression).

If student’s grade is greater than or equal to 60
Print “Passed”

Good Programming Practice 7.1
Consistently applying reasonable indentation conventions improves script readability. We
use three spaces per indent.

if (studentGrade >= 60)
 document.writeln("<p>Passed</p>");

iw3htp5_07_JSCS1.fm Page 250 Wednesday, November 16, 2011 11:52 AM

7.6 if…else Selection Statement 251

Note that the if statement is a single-entry/single-exit control statement. We’ll soon
learn that the flowcharts for the remaining control statements also contain (besides small
circle symbols and flowlines) only rectangle symbols, to indicate the actions to be per-
formed, and diamond symbols, to indicate decisions to be made. This type of flowchart
emphasizes the action/decision model of programming. We’ll discuss the variety of ways
in which actions and decisions may be written.

7.6 if…else Selection Statement
The if selection statement performs an indicated action only when the condition evalu-
ates to true; otherwise, the action is skipped. The if…else selection statement allows
you to specify that a different action is to be performed when the condition is true than
when the condition is false. For example, the pseudocode statement

prints Passed if the student’s grade is greater than or equal to 60 and prints Failed if the
student’s grade is less than 60. In either case, after printing occurs, the next pseudocode
statement in sequence (i.e., the next statement after the whole if…else statement) is per-
formed. Note that the body of the Else part of the statement is also indented.

Fig. 7.3 | Flowcharting the single-selection if statement.

Software Engineering Observation 7.2
In JavaScript, any nonzero numeric value in a condition evaluates to true, and 0
evaluates to false. For strings, any string containing one or more characters evaluates to
true, and the empty string (the string containing no characters, represented as "")
evaluates to false. Also, a variable that’s been declared with var but has not been
assigned a value evaluates to false.

If student’s grade is greater than or equal to 60
Print “Passed”

Else
Print “Failed”

Good Programming Practice 7.2
Indent both body statements of an if…else statement.

grade >= 60 true

false

print “Passed”

iw3htp5_07_JSCS1.fm Page 251 Wednesday, November 16, 2011 11:52 AM

252 Chapter 7 JavaScript: Control Statements I

The preceding pseudocode If…Else statement may be written in JavaScript as

The flowchart in Fig. 7.4 illustrates the if…else selection statement’s flow of control.
Once again, note that the only symbols in the flowchart besides small circles and arrows
are rectangles for actions and a diamond for a decision.

Conditional Operator (?:)
JavaScript provides an operator, called the conditional operator (?:), that’s closely related
to the if…else statement. The operator ?: is JavaScript’s only ternary operator—it takes
three operands. The operands together with the ?: form a conditional expression. The first
operand is a boolean expression, the second is the value for the conditional expression if
the expression evaluates to true and the third is the value for the conditional expression if
the expression evaluates to false. For example, the following statement

contains a conditional expression that evaluates to the string "Passed" if the condition
studentGrade >= 60 is true and evaluates to the string "Failed" if the condition is false.
Thus, this statement with the conditional operator performs essentially the same operation
as the preceding if…else statement.

Nested if...else Statements
Nested if…else statements test for multiple cases by placing if…else statements inside
if…else statements. For example, the following pseudocode statement indicates that the
script should print A for exam grades greater than or equal to 90, B for grades in the range
80 to 89, C for grades in the range 70 to 79, D for grades in the range 60 to 69 and F for
all other grades:

if (studentGrade >= 60)
 document.writeln("<p>Passed</p>");
else
 document.writeln("<p>Failed</p>");

Fig. 7.4 | Flowcharting the double-selection if…else statement.

document.writeln(studentGrade >= 60 ? "Passed" : "Failed");

grade >= 60 true

print “Failed”

false

print “Passed”

iw3htp5_07_JSCS1.fm Page 252 Wednesday, November 16, 2011 11:52 AM

7.6 if…else Selection Statement 253

This pseudocode may be written in JavaScript as

If studentGrade is greater than or equal to 90, all four conditions will be true, but only
the document.writeln statement after the first test will execute. After that particular doc-
ument.writeln executes, the else part of the outer if…else statement is skipped.

Most programmers prefer to write the preceding if statement in the equivalent form:

The latter form is popular because it avoids the deep indentation of the code to the right.
Such deep indentation can force lines to be split and decrease script readability.

If student’s grade is greater than or equal to 90
Print “A”

Else
If student’s grade is greater than or equal to 80

Print “B”
Else

If student’s grade is greater than or equal to 70
Print “C”

Else
If student’s grade is greater than or equal to 60

Print “D”
Else

Print “F”

if (studentGrade >= 90)
 document.writeln("A");
else
 if (studentGrade >= 80)
 document.writeln("B");
 else
 if (studentGrade >= 70)
 document.writeln("C");
 else
 if (studentGrade >= 60)
 document.writeln("D");
 else
 document.writeln("F");

Good Programming Practice 7.3
If there are several levels of indentation, each level should be indented the same additional
amount of space.

if (grade >= 90)
 document.writeln("A");
else if (grade >= 80)
 document.writeln("B");
else if (grade >= 70)
 document.writeln("C");
else if (grade >= 60)
 document.writeln("D");
else
 document.writeln("F");

iw3htp5_07_JSCS1.fm Page 253 Wednesday, November 16, 2011 11:52 AM

254 Chapter 7 JavaScript: Control Statements I

Dangling-else Problem
It’s important to note that the JavaScript interpreter always associates an else with the
previous if, unless told to do otherwise by the placement of braces ({}). The following
code illustrates the dangling-else problem. For example,

appears to indicate with its indentation that if x is greater than 5, the if structure in its
body determines whether y is also greater than 5. If so, the body of the nested if structure
outputs the string "x and y are > 5". Otherwise, it appears that if x is not greater than 5,
the else part of the if…else structure outputs the string "x is <= 5".

Beware! The preceding nested if statement does not execute as it appears. The inter-
preter actually interprets the preceding statement as

in which the body of the first if statement is a nested if…else statement. This statement
tests whether x is greater than 5. If so, execution continues by testing whether y is also
greater than 5. If the second condition is true, the proper string—"x and y are > 5"—is
displayed. However, if the second condition is false, the string "x is <= 5" is displayed,
even though we know that x is greater than 5.

To force the first nested if statement to execute as it was intended originally, we must
write it as follows:

The braces ({}) indicate to the JavaScript interpreter that the second if statement is in the
body of the first if statement and that the else is matched with the first if statement.

Blocks
The if selection statement expects only one statement in its body. To include several state-
ments in an if statement’s body, enclose the statements in braces ({ and }). This also can
be done in the else section of an if…else statement. A set of statements contained with-
in a pair of braces is called a block.

if (x > 5)
 if (y > 5)
 document.writeln("<p>x and y are > 5</p>");
else
 document.writeln("<p>x is <= 5</p>");

if (x > 5)
 if (y > 5)
 document.writeln("<p>x and y are > 5</p>");
 else
 document.writeln("<p>x is <= 5</p>");

if (x > 5)
{
 if (y > 5)
 document.writeln("<p>x and y are > 5</p>");
}
else
 document.writeln("<p>x is <= 5</p>");

Software Engineering Observation 7.3
A block can be placed anywhere in a script that a single statement can be placed.

iw3htp5_07_JSCS1.fm Page 254 Wednesday, November 16, 2011 11:52 AM

7.7 while Repetition Statement 255

The following example includes a block in the else part of an if…else statement:

In this case, if grade is less than 60, the script executes both statements in the body of the
else and prints

Note the braces surrounding the two statements in the else clause. These braces are im-
portant. Without them, the statement

would be outside the body of the else part of the if and would execute regardless of wheth-
er the grade is less than 60.

Syntax errors (e.g., when one brace in a block is left out of the script) are caught by
the interpreter when it attempts to interpret the code containing the syntax error. They
prevent the browser from executing the code. While many browsers notify users of errors,
that information is of little use to them.That’s why it’s important to validate your
JavaScripts and thoroughly test them. A logic error (e.g., the one caused when both braces
around a block are left out of the script) also has its effect at execution time. A fatal logic
error causes a script to fail and terminate prematurely. A nonfatal logic error allows a
script to continue executing, but it produces incorrect results.

7.7 while Repetition Statement
A repetition structure (also known as a loop) allows you to specify that a script is to repeat
an action while some condition remains true. The pseudocode statement

While there are more items on my shopping list
Purchase next item and cross it off my list

describes the repetition that occurs during a shopping trip. The condition “there are more
items on my shopping list” may be true or false. If it’s true, then the action “Purchase next
item and cross it off my list” is performed. This action is performed repeatedly while the

Software Engineering Observation 7.4
Unlike individual statements, a block does not end with a semicolon. However, each
statement within the braces of a block should end with a semicolon.

if (grade >= 60)
 document.writeln("<p>Passed</p>");
else
{
 document.writeln("<p>Failed</p>");
 document.writeln("<p>You must take this course again.</p>");
}

Failed
You must take this course again.

document.writeln("<p>You must take this course again.</p>");

Software Engineering Observation 7.5
Just as a block can be placed anywhere a single statement can be placed, it’s also possible
to have no statement at all (the empty statement) in such places. We represent the empty
statement by placing a semicolon (;) where a statement would normally be.

iw3htp5_07_JSCS1.fm Page 255 Wednesday, November 16, 2011 11:52 AM

256 Chapter 7 JavaScript: Control Statements I

condition remains true. The statement(s) contained in the While repetition structure con-
stitute its body. The body of a loop such as the While structure may be a single statement
or a block. Eventually, the condition becomes false—when the last item on the shopping
list has been purchased and crossed off the list. At this point, the repetition terminates, and
the first pseudocode statement after the repetition structure “executes.”

As an example of a while statement, consider a script segment designed to find the
first power of 2 larger than 1000. Variable product begins with the value 2. The statement
is as follows:

When the while statement finishes executing, product contains the result 1024. The
flowchart in Fig. 7.5 illustrates the flow of control of the preceding while repetition state-
ment. Once again, note that (besides small circles and arrows) the flowchart contains only
a rectangle symbol and a diamond symbol.

When the script enters the while statement, product is 2. The script repeatedly mul-
tiplies variable product by 2, so product takes on the values 4, 8, 16, 32, 64, 128, 256,
512 and 1024 successively. When product becomes 1024, the condition product <= 1000
in the while statement becomes false. This terminates the repetition, with 1024 as
product’s final value. Execution continues with the next statement after the while state-
ment. [Note: If a while statement’s condition is initially false, the body statement(s) will
never execute.]

The flowchart clearly shows the repetition. The flowline emerging from the rectangle
wraps back to the decision, which the script tests each time through the loop until the deci-
sion eventually becomes false. At this point, the while statement exits, and control passes
to the next statement in the script.

Common Programming Error 7.2
If the body of a while statement never causes the while statement’s condition to become
true, a logic error occurs. Normally, such a repetition structure will never terminate—an
error called an infinite loop. Many browsers show a dialog allowing the user to terminate
a script that contains an infinite loop.

var product = 2;

while (product <= 1000)
 product = 2 * product;

Fig. 7.5 | Flowcharting the while repetition statement.

product <= 1000 product = 2 * product
true

false

iw3htp5_07_JSCS1.fm Page 256 Wednesday, November 16, 2011 11:52 AM

7.8 Formulating Algorithms: Counter-Controlled Repetition 257

7.8 Formulating Algorithms: Counter-Controlled
Repetition
To illustrate how to develop algorithms, we solve several variations of a class-average prob-
lem. Consider the following problem statement:

A class of ten students took a quiz. The grades (integers in the range 0 to 100) for this
quiz are available to you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students (10
in this case). The algorithm for solving this problem on a computer must input each of the
grades, perform the averaging calculation and display the result.

Let’s use pseudocode to list the actions to execute and specify the order in which they
should execute. We use counter-controlled repetition to input the grades one at a time.
This technique uses a variable called a counter to control the number of times a set of
statements executes. In this example, repetition terminates when the counter exceeds 10.
In this section, we present a pseudocode algorithm (Fig. 7.6) and the corresponding script
(Fig. 7.7). In the next section, we show how to develop pseudocode algorithms. Counter-
controlled repetition often is called definite repetition, because the number of repetitions
is known before the loop begins executing.

1 Set total to zero
2 Set grade counter to one
3
4 While grade counter is less than or equal to ten
5 Input the next grade
6 Add the grade into the total
7 Add one to the grade counter
8
9 Set the class average to the total divided by ten

10 Print the class average

Fig. 7.6 | Pseudocode algorithm that uses counter-controlled repetition to solve the class-
average problem.

1 <!DOCTYPE html>
2
3 <!-- Fig. 7.7: average.html -->
4 <!-- Counter-controlled repetition to calculate a class average. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Class Average Program</title>
9 <script>

10
11 var total; // sum of grades
12 var ; // number of grades entered
13 var grade; // grade typed by user (as a string)
14 var gradeValue; // grade value (converted to integer)

Fig. 7.7 | Counter-controlled repetition to calculate a class average. (Part 1 of 2.)

gradeCounter

iw3htp5_07_JSCS1.fm Page 257 Wednesday, November 16, 2011 11:52 AM

258 Chapter 7 JavaScript: Control Statements I

15 var average; // average of all grades
16
17 // initialization phase
18 total = 0; // clear total
19 // prepare to loop
20
21 // processing phase
22 // loop 10 times
23 {
24
25 // prompt for input and read grade from user
26 grade = window.prompt("Enter integer grade:", "0");
27
28 // convert grade from a string to an integer
29 gradeValue = parseInt(grade);
30
31 // add gradeValue to total
32 total = total + gradeValue;
33
34 // add 1 to gradeCounter
35
36 } // end while
37
38 // termination phase
39 average = total / 10; // calculate the average
40
41 // display average of exam grades
42 document.writeln(
43 "<h1>Class average is " + average + "</h1>");
44
45 </script>
46 </head><body></body>
47 </html>

Fig. 7.7 | Counter-controlled repetition to calculate a class average. (Part 2 of 2.)

gradeCounter = 1;

while (gradeCounter <= 10)

gradeCounter = gradeCounter + 1;

a) This dialog is displayed 10
times. User input is 100, 88, 93,

55, 68, 77, 83, 95, 73 and 62.
User enters each grade and

presses OK.

b) The class average is
displayed in a web page

iw3htp5_07_JSCS1.fm Page 258 Wednesday, November 16, 2011 11:52 AM

7.8 Formulating Algorithms: Counter-Controlled Repetition 259

Variables Used in the Algorithm
Note the references in the algorithm to a total and a counter. A total is a variable in which
a script accumulates the sum of a series of values. A counter is a variable a script uses to
count—in this case, to count the number of grades entered. Variables that store totals
should normally be initialized to zero before they’re used in a script.

Lines 11–15 declare variables total, gradeCounter, grade, gradeValue, average.
The variable grade will store the string the user types into the prompt dialog. The variable
gradeValue will store the integer value of the grade the user enters into the prompt dialog.

Initializing Variables
Lines 18–19 are assignments that initialize total to 0 and gradeCounter to 1. Note that
variables total and gradeCounter are initialized before they’re used in a calculation.

The while Repetition Statement
Line 22 indicates that the while statement continues iterating while the value of grade-
Counter is less than or equal to 10. Line 26 corresponds to the pseudocode statement “In-
put the next grade.” The statement displays a prompt dialog with the prompt "Enter
integer grade:" on the screen.

After the user enters the grade, line 29 converts it from a string to an integer. We must
convert the string to an integer in this example; otherwise, the addition operation in line
32 will be a string-concatenation.

Next, the script updates the total with the new gradeValue entered by the user. Line
32 adds gradeValue to the previous value of total and assigns the result to total. This
statement seems a bit strange, because it does not follow the rules of algebra. Keep in mind
that JavaScript operator precedence evaluates the addition (+) operation before the assign-
ment (=) operation. The value of the expression on the right side of the assignment oper-
ator always replaces the value of the variable on the left side.

The script now is ready to increment the variable gradeCounter to indicate that a
grade has been processed and to read the next grade from the user. Line 35 adds 1 to
gradeCounter, so the condition in the while statement will eventually become false and
terminate the loop. After this statement executes, the script continues by testing the con-
dition in the while statement in line 22. If the condition is still true, the statements in
lines 26–35 repeat. Otherwise the script continues execution with the first statement in
sequence after the body of the loop (i.e., line 39).

Calculating and Displaying the Results
Line 39 assigns the results of the average calculation to variable average. Lines 42–43
write a line of HTML5 text in the document that displays the string "Class average is "

followed by the value of variable average as an <h1> element.

Testing the Program
Open the HTML5 document in a web browser to execute the script. This script parses any
user input as an integer. In the sample execution in Fig. 7.7, the sum of the values entered

Common Programming Error 7.3
Not initializing a variable that will be used in a calculation results in a logic error that
produces the value NaN (“Not a Number”).

iw3htp5_07_JSCS1.fm Page 259 Wednesday, November 16, 2011 11:52 AM

260 Chapter 7 JavaScript: Control Statements I

(100, 88, 93, 55, 68, 77, 83, 95, 73 and 62) is 794. Although the script treats all input as
integers, the averaging calculation in the script does not produce an integer. Rather, the
calculation produces a floating-point number (i.e., a number containing a decimal point).
The average of the 10 integers input by the user in this example is 79.4. If your script re-
quires the user to enter floating-point numbers, you can convert the user input from strings
to numbers using the JavaScript function parseFloat, which we introduce in Section 9.2.

Floating-Point Numbers
JavaScript actually represents all numbers as floating-point numbers in memory. Floating-
point numbers often develop through division, as shown in this example. When we divide
10 by 3, the result is 3.3333333…, with the sequence of 3s repeating infinitely. The com-
puter allocates only a fixed amount of space to hold such a value, so the stored floating-
point value can be only an approximation. Although floating-point numbers are not al-
ways 100 percent precise, they have numerous applications. For example, when we speak
of a “normal” body temperature of 98.6, we do not need to be precise to a large number
of digits. When we view the temperature on a thermometer and read it as 98.6, it may ac-
tually be 98.5999473210643. The point here is that few applications require such high-
precision floating-point values, so calling this number simply 98.6 is fine for many appli-
cations.

A Note About Input Via prompt Dialogs
In this example, we used prompt dialogs to obtain user input. Typically, such input would
be accomplished via form elements in an HTML5 document, but this requires additional
scripting techniques that are introduced starting in Chapter 9. For now, we’ll continue to
use prompt dialogs.

7.9 Formulating Algorithms: Sentinel-Controlled
Repetition
Let’s generalize the class-average problem. Consider the following problem:

Develop a class-averaging script that will process an arbitrary number of grades each
time the script is run.

In the first class-average example, the number of grades (10) was known in advance. In this
example, no indication is given of how many grades the user will enter. The script must
process an arbitrary number of grades. How can the script determine when to stop the in-
put of grades? How will it know when to calculate and display the class average?

One way to solve this problem is to use a special value called a sentinel value (also
called a signal value, a dummy value or a flag value) to indicate the end of data entry. The

Software Engineering Observation 7.6
If the string passed to parseInt contains a floating-point numeric value, parseInt simply
truncates the floating-point part. For example, the string "27.95" results in the integer 27,
and the string "–123.45" results in the integer –123. If the string passed to parseInt does
begin with a numeric value, parseInt returns NaN (not a number). If you need to know
whether parseInt returned NaN, JavaScript provides the function isNaN, which determines
whether its argument has the value NaN and, if so, returns true; otherwise, it returns false.

iw3htp5_07_JSCS1.fm Page 260 Wednesday, November 16, 2011 11:52 AM

7.9 Formulating Algorithms: Sentinel-Controlled Repetition 261

user types in grades until all legitimate grades have been entered. Then the user types the
sentinel value to indicate that the last grade has been entered. Sentinel-controlled repeti-
tion is often called indefinite repetition, because the number of repetitions is not known
before the loop begins executing.

Clearly, you must choose a sentinel value that cannot be confused with an acceptable
input value. –1 is an acceptable sentinel value for this problem, because grades on a quiz
are normally nonnegative integers from 0 to 100. Thus, an execution of the class-average
script might process a stream of inputs such as 95, 96, 75, 74, 89 and –1. The script would
compute and print the class average for the grades 95, 96, 75, 74 and 89 (–1 is the sentinel
value, so it should not enter into the average calculation).

Developing the Pseudocode Algorithm with Top-Down, Stepwise Refinement: The Top
and First Refinement
We approach the class-average script with a technique called top-down, stepwise refine-
ment, a technique that’s essential to the development of well-structured algorithms. We
begin with a pseudocode representation of the top:

The top is a single statement that conveys the script’s overall purpose. As such, the top is,
in effect, a complete representation of a script. Unfortunately, the top rarely conveys suffi-
cient detail from which to write the JavaScript algorithm. Therefore we must begin a re-
finement process. First, we divide the top into a series of smaller tasks and list them in the
order in which they need to be performed, creating the following first refinement:

Here, only the sequence structure is used; the steps listed are to be executed in order, one
after the other.

Proceeding to the Second Refinement
To proceed to the next level of refinement (the second refinement), we commit to specific
variables. We need a running total of the numbers, a count of how many numbers have
been processed, a variable to receive the string representation of each grade as it’s input, a
variable to store the value of the grade after it’s converted to an integer and a variable to
hold the calculated average. The pseudocode statement

may be refined as follows:

Determine the class average for the quiz

Initialize variables
Input, sum up and count the quiz grades
Calculate and print the class average

Software Engineering Observation 7.7
Each refinement, as well as the top itself, is a complete specification of the algorithm; only
the level of detail varies.

Initialize variables

Initialize total to zero
Initialize gradeCounter to zero

iw3htp5_07_JSCS1.fm Page 261 Wednesday, November 16, 2011 11:52 AM

262 Chapter 7 JavaScript: Control Statements I

Only the variables total and gradeCounter are initialized before they’re used; the variables
average, grade and gradeValue (for the calculated average, the user input and the integer rep-
resentation of the grade, respectively) need not be initialized, because their values are de-
termined as they’re calculated or input.

The pseudocode statement

requires a repetition statement that successively inputs each grade. We do not know in ad-
vance how many grades are to be processed, so we’ll use sentinel-controlled repetition. The
user will enter legitimate grades, one at a time. After entering the last legitimate grade, the
user will enter the sentinel value. The script will test for the sentinel value after the user
enters each grade and will terminate the loop when the sentinel value is encountered. The
second refinement of the preceding pseudocode statement is then

In pseudocode, we do not use braces around the pseudocode that forms the body of the
While structure. We simply indent the pseudocode under the While to show that it be-
longs to the body of the While. Remember, pseudocode is only an informal development
aid.

The pseudocode statement

may be refined as follows:

We test for the possibility of division by zero—a logic error that, if undetected, would
cause the script to produce invalid output. The complete second refinement of the pseudo-
code algorithm for the class-average problem is shown in Fig. 7.8.

Input, sum up and count the quiz grades

Input the first grade (possibly the sentinel)
While the user has not as yet entered the sentinel

Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

Calculate and print the class average

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

Else
Print “No grades were entered”

Error-Prevention Tip 7.1
When performing division by an expression whose value could be zero, explicitly test for
this case, and handle it appropriately in your script (e.g., by displaying an error message)
rather than allowing the division by zero to occur.

Software Engineering Observation 7.8
Many algorithms can be divided logically into three phases: an initialization phase that
initializes the script variables, a processing phase that inputs data values and adjusts
variables accordingly, and a termination phase that calculates and prints the results.

iw3htp5_07_JSCS1.fm Page 262 Wednesday, November 16, 2011 11:52 AM

7.9 Formulating Algorithms: Sentinel-Controlled Repetition 263

The Complete Second Refinement
The pseudocode algorithm in Fig. 7.8 solves the more general class-average problem. This
algorithm was developed after only two refinements. Sometimes more refinements are
necessary.

Implementing Sentinel-Controlled Repetition to Calculate a Class Average
Figure 7.9 shows the JavaScript and a sample execution. Although each grade is an integer,
the averaging calculation is likely to produce a number with a decimal point (a real num-
ber).

In this example, we see that control structures may be stacked on top of one another
(in sequence) just as a child stacks building blocks. The while statement (lines 29–43) is
followed immediately by an if…else statement (lines 46–55) in sequence. Much of the
code in this script is identical to the code in Fig. 7.7, so we concentrate in this example on
the new features.

1 Initialize total to zero
2 Initialize gradeCounter to zero
3
4 Input the first grade (possibly the sentinel)
5
6 While the user has not as yet entered the sentinel
7 Add this grade into the running total
8 Add one to the grade counter
9 Input the next grade (possibly the sentinel)

10
11 If the counter is not equal to zero
12 Set the average to the total divided by the counter
13 Print the average
14 Else
15 Print “No grades were entered”

Fig. 7.8 | Sentinel-controlled repetition to solve the class-average problem.

Software Engineering Observation 7.9
You terminate the top-down, stepwise refinement process after specifying the pseudocode
algorithm in sufficient detail for you to convert the pseudocode to JavaScript. Then,
implementing the JavaScript is normally straightforward.

Software Engineering Observation 7.10
Experience has shown that the most difficult part of solving a problem on a computer is
developing the algorithm for the solution.

Software Engineering Observation 7.11
Many experienced programmers write scripts without ever using script-development tools
like pseudocode. As they see it, their ultimate goal is to solve the problem on a computer,
and writing pseudocode merely delays the production of final outputs. Although this
approach may work for simple and familiar problems, it can lead to serious errors in large,
complex projects.

iw3htp5_07_JSCS1.fm Page 263 Wednesday, November 16, 2011 11:52 AM

264 Chapter 7 JavaScript: Control Statements I

1 <!DOCTYPE html>
2
3 <!-- Fig. 7.9: average2.html -->
4 <!-- Sentinel-controlled repetition to calculate a class average. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Class Average Program: Sentinel-controlled Repetition</title>
9 <script>

10
11 var total; // sum of grades
12 var gradeCounter; // number of grades entered
13 var grade; // grade typed by user (as a string)
14 var gradeValue; // grade value (converted to integer)
15 var average; // average of all grades
16
17 // initialization phase
18 total = 0; // clear total
19 // prepare to loop
20
21 // processing phase
22 // prompt for input and read grade from user
23 grade = window.prompt(
24 "Enter Integer Grade, -1 to Quit:", "0");
25
26 // convert grade from a string to an integer
27 gradeValue = parseInt(grade);
28
29 while (gradeValue != -1)
30 {
31 // add gradeValue to total
32 total = total + gradeValue;
33
34 // add 1 to gradeCounter
35
36
37 // prompt for input and read grade from user
38 grade = window.prompt(
39 "Enter Integer Grade, -1 to Quit:", "0");
40
41 // convert grade from a string to an integer
42 gradeValue = parseInt(grade);
43 } // end while
44
45 // termination phase
46
47 {
48 average = total / gradeCounter;
49
50 // display average of exam grades
51 document.writeln(
52 "<h1>Class average is " + average + "</h1>");
53 } // end if

Fig. 7.9 | Sentinel-controlled repetition to calculate a class average. (Part 1 of 2.)

gradeCounter = 0;

gradeCounter = gradeCounter + 1;

if (gradeCounter != 0)

iw3htp5_07_JSCS1.fm Page 264 Wednesday, November 16, 2011 11:52 AM

7.9 Formulating Algorithms: Sentinel-Controlled Repetition 265

Line 19 initializes gradeCounter to 0, because no grades have been entered yet.
Remember that the script uses sentinel-controlled repetition. To keep an accurate record of
the number of grades entered, the script increments gradeCounter only after processing a
valid grade value.

Script Logic for Sentinel-Controlled Repetition vs. Counter-Controlled Repetition
Note the difference in logic for sentinel-controlled repetition as compared with the coun-
ter-controlled repetition in Fig. 7.7. In counter-controlled repetition, we read a value from
the user during each iteration of the while statement’s body for the specified number of
iterations. In sentinel-controlled repetition, we read one value (lines 23–24) and convert
it to an integer (line 27) before the script reaches the while statement. The script uses this
value to determine whether the script’s flow of control should enter the body of the while
statement. If the while statement’s condition is false (i.e., the user typed the sentinel as
the first grade), the script ignores the body of the while statement (i.e., no grades were
entered). If the condition is true, the body begins execution and processes the value en-
tered by the user (i.e., adds the value to the total in line 32). After processing the value,
the script increments gradeCounter by 1 (line 35), inputs the next grade from the user
(lines 38–39) and converts the grade to an integer (line 42), before the end of the while
statement’s body. When the script reaches the closing right brace (}) of the body in line
43, execution continues with the next test of the condition of the while statement (line
29), using the new value just entered by the user to determine whether the while state-
ment’s body should execute again. Note that the next value always is input from the user
immediately before the script evaluates the condition of the while statement. This order
allows us to determine whether the value just entered by the user is the sentinel value before

54
55 document.writeln("<p>No grades were entered</p>");
56
57 </script>
58 </head><body></body>
59 </html>

Fig. 7.9 | Sentinel-controlled repetition to calculate a class average. (Part 2 of 2.)

else

This dialog is displayed four times. User
input is 97, 88, 72 and –1.

iw3htp5_07_JSCS1.fm Page 265 Wednesday, November 16, 2011 11:52 AM

266 Chapter 7 JavaScript: Control Statements I

processing it (i.e., adding it to the total). If the value entered is the sentinel value, the
while statement terminates and the script does not add the value to the total.

Note the block in the while loop in Fig. 7.9 (lines 30–43). Without the braces, the
last three statements in the body of the loop would fall outside the loop, causing the code
to be interpreted incorrectly, as follows:

This interpretation would cause an infinite loop in the script if the user did not input the
sentinel -1 as the first input value in lines 23–24 (i.e., before the while statement).

7.10 Formulating Algorithms: Nested Control
Statements
Let’s work through another complete problem. We once again formulate the algorithm us-
ing pseudocode and top-down, stepwise refinement, and write a corresponding script.

Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real
estate brokers. Last year, 10 of the students who completed this course took the licens-
ing exam. Naturally, the college wants to know how well its students performed. You’ve
been asked to write a script to summarize the results. You’ve been given a list of these
10 students. Next to each name is written a 1 if the student passed the exam and a 2 if
the student failed.

Your script should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the message “Enter result” on the screen
each time the script requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results indicating the number of students who passed and
the number of students who failed.

4. If more than eight students passed the exam, print the message “Bonus to instructor!”

After reading the problem statement carefully, we make the following observations:

1. The script must process test results for 10 students. A counter-controlled loop
will be used.

2. Each test result is a number—either a 1 or a 2. Each time the script reads a test
result, the script must determine whether the number is a 1 or a 2. We test for a
1 in our algorithm. If the number is not a 1, we assume that it’s a 2.

while (gradeValue != -1)
 // add gradeValue to total
 total = total + gradeValue;

// add 1 to gradeCounter
gradeCounter = gradeCounter + 1;

// prompt for input and read grade from user
grade = window.prompt(
 "Enter Integer Grade, -1 to Quit:", "0");

// convert grade from a string to an integer
gradeValue = parseInt(grade);

iw3htp5_07_JSCS1.fm Page 266 Wednesday, November 16, 2011 11:52 AM

7.10 Formulating Algorithms: Nested Control Statements 267

3. Two counters are used to keep track of the exam results—one to count the num-
ber of students who passed the exam and one to count the number of students
who failed the exam.

After the script processes all the results, it must decide whether more than eight stu-
dents passed the exam. Let’s proceed with top-down, stepwise refinement. We begin with
a pseudocode representation of the top:

Once again, it’s important to emphasize that the top is a complete representation of the
script, but that several refinements are necessary before the pseudocode can be evolved nat-
urally into JavaScript. Our first refinement is as follows:

Here, too, even though we have a complete representation of the entire script, further re-
finement is necessary. We now commit to specific variables. Counters are needed to record
the passes and failures; a counter will be used to control the looping process, and a variable
is needed to store the user input. The pseudocode statement

may be refined as follows:

Note that only the counters for the number of passes, the number of failures and the num-
ber of students are initialized. The pseudocode statement

requires a loop that successively inputs the result of each exam. Here, it’s known in ad-
vance that there are precisely 10 exam results, so counter-controlled repetition is appropri-
ate. Inside the loop (i.e., nested within the loop), a double-selection structure will
determine whether each exam result is a pass or a failure and will increment the appropri-
ate counter accordingly. The refinement of the preceding pseudocode statement is then

Blank lines can be used to set off the If…Else control structure to improve script readabil-
ity. The pseudocode statement

Analyze exam results and decide whether a bonus should be paid

Initialize variables
Input the 10 exam grades and count passes and failures
Print a summary of the exam results and decide whether a bonus should be paid

Initialize variables

Initialize passes to zero
Initialize failures to zero
Initialize student to one

Input the 10 exam grades and count passes and failures

While student counter is less than or equal to ten
Input the next exam result
If the student passed

Add one to passes
Else

Add one to failures
Add one to student counter

Print a summary of the exam results and decide whether a bonus should be paid

iw3htp5_07_JSCS1.fm Page 267 Wednesday, November 16, 2011 11:52 AM

268 Chapter 7 JavaScript: Control Statements I

may be refined as follows:

Complete Second Refinement of Pseudocode and Conversion to JavaScript
The complete second refinement appears in Fig. 7.10. Note that blank lines are also used
to set off the While statement for script readability.

This pseudocode is now refined sufficiently for conversion to JavaScript. The Java-
Script and two sample executions are shown in Fig. 7.11.

Print the number of passes
Print the number of failures
If more than eight students passed

Print “Bonus to instructor!”

1 Initialize passes to zero
2 Initialize failures to zero
3 Initialize student to one
4
5 While student counter is less than or equal to ten
6 Input the next exam result
7
8 If the student passed
9 Add one to passes

10 Else
11 Add one to failures
12 Add one to student counter
13
14 Print the number of passes
15 Print the number of failures
16
17 If more than eight students passed
18 Print “Bonus to Instructor!”

Fig. 7.10 | Examination-results problem pseudocode.

1 <!DOCTYPE html>
2
3 <!-- Fig. 7.11: analysis.html -->
4 <!-- Examination-results calculation. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Analysis of Examination Results</title>
9 <script>

10
11 // initializing variables in declarations
12
13
14
15

Fig. 7.11 | Examination-results calculation. (Part 1 of 3.)

var passes = 0; // number of passes
var failures = 0; // number of failures
var student = 1; // student counter
var result; // an exam result

iw3htp5_07_JSCS1.fm Page 268 Wednesday, November 16, 2011 11:52 AM

7.10 Formulating Algorithms: Nested Control Statements 269

16
17 // process 10 students; counter-controlled loop
18 while (student <= 10)
19 {
20 result = window.prompt("Enter result (1=pass,2=fail)", "0");
21
22
23
24
25
26
27
28 } // end while
29
30 // termination phase
31 document.writeln("<h1>Examination Results</h1>");
32 document.writeln("<p>Passed: " + passes +
33 "; Failed: " + failures + "</p>");
34
35
36
37
38 </script>
39 </head><body></body>
40 </html>

Fig. 7.11 | Examination-results calculation. (Part 2 of 3.)

if (result == "1")
 passes = passes + 1;
else
 failures = failures + 1;

student = student + 1;

if (passes > 8)
 document.writeln("<p>Bonus to instructor!</p>");

a) This dialog is displayed 10
times. User input is 1, 2, 1, 1,

1, 1, 1, 1, 1 and 1.

b) Nine students passed and
one failed, therefore "Bonus

to instructor!" is
printed.

c) This dialog is displayed 10
times. User input is 1, 2, 1, 2,

2, 1, 2, 2, 1 and 1.

iw3htp5_07_JSCS1.fm Page 269 Wednesday, November 16, 2011 11:52 AM

270 Chapter 7 JavaScript: Control Statements I

Lines 12–15 declare the variables used to process the examination results. Note that
JavaScript allows variable initialization to be incorporated into declarations (passes is
assigned 0, failures is assigned 0 and student is assigned 1). Some scripts may require
reinitialization at the beginning of each repetition; such reinitialization would normally
occur in assignment statements.

The processing of the exam results occurs in the while statement in lines 18–28. Note
that the if…else statement in lines 22–25 in the loop tests only whether the exam result
was 1; it assumes that all other exam results are 2. Normally, you should validate the values
input by the user (i.e., determine whether the values are correct).

7.11 Assignment Operators
JavaScript provides several additional assignment operators (called compound assignment
operators) for abbreviating assignment expressions. For example, the statement

can be abbreviated with the addition assignment operator, +=, as

The += operator adds the value of the expression on the right of the operator to the value
of the variable on the left of the operator and stores the result in the variable on the left of
the operator. Any statement of the form

where operator is one of the binary operators +, -, *, / or % (or others we’ll discuss later in
the text), can be written in the form

Good Programming Practice 7.4
When inputting values from the user, validate the input to ensure that it’s correct. If an
input value is incorrect, prompt the user to input the value again. The HTML5 self-val-
idating controls can help you check the formatting of your data, but you may need addi-
tional tests to check that properly formatted values make sense in the context of your
application.

c = c + 3;

c += 3;

variable = variable operator expression;

variable operator = expression;

Fig. 7.11 | Examination-results calculation. (Part 3 of 3.)

d) Five students passed and
five failed, so no bonus is paid

to the instructor.

iw3htp5_07_JSCS1.fm Page 270 Wednesday, November 16, 2011 11:52 AM

7.12 Increment and Decrement Operators 271

Thus, the assignment c += 3 adds 3 to c. Figure 7.12 shows the arithmetic assignment op-
erators, sample expressions using these operators and explanations of the meaning of the
operators.

7.12 Increment and Decrement Operators
JavaScript provides the unary increment operator (++) and decrement operator (--) (sum-
marized in Fig. 7.13). If a variable c is incremented by 1, the increment operator, ++, can
be used rather than the expression c = c + 1 or c += 1. If an increment or decrement oper-
ator is placed before a variable, it’s referred to as the preincrement or predecrement oper-
ator, respectively. If an increment or decrement operator is placed after a variable, it’s
referred to as the postincrement or postdecrement operator, respectively.

Preincrementing (or predecrementing) a variable causes the script to increment (dec-
rement) the variable by 1, then use the new value of the variable in the expression in which
it appears. Postincrementing (postdecrementing) the variable causes the script to use the
current value of the variable in the expression in which it appears, then increment (decre-
ment) the variable by 1.

The script in Fig. 7.14 demonstrates the difference between the preincrementing and
postincrementing versions of the ++ increment operator. Postincrementing the variable c

Assignment
operator

Initial value
of variable

Sample
expression Explanation Assigns

+= c = 3 c += 7 c = c + 7 10 to c

-= d = 5 d -= 4 d = d - 4 1 to d

*= e = 4 e *= 5 e = e * 5 20 to e

/= f = 6 f /= 3 f = f / 3 2 to f

%= g = 12 g %= 9 g = g % 9 3 to g

Fig. 7.12 | Arithmetic assignment operators.

Operator Example Called Explanation

++ ++a preincrement Increment a by 1, then use the new value of
a in the expression in which a resides.

++ a++ postincrement Use the current value of a in the expression
in which a resides, then increment a by 1.

-- --b predecrement Decrement b by 1, then use the new value of
b in the expression in which b resides.

-- b-- postdecrement Use the current value of b in the expression
in which b resides, then decrement b by 1.

Fig. 7.13 | Increment and decrement operators.

iw3htp5_07_JSCS1.fm Page 271 Wednesday, November 16, 2011 11:52 AM

272 Chapter 7 JavaScript: Control Statements I

causes it to be incremented after it’s used in the document.writeln method call (line 17).
Preincrementing the variable c causes it to be incremented before it’s used in the docu-
ment.writeln method call (line 24). The script displays the value of c before and after the
++ operator is used. The decrement operator (--) works similarly.

1 <!DOCTYPE html>
2
3 <!-- Fig. 7.14: increment.html -->
4 <!-- Preincrementing and Postincrementing. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Preincrementing and Postincrementing</title>
9 <script>

10
11 var c;
12
13 c = 5;
14 document.writeln("<h3>Postincrementing</h3>");
15 document.writeln("<p>" + c); // prints 5
16 // prints 5 then increments
17 document.writeln(" " +);
18 document.writeln(" " + c + "</p>"); // prints 6
19
20 c = 5;
21 document.writeln("<h3>Preincrementing</h3>");
22 document.writeln("<p>" + c); // prints 5
23 // increments then prints 6
24 document.writeln(" " +);
25 document.writeln(" " + c + "</p>"); // prints 6
26
27 </script>
28 </head><body></body>
29 </html>

Fig. 7.14 | Preincrementing and postincrementing.

Good Programming Practice 7.5
For readability, unary operators should be placed next to their operands, with no inter-
vening spaces.

c++

++c

iw3htp5_07_JSCS1.fm Page 272 Wednesday, November 16, 2011 11:52 AM

7.12 Increment and Decrement Operators 273

The three assignment statements in Fig. 7.11 (lines 23, 25 and 27, respectively),

can be written more concisely with assignment operators as

with preincrement operators as

or with postincrement operators as

When incrementing or decrementing a variable in a statement by itself, the preincre-
ment and postincrement forms have the same effect, and the predecrement and postdecre-
ment forms have the same effect. It’s only when a variable appears in the context of a larger
expression that preincrementing the variable and post-incrementing the variable have dif-
ferent effects. Predecrementing and postdecrementing behave similarly.

Figure 7.15 lists the precedence and associativity of the operators introduced to this
point. The operators are shown top-to-bottom in decreasing order of precedence. The
second column describes the associativity of the operators at each level of precedence. The
conditional operator (?:), the unary operators increment (++) and decrement (--) and the
assignment operators =, +=, -=, *=, /= and %= associate from right to left. All other operators
shown here associate from left to right. The third column names the groups of operators.

passes = passes + 1;
failures = failures + 1;
student = student + 1;

passes += 1;
failures += 1;
student += 1;

++passes;
++failures;
++student;

passes++;
failures++;
student++;

Common Programming Error 7.4
Attempting to use the increment or decrement operator on an expression other than a left-
hand-side expression—commonly called an lvalue—is a syntax error. A left-hand-side
expression is a variable or expression that can appear on the left side of an assignment op-
eration. For example, writing ++(x + 1) is a syntax error, because (x + 1) is not a left-
hand-side expression.

Operator Associativity Type

++ -- right to left unary

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

Fig. 7.15 | Precedence and associativity of the operators discussed so far. (Part 1 of 2.)

iw3htp5_07_JSCS1.fm Page 273 Wednesday, November 16, 2011 11:52 AM

274 Chapter 7 JavaScript: Control Statements I

7.13 Web Resources
www.deitel.com/javascript/

The Deitel JavaScript Resource Center contains links to some of the best JavaScript resources on the
web. There you’ll find categorized links to JavaScript tools, code generators, forums, books, libraries,
frameworks and more. Also check out the tutorials for all skill levels, from introductory to advanced.
Be sure to visit the related Resource Centers on HTML5 (www.deitel.com/html5/) and CSS3
(www.deitel.com/css3/).

== != === !=== left to right equality

?: right to left conditional

= += -= *= /= %= right to left assignment

Operator Associativity Type

Fig. 7.15 | Precedence and associativity of the operators discussed so far. (Part 2 of 2.)

Summary
Section 7.2 Algorithms
• Any computable problem can be solved by executing a series of actions in a specific order.

• A procedure (p. 247) for solving a problem in terms of the actions (p. 247) to execute and the
order in which the actions are to execute (p. 247) is called an algorithm (p. 247).

• Specifying the order in which the actions are to be executed in a computer program is called pro-
gram control (p. 247).

Section 7.3 Pseudocode
• Pseudocode (p. 247) is an informal language that helps you develop algorithms.

• Carefully prepared pseudocode may be converted easily to a corresponding script.

Section 7.4 Control Statements
• Normally, statements in a script execute one after the other, in the order in which they’re written.

This process is called sequential execution (p. 247).

• Various JavaScript statements enable you to specify that the next statement to be executed may
not necessarily be the next one in sequence. This is known as transfer of control (p. 248).

• All scripts could be written in terms of only three control structures—namely, the sequence
structure, (p. 248) the selection structure (p. 248) and the repetition structure (p. 248).

• A flowchart (p. 248) is a graphical representation of an algorithm or of a portion of an algorithm.
Flowcharts are drawn using certain special-purpose symbols, such as rectangles (p. 248), dia-
monds (p. 249), ovals (p. 248) and small circles (p. 248); these symbols are connected by arrows
called flowlines (p. 248), which indicate the order in which the actions of the algorithm execute.

• JavaScript provides three selection structures. The if selection statement (p. 249) performs an
action only if a condition is true. The if…else selection statement performs an action if a condi-
tion is true and a different action if the condition is false. The switch selection statement per-
forms one of many different actions, depending on the value of an expression.

• JavaScript provides four repetition statements—while (p. 249), do…while, for and for…in.

iw3htp5_07_JSCS1.fm Page 274 Wednesday, November 16, 2011 11:52 AM

 Summary 275

• Keywords (p. 249) cannot be used as identifiers (e.g., for variable names).

• Single-entry/single-exit control structures (p. 250) make it easy to build scripts. Control state-
ments are attached to one another by connecting the exit point of one control statement to the
entry point of the next. This procedure is called control-statement stacking (p. 250). There’s
only one other way control statements may be connected: control-statement nesting (p. 250).

Section 7.5 if Selection Statement
• The JavaScript interpreter ignores white-space characters: blanks, tabs and newlines used for inden-

tation and vertical spacing. Programmers insert white-space characters to enhance script clarity.

• A decision can be made on any expression that evaluates to true or false (p. 250).

• The indentation convention you choose should be carefully applied throughout your scripts. It’s
difficult to read scripts that do not use uniform spacing conventions.

Section 7.6 if…else Selection Statement
• The conditional operator (?:; p. 252) is closely related to the if…else statement. Operator ?:

is JavaScript’s only ternary operator—it takes three operands. The operands together with the ?:
operator form a conditional expression (p. 252). The first operand is a boolean expression, the
second is the value for the conditional expression if the boolean expression evaluates to true and
the third is the value for the conditional expression if the boolean expression evaluates to false.

• Nested if…else statements (p. 252) test for multiple cases by placing if…else statements in-
side other if…else structures.

• The JavaScript interpreter always associates an else with the previous if, unless told to do oth-
erwise by the placement of braces ({}).

• The if selection statement expects only one statement in its body. To include several statements
in the body, enclose the statements in a block (p. 254) delimited by braces ({ and }).

• A logic error (p. 255) has its effect at execution time. A fatal logic error (p. 255) causes a script
to fail and terminate prematurely. A nonfatal logic error (p. 255) allows a script to continue ex-
ecuting, but the script produces incorrect results.

Section 7.7 while Repetition Statement
• The while repetition statement allows the you to specify that an action is to be repeated while

some condition remains true.

Section 7.8 Formulating Algorithms: Counter-Controlled Repetition
• Counter-controlled repetition (p. 257) is often called definite repetition, because the number of

repetitions is known before the loop begins executing.

• Uninitialized variables used in mathematical calculations result in logic errors and produce the
value NaN (not a number).

• JavaScript represents all numbers as floating-point numbers in memory. Floating-point numbers
(p. 260) often develop through division. The computer allocates only a fixed amount of space to
hold such a value, so the stored floating-point value can only be an approximation.

Section 7.9 Formulating Algorithms: Sentinel-Controlled Repetition
• In sentinel-controlled repetition, a special value called a sentinel value (also called a signal value,

a dummy value or a flag value, p. 260) indicates the end of data entry. Sentinel-controlled repe-
tition is often called indefinite repetition (p. 261), because the number of repetitions is not
known in advance.

• It’s necessary to choose a sentinel value that cannot be confused with an acceptable input value.

iw3htp5_07_JSCS1.fm Page 275 Wednesday, November 16, 2011 11:52 AM

276 Chapter 7 JavaScript: Control Statements I

• Top-down, stepwise refinement (p. 261) is a technique essential to the development of well-
structured algorithms. The top (p. 261) is a single statement that conveys the overall purpose of
the script. As such, the top is, in effect, a complete representation of a script. The stepwise refine-
ment process divides the top into a series of smaller tasks. Terminate the top-down, stepwise re-
finement process when the pseudocode algorithm is specified in sufficient detail for you to be
able to convert the pseudocode to JavaScript.

Section 7.10 Formulating Algorithms: Nested Control Statements
• Control statements can be nested to perform more complex tasks.

Section 7.11 Assignment Operators
• JavaScript provides the arithmetic assignment operators +=, -=, *=, /= and %= (p. 270), which ab-

breviate certain common types of expressions.

Section 7.12 Increment and Decrement Operators
• The increment operator, ++ (p. 271), and the decrement operator, -- (p. 271), increment or dec-

rement a variable by 1, respectively. If the operator is prefixed to the variable, the variable is in-
cremented or decremented by 1, then used in its expression. If the operator is postfixed to the
variable, the variable is used in its expression, then incremented or decremented by 1.

Self-Review Exercises
7.1 Fill in the blanks in each of the following statements:

a) JavaScript provides four repetition statements— , , and
.

b) JavaScript represents all numbers as numbers in memory.
c) is an informal language that helps you to develop algorithms.
d) A(n) has its effect at execution time. A(n) causes a script to fail and

terminate prematurely. A(n) allows a script to continue executing, but the
script produces incorrect results.

7.2 Write four JavaScript statements that each subtract 1 from variable x, which contains a number.

7.3 Write JavaScript statements to accomplish each of the following tasks:
a) Assign the product of x and y to z, and decrement the value of x by 1 after the calculation.

Use only one statement.
b) Test whether the value of the variable count is less than 15. If it is, print "Count is less

than 15".
c) Increment the variable x by 1, then add it to the variable total. Use only one statement.
d) Calculate the product after p is multiplied by variable product, and assign the result to

p. Write this statement in two different ways.

7.4 Write a JavaScript statement to accomplish each of the following tasks:
a) Declare variables product and y.
b) Assign 5 to variable y.
c) Assign 1 to variable product.
d) Multiply variable y with variable product, and assign the result to variable product.
e) Print "The product is: ", followed by the value of variable product.

7.5 Write a script including statements for variable declaration and assignment that will calcu-
late and print the sum of the integers from 1 to 10. Use the while statement to loop through the
calculation and increment statements. The loop should terminate when the value of x becomes 11.

iw3htp5_07_JSCS1.fm Page 276 Wednesday, November 16, 2011 11:52 AM

 Answers to Self-Review Exercises 277

7.6 Determine the value of each variable after the calculation is performed. Assume that, when
each statement begins executing, all variables have the integer value 3.

a) product *= x--;
b) quotient /= --x;

7.7 Identify and correct the errors in each of the following segments of code:
a) while (c <= 5) {

 product *= c;

 ++c;
b) if (gender == 1)

 document.writeln("Woman");

else;

 document.writeln("Man");

7.8 What is wrong with the following while repetition statement?
while (z >= 0)

 sum += z;

Answers to Self-Review Exercises
7.1 a) while, do…while, for, for....in. b) floating-point. c) Pseudocode. d) logic error, fatal
logic error, nonfatal logic error.

7.2 x = x -1;

x -= 1;

--x;

x--;

7.3 a) z = x++ + y;

b) if (count < 15)

 document.writeln("Count is lesser than 15");
c) total += ++x;
d) p *= product;

p = p * product;

7.4 a) var product, y;

b) y = 5;
c) product = 1;
d) product *= y; or product = product * 1;
e) document.writeln("The product is: " + product);

7.5 The solution is as follows:

1 <!DOCTYPE html>
2
3 <!-- Exercise 7.5: ex08_05.html -->
4 <html>
5 <head>
6 <meta charset = "utf-8">
7 <title>Sum the Integers from 1 to 10</title>
8 <script>
9 var sum; // stores the total

10 var x; //counter control variable
11
12 x = 1;
13 sum = 0;
14

iw3htp5_07_JSCS1.fm Page 277 Wednesday, November 16, 2011 11:52 AM

278 Chapter 7 JavaScript: Control Statements I

7.6 a) product = 9, x = 2;

b) quotient = 1.5, x = 2;

7.7 a) Error: Missing the closing right brace of the while body.
Correction: Add closing right brace after the statement ++c;.

b) Error: The ; after else causes a logic error. The second output statement always executes.
Correction: Remove the semicolon after else.

7.8 The value of the variable z is never changed in the body of the while statement. Therefore,
if the loop-continuation condition (z >= 0) is true, an infinite loop is created. To prevent the creation
of the infinite loop, z must be decremented so that it eventually becomes less than 0.

Exercises
7.9 Identify and correct the errors in each of the following segments of code. [Note: There may
be more than one error in each piece of code; unless declarations are present, assume all variables are
properly declared and initialized.]

a) if (age >= 65);

 document.writeln("Age greater than or equal to 65");

else

 document.writeln("Age is less than 65");
b) var x = 1, total;

while (x <= 10)

{

 total += x;

 ++x;

}
c) var x = 1;

var total = 0;
While (x <= 100)

 total += x;

 ++x;
d) var y = 5;

while (y > 0)

{

 document.writeln(y);

 ++y;

15 while (x <= 10)
16 {
17 sum += x;
18 ++x;
19 } // end while
20 document.writeln("The sum is: " + sum);
21 </script>
22 </head><body></body>
23 </html>

iw3htp5_07_JSCS1.fm Page 278 Wednesday, November 16, 2011 11:52 AM

 Exercises 279

7.10 Without running it, determine what the following script prints:

For Exercises 7.11–7.14, perform each of the following steps:
a) Read the problem statement.
b) Formulate the algorithm using pseudocode and top-down, stepwise refinement.
c) Define the algorithm in JavaScript.
d) Test, debug and execute the JavaScript.
e) Process three complete sets of data.

7.11 Drivers are concerned with the mileage obtained by their automobiles. One driver has kept
track of several tankfuls of gasoline by recording the number of miles driven and the number of gallons
used for each tankful. Develop a script that will take as input the miles driven and gallons used (both
as integers) for each tankful. The script should calculate and output HTML5 text that displays the
number of miles per gallon obtained for each tankful and prints the combined number of miles per
gallon obtained for all tankfuls up to this point. Use prompt dialogs to obtain the data from the user.

7.12 Develop a script that will determine whether a department-store customer has exceeded the
credit limit on a charge account. For each customer, the following facts are available:

a) Account number
b) Balance at the beginning of the month
c) Total of all items charged by this customer this month
d) Total of all credits applied to this customer's account this month
e) Allowed credit limit

The script should input each of these facts from a prompt dialog as an integer, calculate the
new balance (= beginning balance + charges – credits), display the new balance and determine
whether the new balance exceeds the customer’s credit limit. For customers whose credit limit is
exceeded, the script should output HTML5 text that displays the message “Credit limit exceeded.”

7.13 A large company pays its salespeople on a commission basis. The salespeople receive $200 per
week, plus 9 percent of their gross sales for that week. For example, a salesperson who sells $5000

1 <!DOCTYPE html>
2
3 <!-- Exercise 7.10: ex08_10.html -->
4 <html>
5 <head>
6 <meta charset = "utf-8">
7 <title>Mystery Script</title>
8 <script type = "text/javascript">
9 <!--

10 var y;
11 var x = 1;
12 var total = 0;
13
14 while (x <= 15)
15 {
16 y = x * x * x;
17 document.writeln("<p>" + y + "</p>");
18 total += y;
19 ++x;
20 } // end while
21
22 document.writeln("<p>Total is " + total + "</p>");
23 //-->
24 </script>
25 </head><body></body>
26 </html>

iw3htp5_07_JSCS1.fm Page 279 Wednesday, November 16, 2011 11:52 AM

280 Chapter 7 JavaScript: Control Statements I

worth of merchandise in a week receives $200 plus 9 percent of $5000, or a total of $650. You have
been supplied with a list of the items sold by each salesperson. The values of these items are as follows:

Item Value
1 239.99
2 129.75
3 99.95
4 350.89

Develop a script that inputs one salesperson’s items sold for last week, calculates the salesperson’s
earnings and outputs HTML5 text that displays the salesperson’s earnings.

7.14 Develop a script that will determine the gross pay for each of three employees. The compa-
ny pays “straight time” for the first 40 hours worked by each employee and pays “time and a half”
for all hours worked in excess of 40 hours. You’re given a list of the employees of the company, the
number of hours each employee worked last week and the hourly rate of each employee. Your script
should input this information for each employee, determine the employee’s gross pay and output
HTML5 text that displays the employee’s gross pay. Use prompt dialogs to input the data.

7.15 The process of finding the largest value (i.e., the maximum of a group of values) is used fre-
quently in computer applications. For example, a script that determines the winner of a sales contest
would input the number of units sold by each salesperson. The salesperson who sells the most units
wins the contest. Write a pseudocode algorithm and then a script that inputs a series of 10 single-
digit numbers as characters, determines the largest of the numbers and outputs a message that dis-
plays the largest number. Your script should use three variables as follows:

a) counter: A counter to count to 10 (i.e., to keep track of how many numbers have been
input and to determine when all 10 numbers have been processed);

b) number: The current digit input to the script;
c) largest: The largest number found so far.

7.16 Write a script that uses looping to print the following table of values. Output the results in
an HTML5 table. Use CSS to center the data in each column.

7.17 Using an approach similar to that in Exercise 7.15, find the two largest values among the
10 digits entered. [Note: You may input each number only once.]

7.18 Without running it, determine what the following script prints:

1 <!DOCTYPE html>
2
3 <!-- Exercise 7.18: ex08_18.html -->
4 <html>
5 <head>

iw3htp5_07_JSCS1.fm Page 280 Wednesday, November 16, 2011 11:52 AM

 Exercises 281

7.19 (Dangling-Else Problem) Determine the output for each of the given segments of code
when x is 9 and y is 11, and when x is 11 and y is 9. Note that the interpreter ignores the indentation
in a script. Also, the JavaScript interpreter always associates an else with the previous if, unless told
to do otherwise by the placement of braces ({}). You may not be sure at first glance which if an
else matches. This situation is referred to as the “dangling-else” problem. We’ve eliminated the in-
dentation from the given code to make the problem more challenging. [Hint: Apply the indentation
conventions you have learned.]

a) if (x < 10)

if (y > 10)

document.writeln("<p>*****</p>");

else

document.writeln("<p>#####</p>");

document.writeln("<p>$$$$$</p>");
b) if (x < 10)

{

if (y > 10)

document.writeln("<p>*****</p>");

}

else

{

document.writeln("<p>#####</p>");

document.writeln("<p>$$$$$</p>");

}

7.20 A palindrome is a number or a text phrase that reads the same backward and forward. For
example, each of the following five-digit integers is a palindrome: 12321, 55555, 45554 and 11611.
Write a script that reads in a five-digit integer and determines whether it’s a palindrome. If the num-
ber is not five digits long, display an alert dialog indicating the problem to the user. Allow the user
to enter a new value after dismissing the alert dialog. [Hint: It’s possible to do this exercise with

6 <meta charset = "utf-8">
7 <title>Mystery Script</title>
8 <script>
9

10 var row = 10;
11 var column;
12
13 while (row >= 1)
14 {
15 column = 1;
16 document.writeln("<p>");
17
18 while (column <= 10)
19 {
20 document.write(row % 2 == 1 ? "<" : ">");
21 ++column;
22 } // end while
23
24 --row;
25 document.writeln("</p>");
26 } // end while
27
28 </script>
29 </head><body></body>
30 </html>

iw3htp5_07_JSCS1.fm Page 281 Wednesday, November 16, 2011 11:52 AM

282 Chapter 7 JavaScript: Control Statements I

the techniques learned in this chapter. You’ll need to use both division and remainder operations to
“pick off” each digit.]

7.21 Write a script that outputs HTML5 text that keeps displaying in the browser window the
multiples of the integer 2—namely, 2, 4, 8, 16, 32, 64, etc. Your loop should not terminate (i.e., you
should create an infinite loop). What happens when you run this script?

7.22 A company wants to transmit data over the telephone, but it’s concerned that its phones
may be tapped. All of its data is transmitted as four-digit integers. It has asked you to write a script
that will encrypt its data so that the data may be transmitted more securely. Your script should read
a four-digit integer entered by the user in a prompt dialog and encrypt it as follows: Replace each
digit by (the sum of that digit plus 7) modulus 10. Then swap the first digit with the third, and swap
the second digit with the fourth. Then output HTML5 text that displays the encrypted integer.

7.23 Write a script that inputs an encrypted four-digit integer (from Exercise 7.22) and decrypts
it to form the original number.

iw3htp5_07_JSCS1.fm Page 282 Wednesday, November 16, 2011 11:52 AM

8JavaScript: Control
Statements II

Who can control his fate?
—William Shakespeare

Not everything that can be
counted counts, and not every
thing that counts can be
counted.
—Albert Einstein

O b j e c t i v e s
In this chapter you’ll:

■ Learn the essentials of
counter-controlled repetition

■ Use the for and do…while
repetition statements to
execute statements in a
program repeatedly.

■ Perform multiple selection
using the switch selection
statement.

■ Use the break and
continue program-control
statements

■ Use the logical operators to
make decisions.

iw3htp5_08_JSCS2.fm Page 283 Wednesday, November 16, 2011 1:06 PM

284 Chapter 8 JavaScript: Control Statements II

8.1 Introduction
In this chapter, we introduce JavaScript’s remaining control statements (with the excep-
tion of for…in, which is presented in Chapter 10). In later chapters, you’ll see that con-
trol statements also are helpful in manipulating objects.

8.2 Essentials of Counter-Controlled Repetition
Counter-controlled repetition requires:

1. The name of a control variable (or loop counter).

2. The initial value of the control variable.

3. The increment (or decrement) by which the control variable is modified each time
through the loop (also known as each iteration of the loop).

4. The condition that tests for the final value of the control variable to determine
whether looping should continue.

To see the four elements of counter-controlled repetition, consider the simple script
shown in Fig. 8.1, which displays lines of HTML5 text that illustrate the seven different
font sizes supported by HTML5. The declaration in line 11 names the control variable
(counter), reserves space for it in memory and sets it to an initial value of 1. The declara-
tion and initialization of counter could also have been accomplished by these statements:

Lines 15–16 in the while statement write a paragraph element consisting of the string
“HTML5 font size” concatenated with the control variable counter’s value, which repre-
sents the font size. An inline CSS style attribute sets the font-size property to the value
of counter concatenated with ex.

Line 17 in the while statement increments the control variable by 1 for each iteration
of the loop (i.e., each time the body of the loop is performed). The loop-continuation con-
dition (line 13) in the while statement tests whether the value of the control variable is less
than or equal to 7 (the final value for which the condition is true). Note that the body of
this while statement executes even when the control variable is 7. The loop terminates
when the control variable exceeds 7 (i.e., counter becomes 8).

8.1 Introduction
8.2 Essentials of Counter-Controlled

Repetition
8.3 for Repetition Statement
8.4 Examples Using the for Statement
8.5 switch Multiple-Selection

Statement

8.6 do…while Repetition Statement
8.7 break and continue Statements
8.8 Logical Operators
8.9 Web Resources

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

var counter; // declare counter
counter = 1; // initialize counter to 1

iw3htp5_08_JSCS2.fm Page 284 Wednesday, November 16, 2011 1:06 PM

8.3 for Repetition Statement 285

8.3 for Repetition Statement
The for repetition statement conveniently handles all the details of counter-controlled
repetition. Figure 8.2 illustrates the power of the for statement by reimplementing the
script of Fig. 8.1. The outputs of these scripts are identical.

1 <!DOCTYPE html>
2
3 <!-- Fig. 8.1: WhileCounter.html -->
4 <!-- Counter-controlled repetition. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Counter-Controlled Repetition</title>
9 <script>

10
11
12
13
14 {
15 document.writeln("<p style = 'font-size: " +
16 counter + "ex'>HTML5 font size " + counter + "ex</p>");
17
18 } //end while
19
20 </script>
21 </head><body></body>
22 </html>

Fig. 8.1 | Counter-controlled repetition.

var counter = 1; // initialization

while (counter <= 7) // repetition condition

++counter; // increment

iw3htp5_08_JSCS2.fm Page 285 Wednesday, November 16, 2011 1:06 PM

286 Chapter 8 JavaScript: Control Statements II

When the for statement begins executing (line 14), the control variable counter is
declared and initialized to 1. Next, the loop-continuation condition, counter <= 7, is
checked. The condition contains the final value (7) of the control variable. The initial
value of counter is 1. Therefore, the condition is satisfied (i.e., true), so the body state-
ment (lines 15–16) writes a paragraph element in the body of the HTML5 document.
Then, variable counter is incremented in the expression ++counter and the loop con-
tinues execution with the loop-continuation test. The control variable is now equal to 2,
so the final value is not exceeded and the program performs the body statement again (i.e.,
performs the next iteration of the loop). This process continues until the control variable
counter becomes 8, at which point the loop-continuation test fails and the repetition ter-
minates.

The program continues by performing the first statement after the for statement. (In
this case, the script terminates, because the interpreter reaches the end of the script.)

Figure 8.3 takes a closer look at the for statement at line 14 of Fig. 8.2. The for state-
ment’s first line (including the keyword for and everything in parentheses after it) is often
called the for statement header. Note that the for statement “does it all”—it specifies
each of the items needed for counter-controlled repetition with a control variable.
Remember that a block is a group of statements enclosed in curly braces that can be placed
anywhere that a single statement can be placed, so you can use a block to put multiple
statements into the body of a for statement, if necessary.

A Closer Look at the for Statement’s Header
Figure 8.3 uses the loop-continuation condition counter <= 7. If you incorrectly write
counter < 7, the loop will execute only six times. This is an example of the common logic
error called an off-by-one error.

1 <!DOCTYPE html>
2
3 <!-- Fig. 8.2: ForCounter.html -->
4 <!-- Counter-controlled repetition with the for statement. -->
5 <html>
6 <head>
7 <meta charset="utf-8">
8 <title>Counter-Controlled Repetition</title>
9 <script>

10
11 // Initialization, repetition condition and
12 // incrementing are all included in the for
13 // statement header.
14
15 document.writeln("<p style = 'font-size: " +
16 counter + "ex'>HTML5 font size " + counter + "ex</p>");
17
18 </script>
19 </head><body></body>
20 </html>

Fig. 8.2 | Counter-controlled repetition with the for statement.

for (var counter = 1; counter <= 7; ++counter)

iw3htp5_08_JSCS2.fm Page 286 Wednesday, November 16, 2011 1:06 PM

8.3 for Repetition Statement 287

General Format of a for Statement
The general format of the for statement is

where the initialization expression names the loop’s control variable and provides its initial
value, loopContinuationTest is the expression that tests the loop-continuation condition
(containing the final value of the control variable for which the condition is true), and
increment is an expression that increments the control variable.

Optional Expressions in a for Statement Header
The three expressions in the for statement’s header are optional. If loopContinuationTest is
omitted, the loop-continuation condition is true, thus creating an infinite loop. One might
omit the initialization expression if the control variable is initialized before the loop. One
might omit the increment expression if the increment is calculated by statements in the
loop’s body or if no increment is needed. The two semicolons in the header are required.

Arithmetic Expressions in the for Statement’s Header
The initialization, loop-continuation condition and increment portions of a for statement
can contain arithmetic expressions. For example, assume that x = 2 and y = 10. If x and y
are not modified in the body of the loop, then the statement

is equivalent to the statement

Negative Increments
The “increment” of a for statement may be negative, in which case it’s really a decrement
and the loop actually counts downward.

Loop-Continuation Condition Initially false
If the loop-continuation condition initially is false, the for statement’s body is not per-
formed. Instead, execution proceeds with the statement following the for statement.

Fig. 8.3 | for statement header components.

for (initialization; loopContinuationTest; increment)
 statements

for (var j = x; j <= 4 * x * y; j += y / x)

for (var j = 2; j <= 80; j += 5)

Error-Prevention Tip 8.1
Although the value of the control variable can be changed in the body of a for statement,
avoid changing it, because doing so can lead to subtle errors.

for (var counter = 1; counter <= 7; ++counter)

Initial value of
control variable

Increment of
control variable

Control variable
name

Final value of control variable for
which the condition is true

for
keyword

Loop-continuation
condition

iw3htp5_08_JSCS2.fm Page 287 Wednesday, November 16, 2011 1:06 PM

288 Chapter 8 JavaScript: Control Statements II

Flowcharting a for Statement
The for statement is flowcharted much like the while statement. For example, Fig. 8.4
shows the flowchart of the for statement in lines 14–17 of Fig. 8.2. This flowchart makes
it clear that the initialization occurs only once and that incrementing occurs after each ex-
ecution of the body statement. Note that, besides small circles and arrows, the flowchart
contains only rectangle symbols and a diamond symbol.

8.4 Examples Using the for Statement
The examples in this section show methods of varying the control variable in a for state-
ment. In each case, we write the appropriate for header. Note the change in the relational
operator for loops that decrement the control variable.

a) Vary the control variable from 1 to 100 in increments of 1.

b) Vary the control variable from 100 to 1 in increments of -1 (i.e., decrements of 1).

c) Vary the control variable from 7 to 77 in steps of 7.

d) Vary the control variable from 20 to 2 in steps of -2.

Fig. 8.4 | for repetition statement flowchart.

 for (var i = 1; i <= 100; ++i)

 for (var i = 100; i >= 1; --i)

 for (var i = 7; i <= 77; i += 7)

 for (var i = 20; i >= 2; i -= 2)

Common Programming Error 8.1
Not using the proper relational operator in the loop-continuation condition of a loop that
counts downward (e.g., using i <= 1 instead of i >= 1 in a loop that counts down to 1)
is a logic error.

counter <= 7

document.writeln(
 "<p style='font-size: "
 + counter +
 "ex'>HTML5 font size " +
 counter + "ex</p>");

true

false

var counter = 1

++counter

Establish initial
value of control
variable

Determine if
final value of
control variable
has been
reached

Body of loop
(this may be many
statements)

Increment
the control
variable

iw3htp5_08_JSCS2.fm Page 288 Wednesday, November 16, 2011 1:06 PM

8.4 Examples Using the for Statement 289

Summing Integers with a for Statement
Figure 8.5 uses the for statement to sum the even integers from 2 to 100. Note that the
increment expression (line 13) adds 2 to the control variable number after the body exe-
cutes during each iteration of the loop. The loop terminates when number has the value
102 (which is not added to the sum), and the script continues executing at line 16.

The body of the for statement in Fig. 8.5 actually could be merged into the rightmost
(increment) portion of the for header by using a comma, as follows:

In this case, the comma represents the comma operator, which guarantees that the expres-
sion to its left is evaluated before the expression to its right. Similarly, the initialization
sum= 0 could be merged into the initialization section of the for statement.

1 <!DOCTYPE html>
2
3 <!-- Fig. 8.5: Sum.html -->
4 <!-- Summation with the for repetition structure. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Sum the Even Integers from 2 to 100</title>
9 <script>

10
11 var sum = 0;
12
13
14 sum += number;
15
16 document.writeln("The sum of the even integers " +
17 "from 2 to 100 is " + sum);
18
19 </script>
20 </head><body></body>
21 </html>

Fig. 8.5 | Summation with the for repetition structure.

for (var number = 2; number <= 100; sum += number, number += 2)
 ;

Good Programming Practice 8.1
Although statements preceding a for statement and in the body of a for statement can
often be merged into the for header, avoid doing so, because it makes the program more
difficult to read.

for (var number = 2; number <= 100; number += 2)

iw3htp5_08_JSCS2.fm Page 289 Wednesday, November 16, 2011 1:06 PM

290 Chapter 8 JavaScript: Control Statements II

Calculating Compound Interest with the for Statement
The next example computes compound interest (compounded yearly) using the for state-
ment. Consider the following problem statement:

A person invests $1000.00 in a savings account yielding 5 percent interest. Assuming
that all the interest is left on deposit, calculate and print the amount of money in the
account at the end of each year for 10 years. Use the following formula to determine
the amounts:

a = p (1 + r) n

where

p is the original amount invested (i.e., the principal)
r is the annual interest rate
n is the number of years
a is the amount on deposit at the end of the nth year.

This problem involves a loop that performs the indicated calculation for each of the
10 years the money remains on deposit. Figure 8.6 presents the solution to this problem,
displaying the results in a table. Lines 9–18 define an embedded CSS style sheet that for-
mats various aspects of the table. The CSS property border-collapse (line 11) with the
value collapse indicates that the table’s borders should be merged so that there is no extra
space between adjacent cells or between cells and the table’s border. Lines 13–14 specify
the formatting for the table, td and th elements, indicating that they should all have a
1px solid black border and padding of 4px around their contents.

1 <!DOCTYPE html>
2
3 <!-- Fig. 8.6: Interest.html -->
4 <!-- Compound interest calculation with a for loop. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Calculating Compound Interest</title>
9 <style type = "text/css">

10 table { width: 300px;
11 border-collapse: collapse;
12 background-color: lightblue; }
13 table, td, th { border: 1px solid black;
14 padding: 4px; }
15 th { text-align: left;
16 color: white;
17 background-color: darkblue; }
18 tr.oddrow { background-color: white; }
19 </style>
20 <script>
21
22 var amount; // current amount of money
23 var principal = 1000.00; // principal amount
24 var rate = 0.05; // interest rate
25

Fig. 8.6 | Compound interest calculation with a for loop. (Part 1 of 2.)

iw3htp5_08_JSCS2.fm Page 290 Wednesday, November 16, 2011 1:06 PM

8.4 Examples Using the for Statement 291

Outputting the Beginning of an HTML5 table
Lines 22–24 declare three variables and initialize principal to 1000.0 and rate to .05.
Line 26 writes an HTML5 <table> tag, and lines 27–28 write the caption that summa-
rizes the table’s content. Lines 29–30 create the table’s header section (<thead>), a row

26 document.writeln("<table>"); // begin the table
27 document.writeln(
28 "<caption>Calculating Compound Interest</caption>");
29 document.writeln(
30 "<thead><tr><th>Year</th>"); // year column heading
31 document.writeln(
32 "<th>Amount on deposit</th>"); // amount column heading
33 document.writeln("</tr></thead><tbody>");
34
35 // output a table row for each year
36
37 {
38 amount = principal * ;
39
40 if (year % 2 0)
41 document.writeln("<tr class='oddrow'><td>" + year +
42 "</td><td>" + amount.toFixed(2) + "</td></tr>");
43 else
44 document.writeln("<tr><td>" + year +
45 "</td><td>" + amount.toFixed(2) + "</td></tr>");
46 } //end for
47
48 document.writeln("</tbody></table>");
49
50 </script>
51 </head><body></body>
52 </html>

Fig. 8.6 | Compound interest calculation with a for loop. (Part 2 of 2.)

for (var year = 1; year <= 10; ++year)

Math.pow(1.0 + rate, year)

!==

iw3htp5_08_JSCS2.fm Page 291 Wednesday, November 16, 2011 1:06 PM

292 Chapter 8 JavaScript: Control Statements II

(<tr>) and a column heading (<th>) containing “Year.” Lines 31–32 create a table head-
ing for “Amount on deposit”, write the closing </tr> and </thead> tags, and write the
opening tag for the body of the table (<body>).

Performing the Interest Calculations
The for statement (lines 36–46) executes its body 10 times, incrementing control variable
year from 1 to 10 (note that year represents n in the problem statement). JavaScript does
not include an exponentiation operator—instead, we use the Math object’s pow method.
Math.pow(x, y) calculates the value of x raised to the yth power. Method Math.pow takes
two numbers as arguments and returns the result. Line 38 performs the calculation using
the formula given in the problem statement.

Formatting the table Rows
Lines 40–45 write a line of HTML5 markup that creates the next row in the table. If it’s
an odd-numbered row, line 41 indicates that the row should be formatted with the CSS
style class oddrow (defined on line 18)—this allows us to format the background color dif-
ferently for odd- and even-numbered rows to make the table more readable. The first col-
umn is the current year value. The second column displays the value of amount. Line 48
writes the closing </tbody> and </table> tags after the loop terminates.

Number Method toFixed
Lines 42 and 45 introduce the Number object and its toFixed method. The variable
amount contains a numerical value, so JavaScript represents it as a Number object. The to-
Fixed method of a Number object formats the value by rounding it to the specified number
of decimal places. On line 34, amount.toFixed(2) outputs the value of amount with two
decimal places, which is appropriate for dollar amounts.

A Warning about Displaying Rounded Values
Variables amount, principal and rate represent numbers in this script. Remember that
JavaScript represents all numbers as floating-point numbers. This feature is convenient in
this example, because we’re dealing with fractional parts of dollars and need a type that
allows decimal points in its values.

Unfortunately, floating-point numbers can cause trouble. Here’s a simple example of
what can go wrong when using floating-point numbers to represent dollar amounts dis-
played with two digits to the right of the decimal point: Two dollar amounts stored in the
machine could be 14.234 (which would normally be rounded to 14.23 for display as a
dollar amount) and 18.673 (which would normally be rounded to 18.67). When these
amounts are added, they produce the internal sum 32.907, which would normally be
rounded to 32.91 for display purposes. Thus your printout could appear as:

but a person adding the individual numbers as printed would expect the sum to be 32.90.
You’ve been warned!

 14.23
+ 18.67

 32.91

iw3htp5_08_JSCS2.fm Page 292 Wednesday, November 16, 2011 1:06 PM

8.5 switch Multiple-Selection Statement 293

8.5 switch Multiple-Selection Statement
Previously, we discussed the if single-selection statement and the if…else double-
selection statement. Occasionally, an algorithm will contain a series of decisions in which
a variable or expression is tested separately for each of the values it may assume, and dif-
ferent actions are taken for each value. JavaScript provides the switch multiple-selection
statement to handle such decision making. The script in Fig. 8.7 demonstrates three dif-
ferent CSS list formats determined by the value the user enters.

1 <!DOCTYPE html>
2
3 <!-- Fig. 8.7: SwitchTest.html -->
4 <!-- Using the switch multiple-selection statement. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Switching between HTML5 List Formats</title>
9 <script>

10
11 var choice; // user’s choice
12 var startTag; // starting list item tag
13 var endTag; // ending list item tag
14 var validInput = true; // true if input valid else false
15 var listType; // type of list as a string
16
17 choice = window.prompt("Select a list style:\n" +
18 "1 (numbered), 2 (lettered), 3 (roman numbered)", "1");
19
20
21
22
23 startTag = "";
24 endTag = "";
25 listType = "<h1>Numbered List</h1>";
26
27
28 startTag = "<ol style = 'list-style-type: upper-alpha'>";
29 endTag = "";
30 listType = "<h1>Lettered List</h1>";
31
32
33 startTag = "<ol style = 'list-style-type: upper-roman'>";
34 endTag = "";
35 listType = "<h1>Roman Numbered List</h1>";
36
37
38 validInput = false;
39
40 } //end switch
41
42 if (validInput === true)
43 {

Fig. 8.7 | Using the switch multiple-selection statement. (Part 1 of 3.)

switch (choice)
{
 case "1":

 break;
 case "2":

 break;
 case "3":

 break;
 default:

 break;

iw3htp5_08_JSCS2.fm Page 293 Wednesday, November 16, 2011 1:06 PM

294 Chapter 8 JavaScript: Control Statements II

44 document.writeln(listType + startTag);
45
46 for (var i = 1; i <= 3; ++i)
47 document.writeln("List item " + i + "");
48
49 document.writeln(endTag);
50 } //end if
51 else
52 document.writeln("Invalid choice: " + choice);
53
54 </script>
55 </head><body></body>
56 </html>

Fig. 8.7 | Using the switch multiple-selection statement. (Part 2 of 3.)

iw3htp5_08_JSCS2.fm Page 294 Wednesday, November 16, 2011 1:06 PM

8.5 switch Multiple-Selection Statement 295

Line 11 declares the variable choice. This variable stores the user’s choice, which
determines what type of HTML5 ordered list to display. Lines 12–13 declare variables
startTag and endTag, which will store the HTML5 tags that will be used to create the list
element. Line 14 declares variable validInput and initializes it to true. The script uses
this variable to determine whether the user made a valid choice (indicated by the value of
true). If a choice is invalid, the script sets validInput to false. Line 15 declares variable
listType, which will store an h1 element indicating the list type. This heading appears
before the list in the HTML5 document.

Lines 17–18 prompt the user to enter a 1 to display a numbered list, a 2 to display a
lettered list and a 3 to display a list with roman numerals. Lines 20–40 define a switch
statement that assigns to the variables startTag, endTag and listType values based on the
value input by the user in the prompt dialog. We create these different lists using the CSS
property list-style-type, which allows us to set the numbering system for the list. Pos-
sible values include decimal (numbers—the default), lower-roman (lowercase Roman
numerals), upper-roman (uppercase Roman numerals), lower-alpha (lowercase letters),
upper-alpha (uppercase letters), and more.

The switch statement consists of a series of case labels and an optional default case
(which is normally placed last). When the flow of control reaches the switch statement,
the script evaluates the controlling expression (choice in this example) in the parentheses
following keyword switch. The value of this expression is compared with the value in each
of the case labels, starting with the first case label. Assume that the user entered 2.
Remember that the value typed by the user in a prompt dialog is returned as a string. So,
the string 2 is compared to the string in each case in the switch statement. If a match
occurs (case "2":), the statements for that case execute. For the string 2 (lines 28–31), we
set startTag to an opening ol tag with the style property list-style-type set to upper-
alpha, set endTag to "" to indicate the end of an ordered list and set listType to
"<h1>Lettered List</h1>". If no match occurs between the controlling expression’s value
and a case label, the default case executes and sets variable validInput to false.

The break statement in line 31 causes program control to proceed with the first state-
ment after the switch statement. The break statement is used because the cases in a

Fig. 8.7 | Using the switch multiple-selection statement. (Part 3 of 3.)

iw3htp5_08_JSCS2.fm Page 295 Wednesday, November 16, 2011 1:06 PM

296 Chapter 8 JavaScript: Control Statements II

switch statement would otherwise run together. If break is not used anywhere in a switch
statement, then each time a match occurs in the statement, the statements for that case and
all the remaining cases execute.

Next, the flow of control continues with the if statement in line 42, which tests
whether the variable validInput is true. If so, lines 44–49 write the listType, the
startTag, three list items () and the endTag. Otherwise, the script writes text in the
HTML5 document indicating that an invalid choice was made (line 52).

Flowcharting the switch Statement
Each case can have multiple actions (statements). The switch statement is different from
others in that braces are not required around multiple actions in a case of a switch. The
general switch statement (i.e., using a break in each case) is flowcharted in Fig. 8.8.

The flowchart makes it clear that each break statement at the end of a case causes con-
trol to exit from the switch statement immediately. The break statement is not required for
the last case in the switch statement (or the default case, when it appears last), because pro-
gram control simply continues with the next statement after the switch statement. Having
several case labels listed together (e.g., case 1: case 2: with no statements between the
cases) simply means that the same set of actions is to occur for each of these cases.

8.6 do…while Repetition Statement
The do…while repetition statement is similar to the while statement. In the while state-
ment, the loop-continuation test occurs at the beginning of the loop, before the body of the
loop executes. The do…while statement tests the loop-continuation condition after the loop
body executes—therefore, the loop body always executes at least once. When a do…while ter-

Fig. 8.8 | switch multiple-selection statement.

case a case a action(s)
true

false

.

.

.

break

case b action(s) break

false

false

case z case z action(s) break

default action(s)

true

true

case b

iw3htp5_08_JSCS2.fm Page 296 Wednesday, November 16, 2011 1:06 PM

8.6 do…while Repetition Statement 297

minates, execution continues with the statement after the while clause. It’s not necessary to
use braces in a do…while statement if there’s only one statement in the body.

The script in Fig. 8.9 uses a do…while statement to display each of the six different
HTML5 heading types (h1 through h6). Line 11 declares control variable counter and ini-
tializes it to 1. Upon entering the do…while statement, lines 14–16 write a line of
HTML5 text in the document. The value of control variable counter is used to create the
starting and ending header tags (e.g., <h1> and </h1>) and to create the line of text to dis-
play (e.g., This is an h1 level head). Line 17 increments the counter before the loop-
continuation test occurs at the bottom of the loop.

1 <!DOCTYPE html>
2
3 <!-- Fig. 8.9: DoWhileTest.html -->
4 <!-- Using the do...while repetition statement. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Using the do...while Repetition Statement</title>
9 <script>

10
11 var counter = 1;
12
13
14 document.writeln("<h" + counter + ">This is " +
15 "an h" + counter + " level head" + "</h" +
16 counter + ">");
17 ++counter;
18
19
20 </script>
21
22 </head><body></body>
23 </html>

Fig. 8.9 | Using the do…while repetition statement.

do {

} while (counter <= 6);

iw3htp5_08_JSCS2.fm Page 297 Wednesday, November 16, 2011 1:06 PM

298 Chapter 8 JavaScript: Control Statements II

Flowcharting the do…while Statement
The do…while flowchart in Fig. 8.10 makes it clear that the loop-continuation test does
not occur until the action executes at least once.

8.7 break and continue Statements
In addition to the selection and repetition statements, JavaScript provides the statements
break and continue to alter the flow of control. Section 8.5 demonstrated how break can
be used to terminate a switch statement’s execution. This section shows how to use break
in repetition statements.

break Statement
The break statement, when executed in a while, for, do…while or switch statement,
causes immediate exit from the statement. Execution continues with the first statement af-
ter the structure. Figure 8.11 demonstrates the break statement in a for repetition state-
ment. During each iteration of the for statement in lines 13–19, the script writes the value
of count in the HTML5 document. When the if statement in line 15 detects that count
is 5, the break in line 16 executes. This statement terminates the for statement, and the
program proceeds to line 21 (the next statement in sequence immediately after the for
statement), where the script writes the value of count when the loop terminated (i.e., 5).
The loop executes line 18 only four times.

Fig. 8.10 | do…while repetition statement flowchart.

Common Programming Error 8.2
Infinite loops are caused when the loop-continuation condition never becomes false in a
while, for or do…while statement. To prevent this, make sure that there’s not a semi-
colon immediately after the header of a while or for statement. In a counter-controlled
loop, make sure that the control variable is incremented (or decremented) in the body of
the loop. In a sentinel-controlled loop, the sentinel value should eventually be input.

1 <!DOCTYPE html>
2
3 <!-- Fig. 8.11: BreakTest.html -->
4 <!-- Using the break statement in a for statement. -->

Fig. 8.11 | Using the break statement in a for statement. (Part 1 of 2.)

condition true

action(s)

false

iw3htp5_08_JSCS2.fm Page 298 Wednesday, November 16, 2011 1:06 PM

8.7 break and continue Statements 299

continue Statement
The continue statement, when executed in a while, for or do…while statement, skips
the remaining statements in the body of the statement and proceeds with the next iteration
of the loop. In while and do…while statements, the loop-continuation test evaluates im-
mediately after the continue statement executes. In for statements, the increment expres-
sion executes, then the loop-continuation test evaluates. Improper placement of continue
before the increment in a while may result in an infinite loop.

Figure 8.12 uses continue in a for statement to skip line 19 if line 16 determines that
the value of count is 5. When the continue statement executes, the script skips the
remainder of the for statement’s body (line 19). Program control continues with the
increment of the for statement’s control variable (line 14), followed by the loop-continu-
ation test to determine whether the loop should continue executing. Although break and
continue execute quickly, you can accomplish what they do with the other control state-
ments, which many programmers feel results in better engineered software.

5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>
9 Using the break Statement in a for Statement

10 </title>
11 <script>
12
13 for (var count = 1; count <= 10; ++count)
14 {
15 if (count == 5)
16
17
18 document.writeln(count + " ");
19 } //end for
20
21 document.writeln(
22 "<p>Broke out of loop at count = " + count + "</p>");
23
24 </script>
25 </head><body></body>
26 </html>

Fig. 8.11 | Using the break statement in a for statement. (Part 2 of 2.)

break; // break loop only if count == 5

iw3htp5_08_JSCS2.fm Page 299 Wednesday, November 16, 2011 1:06 PM

300 Chapter 8 JavaScript: Control Statements II

8.8 Logical Operators
So far, we’ve studied only simple conditions such as count <= 10, total > 1000 and number
!= sentinelValue. These conditions were expressed in terms of the relational operators >,
<, >= and <=, and the equality operators == and !=. Each decision tested one condition. To
make a decision based on multiple conditions, we performed these tests in separate state-
ments or in nested if or if…else statements.

JavaScript provides logical operators that can be used to form more complex condi-
tions by combining simple conditions. The logical operators are && (logical AND), || (log-
ical OR) and ! (logical NOT, also called logical negation).

1 <!DOCTYPE html>
2
3 <!-- Fig. 8.12: ContinueTest.html -->
4 <!-- Using the continue statement in a for statement. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>
9 Using the continue Statement in a for Statement

10 </title>
11
12 <script>
13
14 for (var count = 1; count <= 10; ++count)
15 {
16 if (count == 5)
17
18
19 document.writeln(count + " ");
20 } //end for
21
22 document.writeln("<p>Used continue to skip printing 5</p>");
23
24 </script>
25
26 </head><body></body>
27 </html>

Fig. 8.12 | Using the continue statement in a for statement.

continue; // skip remaining loop code only if count == 5

iw3htp5_08_JSCS2.fm Page 300 Wednesday, November 16, 2011 1:06 PM

8.8 Logical Operators 301

&& (Logical AND) Operator
Suppose that, at some point in a program, we wish to ensure that two conditions are both
true before we choose a certain path of execution. In this case, we can use the logical &&
operator, as follows:

This if statement contains two simple conditions. The condition gender == 1 might be
evaluated to determine, for example, whether a person is a female. The condition age >=
65 is evaluated to determine whether a person is a senior citizen. The if statement then
considers the combined condition

This condition is true if and only if both of the simple conditions are true. If this com-
bined condition is indeed true, the count of seniorFemales is incremented by 1. If either
or both of the simple conditions are false, the program skips the incrementing and pro-
ceeds to the statement following the if statement. The preceding combined condition can
be made more readable by adding redundant parentheses:

The table in Fig. 8.13 summarizes the && operator. The table shows all four possible
combinations of false and true values for expression1 and expression2. Such tables are
often called truth tables. JavaScript evaluates to false or true all expressions that include
relational operators, equality operators and/or logical operators.

|| (Logical OR) Operator
Now let’s consider the || (logical OR) operator. Suppose we wish to ensure that either or
both of two conditions are true before we choose a certain path of execution. In this case,
we use the || operator, as in the following program segment:

This statement also contains two simple conditions. The condition semesterAverage >=
90 is evaluated to determine whether the student deserves an “A” in the course because of
a solid performance throughout the semester. The condition finalExam >= 90 is evaluated
to determine whether the student deserves an “A” in the course because of an outstanding
performance on the final exam. The if statement then considers the combined condition

if (gender == 1 && age >= 65)
 ++seniorFemales;

gender == 1 && age >= 65

(gender == 1) && (age >= 65)

expression1 expression2 expression1 && expression2

false false false

false true false

true false false

true true true

Fig. 8.13 | Truth table for the && (logical AND) operator.

if (semesterAverage >= 90 || finalExam >= 90)
 document.writeln("Student grade is A");

iw3htp5_08_JSCS2.fm Page 301 Wednesday, November 16, 2011 1:06 PM

302 Chapter 8 JavaScript: Control Statements II

and awards the student an “A” if either or both of the simple conditions are true. Note
that the message "Student grade is A" is not printed only when both of the simple condi-
tions are false. Figure 8.14 is a truth table for the logical OR operator (||).

The && operator has a higher precedence than the || operator. Both operators asso-
ciate from left to right. An expression containing && or || operators is evaluated only until
truth or falsity is known. Thus, evaluation of the expression

stops immediately if gender is not equal to 1 (i.e., the entire expression is false) and con-
tinues if gender is equal to 1 (i.e., the entire expression could still be true if the condition
age >= 65 is true). Similarly, the || operator immediately returns true if the first operand
is true. This performance feature for evaluation of logical AND and logical OR expres-
sions is called short-circuit evaluation.

! (Logical Negation) Operator
JavaScript provides the ! (logical negation) operator to enable you to “reverse” the mean-
ing of a condition (i.e., a true value becomes false, and a false value becomes true).
Unlike the logical operators && and ||, which combine two conditions (i.e., they’re binary
operators), the logical negation operator has only a single condition as an operand (i.e., it’s
a unary operator). The logical negation operator is placed before a condition to choose a
path of execution if the original condition (without the logical negation operator) is false,
as in the following program segment:

The parentheses around the condition grade == sentinelValue are needed because the
logical negation operator has a higher precedence than the equality operator. Figure 8.15
is a truth table for the logical negation operator.

In most cases, you can avoid using logical negation by expressing the condition dif-
ferently with an appropriate relational or equality operator. For example, the preceding
statement may also be written as follows:

semesterAverage >= 90 || finalExam >= 90

expression1 expression2 expression1 || expression2

false false false

false true true

true false true

true true true

Fig. 8.14 | Truth table for the || (logical OR) operator.

gender == 1 && age >= 65

if (! (grade == sentinelValue))
 document.writeln("The next grade is " + grade);

if (grade != sentinelValue)
 document.writeln("The next grade is " + grade);

iw3htp5_08_JSCS2.fm Page 302 Wednesday, November 16, 2011 1:06 PM

8.9 Web Resources 303

Boolean Equivalents of Nonboolean Values
An interesting feature of JavaScript is that most nonboolean values can be converted to a
boolean true or false value (if they’re being used in a context in which a boolean value
is needed). Nonzero numeric values are considered to be true. The numeric value zero is
considered to be false. Any string that contains characters is considered to be true. The
empty string (i.e., the string containing no characters) is considered to be false. The value
null and variables that have been declared but not initialized are considered to be false.
All objects (such as the browser’s document and window objects and JavaScript’s Math ob-
ject) are considered to be true.

Operator Precedence and Associativity
Figure 8.16 shows the precedence and associativity of the JavaScript operators introduced
up to this point. The operators are shown top to bottom in decreasing order of precedence.

8.9 Web Resources
www.deitel.com/javascript/

The Deitel JavaScript Resource Center contains links to some of the best JavaScript resources on the
web. There you’ll find categorized links to JavaScript tools, code generators, forums, books, libraries,
frameworks and more. Also check out the tutorials for all skill levels, from introductory to advanced.
Be sure to visit the related Resource Centers on HTML5 (www.deitel.com/HTML5/) and CSS3
(www.deitel.com/css3/).

expression !expression

false true

true false

Fig. 8.15 | Truth table for
operator ! (logical negation).

Operator Associativity Type

++ -- ! right to left unary

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != === !== left to right equality

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= right to left assignment

Fig. 8.16 | Precedence and associativity of the operators discussed so far.

iw3htp5_08_JSCS2.fm Page 303 Wednesday, November 16, 2011 1:06 PM

304 Chapter 8 JavaScript: Control Statements II

Summary
Section 8.2 Essentials of Counter-Controlled Repetition
• Counter-controlled repetition requires: the name of a control variable, the initial value of the

control variable, the increment (or decrement) by which the control variable is modified each
time through the loop, and the condition that tests for the final value of the control variable to
determine whether looping should continue.

Section 8.3 for Repetition Statement
• The for statement (p. 285) conveniently handles all the details of counter-controlled repetition

with a control variable.

• The for statement’s first line (including the keyword for and everything in parentheses after it)
is often called the for statement header (p. 286).

• You can use a block to put multiple statements into the body of a for statement.

• The for statement takes three expressions: an initialization, a condition and an expression.

• The three expressions in the for statement are optional. The two semicolons in the for statement
are required.

• The initialization, loop-continuation condition and increment portions of a for statement can
contain arithmetic expressions.

• The “increment” of a for statement may be negative, in which case it’s called a decrement and
the loop actually counts downward.

• If the loop-continuation condition initially is false, the body of the for statement is not per-
formed. Instead, execution proceeds with the statement following the for statement.

Section 8.4 Examples Using the for Statement
• JavaScript does not include an exponentiation operator. Instead, we use the Math object’s pow

method for this purpose. Math.pow(x, y) calculates the value of x raised to the yth power.

• Floating-point numbers can cause trouble as a result of rounding errors.

• To prevent implicit conversions in comparisons, which can lead to unexpected results, JavaScript
provides the strict equals (===) and strict does not equal (!==) operators.

Section 8.5 switch Multiple-Selection Statement
• JavaScript provides the switch multiple-selection statement (p. 295), in which a variable or ex-

pression is tested separately for each of the values it may assume. Different actions are taken for
each value.

• The CSS property list-style-type (p. 295) allows you to set the numbering system for the list.
Possible values include decimal (numbers—the default), lower-roman (lowercase roman numer-
als), upper-roman (uppercase roman numerals), lower-alpha (lowercase letters), upper-alpha
(uppercase letters), and more.

• The switch statement consists of a series of case labels and an optional default case (which is nor-
mally placed last, p. 295). When the flow of control reaches the switch statement, the script eval-
uates the controlling expression in the parentheses following keyword switch. The value of this
expression is compared with the value in each of the case labels, starting with the first case label
(p. 295). If the comparison evaluates to true, the statements after the case label are executed in
order until a break statement is reached.

• The break statement is used as the last statement in each case to exit the switch statement im-
mediately.

iw3htp5_08_JSCS2.fm Page 304 Wednesday, November 16, 2011 1:06 PM

 Summary 305

• Each case can have multiple actions (statements). The switch statement is different from other
statements in that braces are not required around multiple actions in a case of a switch.

• The break statement is not required for the last case in the switch statement, because program
control automatically continues with the next statement after the switch statement.

• Having several case labels listed together (e.g., case 1: case 2: with no statements between the
cases) simply means that the same set of actions is to occur for each case.

Section 8.6 do…while Repetition Statement
• The do…while statement (p. 296) tests the loop-continuation condition after the loop body ex-

ecutes—therefore, the loop body always executes at least once.

Section 8.7 break and continue Statements
• The break statement, when executed in a repetition statement, causes immediate exit from the

statement. Execution continues with the first statement after the repetition statement.

• The continue statement, when executed in a repetition statement, skips the remaining statements
in the loop body and proceeds with the next loop iteration. In while and do…while statements,
the loop-continuation test evaluates immediately after the continue statement executes. In for
statements, the increment expression executes, then the loop-continuation test evaluates.

Section 8.8 Logical Operators
• JavaScript provides logical operators that can be used to form more complex conditions by com-

bining simple conditions. The logical operators are && (logical AND; p. 300), || (logical OR;
p. 300) and ! (logical NOT, also called logical negation; p. 300).

• The && operator is used to ensure that two conditions are both true before choosing a certain
path of execution.

• JavaScript evaluates to false or true all expressions that include relational operators, equality op-
erators and/or logical operators.

• The || (logical OR) operator is used to ensure that either or both of two conditions are true be-
fore choosing choose a certain path of execution.

• The && operator has a higher precedence than the || operator. Both operators associate from left
to right.

• An expression containing && or || operators is evaluated only until truth or falsity is known. This
is called short-circuit evaluation (p. 302).

• JavaScript provides the ! (logical negation) operator to enable you to “reverse” the meaning of a
condition (i.e., a true value becomes false, and a false value becomes true).

• The logical negation operator has only a single condition as an operand (i.e., it’s a unary opera-
tor). The logical negation operator is placed before a condition to evaluate to true if the original
condition (without the logical negation operator) is false.

• The logical negation operator has a higher precedence than the equality operator.

• Most nonboolean values can be converted to a boolean true or false value. Nonzero numeric
values are considered to be true. The numeric value zero is considered to be false. Any string
that contains characters is considered to be true. The empty string (i.e., the string containing no
characters) is considered to be false. The value null and variables that have been declared but
not initialized are considered to be false. All objects (e.g., the browser’s document and window
objects and JavaScript’s Math object) are considered to be true.

iw3htp5_08_JSCS2.fm Page 305 Wednesday, November 16, 2011 1:06 PM

306 Chapter 8 JavaScript: Control Statements II

Self-Review Exercises
8.1 State whether each of the following is true or false. If false, explain why.

a) The default case is required in the switch selection statement.
b) The break statement is required in the last case of a switch selection statement.
c) The expression (x > y && a < b) is true if either x > y is true or a < b is true.
d) An expression containing the || operator is true if either or both of its operands is true.

8.2 Write a JavaScript statement or a set of statements to accomplish each of the following tasks:
a) Find the sum of the even integers between 2 and 100. Use a for structure. Assume that

the variables sum and count have been declared.
b) Calculate the value of 4.5 raised to the power of 4. Use the pow method.
c) Print the integers from 5 to 30 by using a while loop and the counter variable i. Assume

that the variable i has been declared, but not initialized. Print only five integers per line.
[Hint: Use the calculation i % 5. When the value of this expression is 0, start a new
paragraph in the HTML5 document.]

d) Repeat Exercise 8.2 (c), but using a for statement.

8.3 Find the error in each of the following code segments, and explain how to correct it:
a) x = 5;

while (x <= 100);

 ++x;

}
b) switch (i)

{

 case 10:

 document.writeln("The number is 10");

 case 20:

 document.writeln("The number is 20");

 default;

 document.writeln("The number is not 10 or 20");

 break;

}
c) The following code should print the values from 10 to 20:

n = 10;

while (n < 20)

 document.writeln(n++);

Answers to Self-Review Exercises
8.1 a) False. The default case is optional. If no default action is needed, then there’s no need
for a default case. b) False. The break statement is used to exit the switch statement. The break
statement is not required for the last case in a switch statement. c) False. Both of the relational ex-
pressions must be true for the entire expression to be true when using the && operator. d) True.

8.2 a) sum = 0;

for (count = 2; count <= 100; count += 2)

 sum += count;

b) Math.pow(4.5, 4)
c) i = 5;

document.writeln("<p>");

while (i <= 30) {

iw3htp5_08_JSCS2.fm Page 306 Wednesday, November 16, 2011 1:06 PM

 Exercises 307

 document.write(i + " ");

 if (i % 5 == 0)

 document.write("</p><p>");

 i++;

}
document.writeln("<p>");

d) document.writeln("<p>");

for (i = 5; i <= 30; i++) {

 document.write(i + " ");

 if (i % 5 == 0)

 document.write("</p><p>");

}

document.writeln("</p>");

8.3 a) Error: The semicolon inside the while condition, and there’s a missing left brace.
Correction: Remove the semicolon, and remove the }.

b) Error: Missing break statement in the statements for the second case. Missing end braces.
Correction: Add a break statement at the end of the statements for the second case and
end braces. Note that this missing statement is not necessarily an error if you want the
statement of default: to execute every time the case 20: statement executes.

c) Error: Improper relational operator used in the while repetition-continuation condition.
Correction: Use <= rather than =.

Exercises
8.4 Find the error in each of the following segments of code [Note: There may be more than
one error]:

a) While (x < 100)

 document.writeln(x);
b) The following code should print whether the integer value is odd or even:

switch (value % 2) {

 case 3:

 document.writeln("Even integer");

 case 4:

 document.writeln("Odd integer");

}
c) The following code should output the even integers from 24 to 2:

for (x = 24; x >= 2; x += 2)

 document.writeln(x);
d) The following code should output the odd integers from 1 to 99:

counter = 1;

do {
 document.writeln(counter);

 counter += 2;

} While (counter < 99);

8.5 What does the following script do?

1 <!DOCTYPE html>
2
3 <!-- Exercise 8.5: ex08_05.html -->
4 <html>

iw3htp5_08_JSCS2.fm Page 307 Wednesday, November 16, 2011 1:06 PM

308 Chapter 8 JavaScript: Control Statements II

8.6 Write a script that finds the smallest of several nonnegative integers. Assume that the first
value read specifies the number of values to be input from the user.

8.7 Write a script that calculates the product of the odd integers from 1 to 15, then outputs
HTML5 text that displays the results.

8.8 Modify the compound interest program in Fig. 8.6 to repeat its steps for interest rates of 5, 6,
7, 8, 9 and 10 percent. Use a for statement to vary the interest rate. Use a separate table for each rate.

8.9 One interesting application of computers is drawing graphs and bar charts (sometimes
called histograms). Write a script that reads five numbers between 1 and 30. For each number read,
output HTML5 text that displays a line containing the same number of adjacent asterisks. For ex-
ample, if your program reads the number 7, it should output HTML5 text that displays *******.

8.10 (“The Twelve Days of Christmas” Song) Write a script that uses repetition and a switch
structures to print the song “The Twelve Days of Christmas.” You can find the words at the site

www.santas.net/twelvedaysofchristmas.htm

8.11 A mail-order house sells five different products whose retail prices are as follows: product 1,
$2.98; product 2, $4.50; product 3, $9.98; product 4, $4.49; and product 5, $6.87. Write a script
that reads a series of pairs of numbers as follows:

a) Product number
b) Quantity sold for one day

Your program should use a switch statement to determine each product’s retail price and should
calculate and output HTML5 that displays the total retail value of all the products sold last week.
Use a prompt dialog to obtain the product number and quantity from the user. Use a sentinel-con-
trolled loop to determine when the program should stop looping and display the final results.

8.12 Assume x=1, y=2, z=3 and t=2. What does each of the following statements print? Are the
parentheses necessary in each case?

a) document.writeln(x != 1);
b) document.writeln(y >= 3);
c) document.writeln(x == 1 && y < 4);

5 <head>
6 <meta charset = "utf-8">
7 <title>Mystery</title>
8 <script>
9

10 document.writeln("<table>");
11
12 for (var i = 1; i <= 7; i++)
13 {
14 document.writeln("<tr>");
15
16 for (var j = 1; j <= 5; j++)
17 document.writeln("<td>(" + i + ", " + j + ")</td>");
18
19 document.writeln("</tr>");
20 } // end for
21
22 document.writeln("</table>");
23
24 </script>
25 </head><body />
26 </html>

iw3htp5_08_JSCS2.fm Page 308 Wednesday, November 16, 2011 1:06 PM

 Exercises 309

d) document.writeln(t != 9 & z <= t);
e) document.writeln(y > x || z != t);
f) document.writeln(z - t < y || 2 - y >= z);
g) document.writeln(!(z == t));

8.13 Given the following switch statement:

What values are assigned to x when k has values of 1, 2, 3, 4 and 10?

1 switch (k)
2 {
3 case 1:
4 --k;
5 break;
6 case 2:
7 break;
8 case 3:
9 k++;

10 break;
11 case 4:
12 --k;
13 break;
14 default:
15 k *= 2;
16 }
17
18 x = k++;

iw3htp5_08_JSCS2.fm Page 309 Wednesday, November 16, 2011 1:06 PM

9 JavaScript: Functions

E pluribus unum.
(One composed of many.)
—Virgil

Call me Ishmael.
—Herman Melville

When you call me that, smile.
—Owen Wister

O! call back yesterday, bid time
return.
—William Shakespeare

O b j e c t i v e s
In this chapter you will:

■ Construct programs
modularly from small pieces
called functions.

■ Define new functions.

■ Pass information between
functions.

■ Use simulation techniques
based on random number
generation.

■ Use the new HTML5 audio
and video elements

■ Use additional global
methods.

■ See how the visibility of
identifiers is limited to
specific regions of programs.

iw3htp5_09_JSFunctions.fm Page 310 Wednesday, November 16, 2011 1:06 PM

9.1 Introduction 311

9.1 Introduction
Most computer programs that solve real-world problems are much larger than those pre-
sented in the first few chapters of this book. Experience has shown that the best way to
develop and maintain a large program is to construct it from small, simple pieces, or
modules. This technique is called divide and conquer. This chapter describes many key
features of JavaScript that facilitate the design, implementation, operation and mainte-
nance of large scripts.

You’ll start using JavaScript to interact programatically with elements in a web page
so you can obtain values from elements (such as those in HTML5 forms) and place con-
tent into web-page elements. We’ll also take a brief excursion into simulation techniques
with random number generation and develop a version of the casino dice game called craps
that uses most of the programming techniques you’ve used to this point in the book. In
the game, we’ll also introduce HTML5’s new audio and video elements that enable you
to embed audio and video in your web pages. We’ll also programmatically interact with
the audio element to play the audio in response to a user interaction with the game.

9.2 Program Modules in JavaScript
Scripts that you write in JavaScript typically contain of one or more pieces called func-
tions. You’ll combine new functions that you write with prepackaged functions and ob-
jects available in JavaScript. The prepackaged functions that belong to JavaScript objects
(such as Math.pow, introduced previously) are called methods.

JavaScript provides several objects that have a rich collection of methods for per-
forming common mathematical calculations, string manipulations, date and time manip-
ulations, and manipulations of collections of data called arrays. These objects (discussed
in Chapters 10–11) make your job easier, because they provide many of the capabilities
you’ll frequently need.

You can write functions to define tasks that may be used at many points in a script.
These are referred to as programmer-defined functions. The actual statements defining
the function are written only once and are hidden from other functions.

9.1 Introduction
9.2 Program Modules in JavaScript
9.3 Function Definitions

9.3.1 Programmer-Defined Function square
9.3.2 Programmer-Defined Function

maximum

9.4 Notes on Programmer-Defined
Functions

9.5 Random Number Generation
9.5.1 Scaling and Shifting Random

Numbers

9.5.2 Displaying Random Images
9.5.3 Rolling Dice Repeatedly and

Displaying Statistics
9.6 Example: Game of Chance;

Introducing the HTML5 audio and
video Elements

9.7 Scope Rules
9.8 JavaScript Global Functions
9.9 Recursion

9.10 Recursion vs. Iteration

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

iw3htp5_09_JSFunctions.fm Page 311 Wednesday, November 16, 2011 1:06 PM

312 Chapter 9 JavaScript: Functions

A function is invoked (that is, made to perform its designated task) by a function call.
The function call specifies the function name and provides information (as arguments)
that the called function needs to perform its task. A common analogy for this structure is
the hierarchical form of management. A boss (the calling function, or caller) asks a worker
(the called function) to perform a task and return (i.e., report back) the results when the
task is done. The boss function does not know how the worker function performs its designated
tasks. The worker may call other worker functions—the boss will be unaware of this. We’ll
soon see how this hiding of implementation details promotes good software engineering.
Figure 9.1 shows the boss function communicating with several worker functions in a
hierarchical manner. Note that worker1 also acts as a “boss” function to worker4 and
worker5, and worker4 and worker5 report back to worker1.

Functions are invoked by writing the name of the function, followed by a left paren-
thesis, followed by a comma-separated list of zero or more arguments, followed by a right
parenthesis. For example, a programmer desiring to convert a string stored in variable
inputValue to a floating-point number and add it to variable total might write

When this statement executes, the JavaScript function parseFloat converts the string in
the inputValue variable to a floating-point value and adds that value to total. Variable
inputValue is function parseFloat’s argument. Function parseFloat takes a string rep-
resentation of a floating-point number as an argument and returns the corresponding
floating-point numeric value. Function arguments may be constants, variables or expres-
sions.

Methods are called in the same way but require the name of the object to which the
method belongs and a dot preceding the method name. For example, we’ve already seen
the syntax document.writeln("Hi there.");. This statement calls the document object’s
writeln method to output the text.

9.3 Function Definitions
We now consider how you can write your own customized functions and call them in a
script.

Fig. 9.1 | Hierarchical boss-function/worker-function relationship.

total += parseFloat(inputValue);

boss

worker2 worker3worker1

worker5worker4

iw3htp5_09_JSFunctions.fm Page 312 Wednesday, November 16, 2011 1:06 PM

9.3 Function Definitions 313

9.3.1 Programmer-Defined Function square
Consider a script (Fig. 9.2) that uses a function square to calculate the squares of the in-
tegers from 1 to 10. [Note: We continue to show many examples in which the body ele-
ment of the HTML5 document is empty and the document is created directly by
JavaScript. In this chapter and later ones, we also show examples in which scripts interact
with the elements in the body of a document.]

Invoking Function square
The for statement in lines 17–19 outputs HTML5 that displays the results of squaring the
integers from 1 to 10. Each iteration of the loop calculates the square of the current value
of control variable x and outputs the result by writing a line in the HTML5 document.
Function square is invoked, or called, in line 19 with the expression square(x). When pro-
gram control reaches this expression, the program calls function square (defined in lines
23–26). The parentheses () in line 19 represent the function-call operator, which has high
precedence. At this point, the program makes a copy of the value of x (the argument) and
program control transfers to the first line of the function square’s definition (line 23).
Function square receives the copy of the value of x and stores it in the parameter y. Then

1 <!DOCTYPE html>
2
3 <!-- Fig. 9.2: SquareInt.html -->
4 <!-- Programmer-defined function square. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>A Programmer-Defined square Function</title>
9 <style type = "text/css">

10 p { margin: 0; }
11 </style>
12 <script>
13
14 document.writeln("<h1>Square the numbers from 1 to 10</h1>");
15
16 // square the numbers from 1 to 10
17 for (var x = 1; x <= 10; ++x)
18 document.writeln("<p>The square of " + x + " is " +
19 + "</p>");
20
21 // The following square function definition’s body is executed
22 // only when the function is called explicitly as in line 19
23
24
25
26
27
28 </script>
29 </head><body></body> <!-- empty body element -->
30 </html>

Fig. 9.2 | Programmer-defined function square. (Part 1 of 2.)

square(x)

function square(y)
{
 return y * y;
} // end function square

iw3htp5_09_JSFunctions.fm Page 313 Wednesday, November 16, 2011 1:06 PM

314 Chapter 9 JavaScript: Functions

square calculates y * y. The result is returned (passed back) to the point in line 19 where
square was invoked. Lines 18–19 concatenate the string "<p>The square of ", the value of
x, the string " is ", the value returned by function square and the string "</p>", and write
that line of text into the HTML5 document to create a new paragraph in the page. This
process is repeated 10 times.

square Function Definition
The definition of function square (lines 23–26) shows that square expects a single param-
eter y. Function square uses this name in its body to manipulate the value passed to
square from the function call in line 19. The return statement in square passes the result
of the calculation y * y back to the calling function. JavaScript keyword var is not used to
declare function parameters (line 25).

Flow of Control in a Script That Contains Functions
In this example, function square follows the rest of the script. When the for statement
terminates, program control does not flow sequentially into function square. A function
must be called explicitly for the code in its body to execute. Thus, when the for statement
in this example terminates, the script terminates.

General Format of a Function Definition
The general format of a function definition is

The function-name is any valid identifier. The parameter-list is a comma-separated list con-
taining the names of the parameters received by the function when it’s called (remember

function function-name(parameter-list)
{
 declarations and statements
}

Fig. 9.2 | Programmer-defined function square. (Part 2 of 2.)

iw3htp5_09_JSFunctions.fm Page 314 Wednesday, November 16, 2011 1:06 PM

9.3 Function Definitions 315

that the arguments in the function call are assigned to the corresponding parameters in the
function definition). There should be one argument in the function call for each parame-
ter in the function definition. If a function does not receive any values, the parameter-list
is empty (i.e., the function name is followed by an empty set of parentheses). The declara-
tions and statements between the braces form the function body.

Returning Program Control from a Function Definition
There are three ways to return control to the point at which a function was invoked. If the
function does not return a result, control returns when the program reaches the function-
ending right brace (}) or executes the statement

If the function does return a result, the statement

returns the value of expression to the caller. When a return statement executes, control re-
turns immediately to the point at which the function was invoked.

9.3.2 Programmer-Defined Function maximum
The script in our next example (Fig. 9.3) uses a programmer-defined function called max-
imum to determine and return the largest of three floating-point values.]

Common Programming Error 9.1
Forgetting to return a value from a function that’s supposed to return a value is a logic error.

return;

return expression;

1 <!DOCTYPE html>
2
3 <!-- Fig. 9.3: maximum.html -->
4 <!-- Programmer-Defined maximum function. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Maximum of Three Values</title>
9 <style type = "text/css">

10 p { margin: 0; }
11 </style>
12 <script>
13
14 var input1 = window.prompt("Enter first number", "0");
15 var input2 = window.prompt("Enter second number", "0");
16 var input3 = window.prompt("Enter third number", "0");
17
18
19
20

Fig. 9.3 | Programmer-defined maximum function. (Part 1 of 2.)

var value1 = parseFloat(input1);
var value2 = parseFloat(input2);
var value3 = parseFloat(input3);

iw3htp5_09_JSFunctions.fm Page 315 Wednesday, November 16, 2011 1:06 PM

316 Chapter 9 JavaScript: Functions

21
22
23
24 document.writeln("<p>First number: " + value1 + "</p>" +
25 "<p>Second number: " + value2 + "</p>" +
26 "<p>Third number: " + value3 + "</p>" +
27 "<p>Maximum is: " + maxValue + "</p>");
28
29 // maximum function definition (called from line 22)
30
31
32
33
34
35 </script>
36 </head><body></body>
37 </html>

Fig. 9.3 | Programmer-defined maximum function. (Part 2 of 2.)

var maxValue = maximum(value1, value2, value3);

function maximum(x, y, z)
{
 return Math.max(x, Math.max(y, z));
} // end function maximum

iw3htp5_09_JSFunctions.fm Page 316 Wednesday, November 16, 2011 1:06 PM

9.4 Notes on Programmer-Defined Functions 317

The three floating-point values are input by the user via prompt dialogs (lines 14–16).
Lines 18–20 use function parseFloat to convert the strings entered by the user to
floating-point values. The statement in line 22 passes the three floating-point values to
function maximum (defined in lines 30–33). The function then determines the largest value
and returns that value to line 22 by using the return statement (line 32). The returned
value is assigned to variable maxValue. Lines 24–27 display the three floating-point values
entered by the user and the calculated maxValue.

The first line of the function definition indicates that the function is named maximum
and takes parameters x, y and z. Also, the body of the function contains the statement which
returns the largest of the three floating-point values, using two calls to the Math object’s max
method. First, method Math.max is invoked with the values of variables y and z to determine
the larger of the two values. Next, the value of variable x and the result of the first call to
Math.max are passed to method Math.max. Finally, the result of the second call to Math.max
is returned to the point at which maximum was invoked (line 22).

9.4 Notes on Programmer-Defined Functions
All variables declared with the keyword var in function definitions are local variables—
this means that they can be accessed only in the function in which they’re defined. A func-
tion’s parameters are also considered to be local variables.

There are several reasons for modularizing a program with functions. The divide-and-
conquer approach makes program development more manageable. Another reason is soft-
ware reusability (i.e., using existing functions as building blocks to create new programs).
With good function naming and definition, significant portions of programs can be cre-
ated from standardized functions rather than built by using customized code. For example,
we did not have to define how to convert strings to integers and floating-point numbers—
JavaScript already provides function parseInt to convert a string to an integer and func-
tion parseFloat to convert a string to a floating-point number. A third reason is to avoid
repeating code in a program.

Software Engineering Observation 9.1
If a function’s task cannot be expressed concisely, perhaps the function is performing too many
different tasks. It’s usually best to break such a function into several smaller functions.

Common Programming Error 9.2
Redefining a function parameter as a local variable in the function is a logic error.

Good Programming Practice 9.1
Do not use the same name for an argument passed to a function and the corresponding
parameter in the function definition. Using different names avoids ambiguity.

Software Engineering Observation 9.2
To promote software reusability, every function should be limited to performing a single,
well-defined task, and the name of the function should describe that task effectively. Such
functions make programs easier to write, debug, maintain and modify.

iw3htp5_09_JSFunctions.fm Page 317 Wednesday, November 16, 2011 1:06 PM

318 Chapter 9 JavaScript: Functions

9.5 Random Number Generation
We now take a brief and hopefully entertaining excursion into a popular programming ap-
plication, namely simulation and game playing. In this section and the next, we develop a
carefully structured game-playing program that includes multiple functions. The program
uses most of the control statements we’ve studied.

There’s something in the air of a gambling casino that invigorates people, from the
high rollers at the plush mahogany-and-felt craps tables to the quarter poppers at the one-
armed bandits. It’s the element of chance, the possibility that luck will convert a pocketful
of money into a mountain of wealth. The element of chance can be introduced through
the Math object’s random method.

Consider the following statement:

Method random generates a floating-point value from 0.0 up to, but not including, 1.0. If
random truly produces values at random, then every value in that range has an equal chance
(or probability) of being chosen each time random is called.

9.5.1 Scaling and Shifting Random Numbers
The range of values produced directly by random is often different than what is needed in
a specific application. For example, a program that simulates coin tossing might require
only 0 for heads and 1 for tails. A program that simulates rolling a six-sided die would re-
quire random integers in the range 1–6. A program that randomly predicts the next type
of spaceship, out of four possibilities, that will fly across the horizon in a video game might
require random integers in the range 0–3 or 1–4.

To demonstrate method random, let’s develop a program that simulates 30 rolls of a
six-sided die and displays the value of each roll (Fig. 9.4). We use the multiplication oper-
ator (*) with random as follows (line 21):

The preceding expression multiplies the result of a call to Math.random() by 6 to produce a
value from 0.0 up to, but not including, 6.0. This is called scaling the range of the random
numbers. Next, we add 1 to the result to shift the range of numbers to produce a number in
the range 1.0 up to, but not including, 7.0. Finally, we use method Math.floor to determine
the closest integer not greater than the argument’s value—for example, Math.floor(1.75) is
1 and Math.floor(6.75) is 6. Figure 9.4 confirms that the results are in the range 1 to 6. To
add space between the values being displayed, we output each value as an li element in an
ordered list. The CSS style in line 11 places a margin of 10 pixels to the right of each li and
indicates that they should display inline rather than vertically on the page.

var randomValue = Math.random();

Math.floor(1 + Math.random() * 6)

1 <!DOCTYPE html>
2
3 <!-- Fig. 9.4: RandomInt.html -->
4 <!-- Random integers, shifting and scaling. -->
5 <html>
6 <head>

Fig. 9.4 | Random integers, shifting and scaling. (Part 1 of 2.)

iw3htp5_09_JSFunctions.fm Page 318 Wednesday, November 16, 2011 1:06 PM

9.5 Random Number Generation 319

9.5.2 Displaying Random Images
Web content that varies randomly can add dynamic, interesting effects to a page. In the
next example, we build a random image generator—a script that displays four randomly
selected die images every time the user clicks a Roll Dice button on the page. For the script
in Fig. 9.5 to function properly, the directory containing the file RollDice.html must also
contain the six die images with the filenames die1.png, die2.png, die3.png, die4.png,
die5.png and die6.png—these are included with this chapter’s examples.

7 <meta charset = "utf-8">
8 <title>Shifted and Scaled Random Integers</title>
9 <style type = "text/css">

10 p, ol { margin: 0; }
11 li { display: inline; margin-right: 10px; }
12 </style>
13 <script>
14
15 var value;
16
17 document.writeln("<p>Random Numbers</p>");
18
19 for (var i = 1; i <= 30; ++i)
20 {
21
22 document.writeln("" + value + "");
23 } // end for
24
25 document.writeln("");
26
27 </script>
28 </head><body></body>
29 </html>

1 <!DOCTYPE html>
2
3 <!-- Fig. 9.5: RollDice.html -->
4 <!-- Random dice image generation using Math.random. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">

Fig. 9.5 | Random dice image generation using Math.random. (Part 1 of 3.)

Fig. 9.4 | Random integers, shifting and scaling. (Part 2 of 2.)

value = Math.floor(1 + Math.random() * 6);

iw3htp5_09_JSFunctions.fm Page 319 Wednesday, November 16, 2011 1:06 PM

320 Chapter 9 JavaScript: Functions

8 <title>Random Dice Images</title>
9 <style type = "text/css">

10 li { display: inline; margin-right: 10px; }
11 ul { margin: 0; }
12 </style>
13 <script>
14 // variables used to interact with the i mg elements
15 var die1Image;
16 var die2Image;
17 var die3Image;
18 var die4Image;
19
20 // register button listener and get the img elements
21 function start()
22 {
23
24
25
26
27
28
29 } // end function rollDice
30
31 // roll the dice
32 function rollDice()
33 {
34 setImage(die1Image);
35 setImage(die2Image);
36 setImage(die3Image);
37 setImage(die4Image);
38 } // end function rollDice
39
40 // set image source for a die
41 function setImage(dieImg)
42 {
43 var dieValue = Math.floor(1 + Math.random() * 6);
44
45
46
47 } // end function setImage
48
49
50 </script>
51 </head>
52 <body>
53 <form action = "#">
54 <input id = "rollButton" type = "button" value = "Roll Dice">
55 </form>
56
57
58
59

Fig. 9.5 | Random dice image generation using Math.random. (Part 2 of 3.)

var button = document.getElementById("rollButton");
button.addEventListener("click", rollDice, false);
die1Image = document.getElementById("die1");
die2Image = document.getElementById("die2");
die3Image = document.getElementById("die3");
die4Image = document.getElementById("die4");

dieImg.setAttribute("src", "die" + dieValue + ".png");
dieImg.setAttribute("alt",
 "die image with " + dieValue + " spot(s)");

window.addEventListener("load", start, false);

iw3htp5_09_JSFunctions.fm Page 320 Wednesday, November 16, 2011 1:06 PM

9.5 Random Number Generation 321

User Interactions Via Event Handling
Until now, all user interactions with scripts have been through either a prompt dialog (in
which the user types an input value for the program) or an alert dialog (in which a mes-
sage is displayed to the user, and the user can click OK to dismiss the dialog). Although
these dialogs are valid ways to receive input from a user and to display messages, they’re
fairly limited in their capabilities. A prompt dialog can obtain only one value at a time from
the user, and a message dialog can display only one message.

Inputs are typically received from the user via an HTML5 form (such as one in which
the user enters name and address information). Outputs are typically displayed to the user
in the web page (e.g., the die images in this example). To begin our introduction to more
elaborate user interfaces, this program uses an HTML5 form (discussed in Chapters 2–3)
and a new graphical user interface concept—GUI event handling. This is our first
example in which the JavaScript executes in response to the user’s interaction with an ele-
ment in a form. This interaction causes an event. Scripts are often used to respond to user
initiated events.

The body Element
Before we discuss the script code, consider the body element (lines 52–62) of this docu-
ment. The elements in the body are used extensively in the script.

The form Element
Line 53 begins the definition of an HTML5 form element. The HTML5 standard requires
that every form contain an action attribute, but because this form does not post its informa-
tion to a web server, the string "#" is used simply to allow this document to validate. The #
symbol by itself represents the current page.

The button input Element and Event-Driven Programming
Line 54 defines a button input element with the id "rollButton" and containing the val-
ue Roll Dice which is displayed on the button. As you’ll see, this example’s script will han-
dle the button’s click event, which occurs when the user clicks the button. In this
example, clicking the button will call function rollDice, which we’ll discuss shortly.

60
61
62 </body>
63 </html>

Fig. 9.5 | Random dice image generation using Math.random. (Part 3 of 3.)

iw3htp5_09_JSFunctions.fm Page 321 Wednesday, November 16, 2011 1:06 PM

322 Chapter 9 JavaScript: Functions

This style of programming is known as event-driven programming—the user inter-
acts with an element in the web page, the script is notified of the event and the script pro-
cesses the event. The user’s interaction with the GUI “drives” the program. The button
click is known as the event. The function that’s called when an event occurs is known as
an event handler. When a GUI event occurs in a form, the browser calls the specified
event-handling function. Before any event can be processed, each element must know
which event-handling function will be called when a particular event occurs. Most
HTML5 elements have several different event types. The event model is discussed in detail
in Chapter 13.

The img Elements
The four img elements (lines 57–60) will display the four randomly selected dice. Their id
attributes (die1, die2, die3 and die4, respectively) can be used to apply CSS styles and to
enable script code to refer to these element in the HTML5 document. Because the id at-
tribute, if specified, must have a unique value among all id attributes in the page, Java-
Script can reliably refer to any single element via its id attribute. In a moment we’ll see
how this is done. Each img element displays the image blank.png (an empty white image)
when the page first renders.

Specifying a Function to Call When the Browser Finishes Loading a Document
From this point forward, many of our examples will execute a JavaScript function when
the document finishes loading in the web browser window. This is accomplished by han-
dling the window object’s load event. To specify the function to call when an event occurs,
you registering an event handler for that event. We register the window’s load event han-
dler at line 49. Method addEventListener is available for every DOM node. The method
takes three arguments:

• the first is the name of the event for which we’re registering a handler

• the second is the function that will be called to handle the event

• the last argument is typically false—the true value is beyond this book’s scope

Line 49 indicates that function start (lines 21–29) should execute as soon as the page fin-
ishes loading.

Function start
When the window’s load event occurs, function start registers the Roll Dice button’s click
event handler (lines 23–24), which instructs the browser to listen for events (click events
in particular). If no event handler is specified for the Roll Dice button, the script will not
respond when the user presses the button. Line 23 uses the document object’s getElement-
ById method, which, given an HTML5 element’s id as an argument, finds the element
with the matching id attribute and returns a JavaScript object representing the element.
This object allows the script to programmatically interact with the corresponding element
in the web page. For example, line 24 uses the object representing the button to call func-
tion addEventListener—in this case, to indicate that function rollDice should be called
when the button’s click event occurs. Lines 25–28 get the objects representing the four img
elements in lines 57–60 and assign them to the script variables in declared in lines 15–18.

iw3htp5_09_JSFunctions.fm Page 322 Wednesday, November 16, 2011 1:06 PM

9.5 Random Number Generation 323

Function rollDice
The user clicks the Roll Dice button to roll the dice. This event invokes function rollDice
(lines 32–38) in the script. Function rollDice takes no arguments, so it has an empty pa-
rameter list. Lines 34–37 call function setImage (lines 41–47) to randomly select and set
the image for a specified img element.

Function setImage
Function setImage (lines 41–47) receives one parameter (dieImg) that represents the spe-
cific img element in which to display a randomly selected image. Line 43 picks a random
integer from 1 to 6. Line 44 demonstrates how to access an img element’s src attribute
programmatically in JavaScript. Each JavaScript object that represents an element of the
HTML5 document has a setAttribute method that allows you to change the values of
most of the HTML5 element’s attributes. In this case, we change the src attribute of the
img element referred to by dieImg. The src attribute specifies the location of the image to
display. We set the src to a concatenated string containing the word "die", a randomly
generated integer from 1 to 6 and the file extension ".png" to complete the image file
name. Thus, the script dynamically sets the img element’s src attribute to the name of one
of the image files in the current directory.

Continuing to Roll the Dice
The program then waits for the user to click the Roll Dice button again. Each time the user
does so, the program calls rollDice, which repeatedly calls setImage to display new die
images.

9.5.3 Rolling Dice Repeatedly and Displaying Statistics
To show that the random values representing the dice occur with approximately equal
likelihood, let’s allow the user to roll 12 dice at a time and keep statistics showing the num-
ber of times each face occurs and the percentage of the time each face is rolled (Fig. 9.6).
This example is similar to the one in Fig. 9.5, so we’ll focus only on the new features.

Script Variables
Lines 22–28 declare and initialize counter variables to keep track of the number of times each
of the six die values appears and the total number of dice rolled. Because these variables are
declared outside the script’s functions, they’re accessible to all the functions in the script.

1 <!DOCTYPE html>
2
3 <!-- Fig. 9.6: RollDice.html -->
4 <!-- Rolling 12 dice and displaying frequencies. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Die Rolling Frequencies</title>
9 <style type = "text/css">

10 img { margin-right: 10px; }

Fig. 9.6 | Rolling 12 dice and displaying frequencies. (Part 1 of 4.)

iw3htp5_09_JSFunctions.fm Page 323 Wednesday, November 16, 2011 1:06 PM

324 Chapter 9 JavaScript: Functions

11 table { width: 200px;
12 border-collapse: collapse;
13 background-color: lightblue; }
14 table, td, th { border: 1px solid black;
15 padding: 4px;
16 margin-top: 20px; }
17 th { text-align: left;
18 color: white;
19 background-color: darkblue; }
20 </style>
21 <script>
22
23
24
25
26
27
28
29
30 // register button event handler
31 function start()
32 {
33
34
35 } // end function start
36
37 // roll the dice
38 function rollDice()
39 {
40 var face; // face rolled
41
42 // loop to roll die 12 times
43 for (var i = 1; i <= 12; ++i)
44 {
45 face = Math.floor(1 + Math.random() * 6);
46
47 setImage(i, face); // display appropriate die image
48 ++totalDice; // increment total
49 } // end die rolling loop
50
51 updateFrequencyTable();
52 } // end function rollDice
53
54 // increment appropriate frequency counter
55 function tallyRolls(face)
56 {
57
58 {
59 case 1:
60
61 break;

Fig. 9.6 | Rolling 12 dice and displaying frequencies. (Part 2 of 4.)

var frequency1 = 0;
var frequency2 = 0;
var frequency3 = 0;
var frequency4 = 0;
var frequency5 = 0;
var frequency6 = 0;
var totalDice = 0;

var button = document.getElementById("rollButton");
button.addEventListener("click", rollDice, false);

tallyRolls(face); // increment a frequency counter

switch (face)

++frequency1;

iw3htp5_09_JSFunctions.fm Page 324 Wednesday, November 16, 2011 1:06 PM

9.5 Random Number Generation 325

62 case 2:
63
64 break;
65 case 3:
66
67 break;
68 case 4:
69
70 break;
71 case 5:
72
73 break;
74 case 6:
75
76 break;
77 } // end switch
78 } // end function tallyRolls
79
80 // set image source for a die
81 function setImage(dieNumber, face)
82 {
83 var dieImg = document.getElementById("die" + dieNumber);
84 dieImg.setAttribute("src", "die" + face + ".png");
85 dieImg.setAttribute("alt", "die with " + face + " spot(s)");
86 } // end function setImage
87
88 // update frequency table in the page
89 function updateFrequencyTable()
90 {
91
92
93 = "<table>" +
94 "<caption>Die Rolling Frequencies</caption>" +
95 "<thead><th>Face</th><th>Frequency</th>" +
96 "<th>Percent</th></thead>" +
97 "<tbody><tr><td>1</td><td>" + frequency1 + "</td><td>" +
98 formatPercent(frequency1 / totalDice) + "</td></tr>" +
99 "<tr><td>2</td><td>" + frequency2 + "</td><td>" +
100 formatPercent(frequency2 / totalDice)+ "</td></tr>" +
101 "<tr><td>3</td><td>" + frequency3 + "</td><td>" +
102 formatPercent(frequency3 / totalDice) + "</td></tr>" +
103 "<tr><td>4</td><td>" + frequency4 + "</td><td>" +
104 formatPercent(frequency4 / totalDice) + "</td></tr>" +
105 "<tr><td>5</td><td>" + frequency5 + "</td><td>" +
106 formatPercent(frequency5 / totalDice) + "</td></tr>" +
107 "<tr><td>6</td><td>" + frequency6 + "</td><td>" +
108 formatPercent(frequency6 / totalDice) + "</td></tr>" +
109 "</tbody></table>";
110 } // end function updateFrequencyTable
111
112 // format percentage
113 function formatPercent(value)
114 {

Fig. 9.6 | Rolling 12 dice and displaying frequencies. (Part 3 of 4.)

++frequency2;

++frequency3;

++frequency4;

++frequency5;

++frequency6;

var tableDiv = document.getElementById("frequencyTableDiv");

tableDiv.innerHTML

iw3htp5_09_JSFunctions.fm Page 325 Wednesday, November 16, 2011 1:06 PM

326 Chapter 9 JavaScript: Functions

Function rollDice
As in Fig. 9.5, when the user presses the Roll Dice button, function rollDice (lines 38–
52) is called. This function calls functions tallyRolls and setImage for each of the twelve

115 value *= 100;
116 return value.toFixed(2);
117 } // end function formatPercent
118
119
120 </script>
121 </head>
122 <body>
123 <p>
124
125
126
127
128 </p>
129 <p>
130
131
132
133
134 </p>
135 <form action = "#">
136 <input id = "rollButton" type = "button" value = "Roll Dice">
137 </form>
138
139 </body>
140 </html>

Fig. 9.6 | Rolling 12 dice and displaying frequencies. (Part 4 of 4.)

window.addEventListener("load", start, false);

<div id = "frequencyTableDiv"></div>

iw3htp5_09_JSFunctions.fm Page 326 Wednesday, November 16, 2011 1:06 PM

9.5 Random Number Generation 327

img elements in the document (lines 123–134), then calls function updateFrequen-
cyTable to display the number of times each die face appeared and the percentage of total
dice rolled.

Function tallyRolls
Function tallyRolls (lines 55–78) contains a switch statement that uses the randomly
chosen face value as its controlling expression. Based on the value of face, the program
increments one of the six counter variables during each iteration of the loop. No default
case is provided in this switch statement, because the statement in line 45 produces only
the values 1, 2, 3, 4, 5 and 6. In this example, the default case would never execute. After
we study arrays in Chapter 10, we discuss an elegant way to replace the entire switch state-
ment in this program with a single line of code.

Function setImage
Function setImage (lines 81–86) sets the image source and alt text for the specified img
element.

Function updateFrequencyTable
Function updateFrequencyTable (lines 89–110) creates a table and places it in the div
element at line 131 in the document’s body. Line 91 gets the object representing that div
and assigns it to the local variable tableDiv. Lines 93–109 build a string representing the
table and assign it to the tableDiv object’s innerHTML property, which places HTML5
code into the element that tableDiv represents and allows the browser to render that
HTML5 in the element. Each time we assign HTML markup to an element’s innerHTML
property, the tableDiv’s content is completely replaced with the content of the string.

Function formatPercent
Function updateFrequencyTable calls function formatPercent (lines 113–117) to for-
mat values as percentages with two digits to the right of the decimal point. The function
simply multiplies the value it receives by 100, then returns the value after calling its to-
Fixed method with the argument 2, so that the number has two digits of precision to the
right of the decimal point.

Generalized Scaling and Shifting of Random Values
The values returned by random are always in the range

Previously, we demonstrated the statement

which simulates the rolling of a six-sided die. This statement always assigns an integer (at
random) to variable face, in the range 1 ≤ face ≤ 6. Note that the width of this range
(i.e., the number of consecutive integers in the range) is 6, and the starting number in the
range is 1. Referring to the preceding statement, we see that the width of the range is de-
termined by the number used to scale random with the multiplication operator (6 in the
preceding statement) and that the starting number of the range is equal to the number (1
in the preceding statement) added to Math.random() * 6. We can generalize this result as

0.0 ≤ Math.random() < 1.0

face = Math.floor(1 + Math.random() * 6);

iw3htp5_09_JSFunctions.fm Page 327 Wednesday, November 16, 2011 1:06 PM

328 Chapter 9 JavaScript: Functions

where a is the shifting value (which is equal to the first number in the desired range of
consecutive integers) and b is the scaling factor (which is equal to the width of the desired
range of consecutive integers).

9.6 Example: Game of Chance; Introducing the HTML5
audio and video Elements
One of the most popular games of chance is a dice game known as craps, which is played
in casinos and back alleys throughout the world. The rules of the game are straightforward:

A player rolls two dice. Each die has six faces. These faces contain one, two, three, four,
five and six spots, respectively. After the dice have come to rest, the sum of the spots on
the two upward faces is calculated. If the sum is 7 or 11 on the first throw, the player
wins. If the sum is 2, 3 or 12 on the first throw (called “craps”), the player loses (i.e.,
the “house” wins). If the sum is 4, 5, 6, 8, 9 or 10 on the first throw, that sum becomes
the player’s “point.” To win, you must continue rolling the dice until you “make your
point” (i.e., roll your point value). You lose by rolling a 7 before making the point.

The script in Fig. 9.7 simulates the game of craps. Note that the player must roll two dice
on the first and all subsequent rolls. When you load this document, you can click the link
at the top of the page to browse a separate document (Fig. 9.8) containing a video that
explains the basic rules of the game. To start a game, click the Play button. A message be-
low the button displays the game’s status after each roll. If you don’t win or lose on the
first roll, click the Roll button to roll again. [Note: This example uses some features that,
at the time of this writing, worked only in Chrome, Safari and Internet Explorer 9.]

The body Element
Before we discuss the script code, we discuss the body element (lines 150–177) of this doc-
ument. The elements in the body are used extensively in the script.

face = Math.floor(a + Math.random() * b);

1 <!DOCTYPE html>
2
3 <!-- Fig. 9.7: Craps.html -->
4 <!-- Craps game simulation. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Craps Game Simulation</title>
9 <style type = "text/css">

10 p.red { color: red }
11 img { width: 54px; height: 54px; }
12 div { border: 5px ridge royalblue;
13 padding: 10px; width: 120px;
14 margin-bottom: 10px; }
15 .point { margin: 0px; }
16 </style>
17 <script>

Fig. 9.7 | Craps game simulation. (Part 1 of 6.)

iw3htp5_09_JSFunctions.fm Page 328 Wednesday, November 16, 2011 1:06 PM

9.6 Game of Chance; Introducing the HTML5 audio and video Elements 329

18 // variables used to refer to page elements
19 var pointDie1Img; // refers to first die point img
20 var pointDie2Img; // refers to second die point img
21 var rollDie1Img; // refers to first die roll img
22 var rollDie2Img; // refers to second die roll img
23 var messages; // refers to "messages" paragraph
24 var playButton; // refers to Play button
25 var rollButton; // refers to Roll button
26 var dicerolling; // refers to audio clip for dice
27
28 // other variables used in program
29 var myPoint; // point if no win/loss on first roll
30 var die1Value; // value of first die in current roll
31 var die2Value; // value of second die in current roll
32
33 // starts a new game
34 function startGame()
35 {
36 // get the page elements that we'll interact with
37 dicerolling = document.getElementById("dicerolling");
38 pointDie1Img = document.getElementById("pointDie1");
39 pointDie2Img = document.getElementById("pointDie2");
40 rollDie1Img = document.getElementById("rollDie1");
41 rollDie2Img = document.getElementById("rollDie2");
42 messages = document.getElementById("messages");
43 playButton = document.getElementById("play");
44 rollButton = document.getElementById("roll");
45
46 // prepare the GUI
47
48 setImage(pointDie1Img); // reset image for new game
49 setImage(pointDie2Img); // reset image for new game
50 setImage(rollDie1Img); // reset image for new game
51 setImage(rollDie2Img); // reset image for new game
52
53 myPoint = 0; // there is currently no point
54
55 } // end function startGame
56
57 // perform first roll of the game
58 function firstRoll()
59 {
60
61
62 // determine if the user won, lost or must continue rolling
63 switch (sumOfDice)
64 {
65 case 7: case 11: // win on first roll
66 messages.innerHTML =
67 "You Win!!! Click Play to play again.";
68 break;

Fig. 9.7 | Craps game simulation. (Part 2 of 6.)

rollButton.disabled = true; // disable rollButton

firstRoll(); // roll the dice to start the game

var sumOfDice = rollDice(); // first roll of the dice

iw3htp5_09_JSFunctions.fm Page 329 Wednesday, November 16, 2011 1:06 PM

330 Chapter 9 JavaScript: Functions

69 case 2: case 3: case 12: // lose on first roll
70 messages.innerHTML =
71 "Sorry. You Lose. Click Play to play again.";
72 break;
73 default: // remember point
74 myPoint = sumOfDice;
75 setImage(pointDie1Img, die1Value);
76 setImage(pointDie2Img, die2Value);
77 messages.innerHTML = "Roll Again!";
78 rollButton.disabled = false; // enable rollButton
79 playButton.disabled = true; // disable playButton
80 break;
81 } // end switch
82 } // end function firstRoll
83
84 // called for subsequent rolls of the dice
85 function rollAgain()
86 {
87
88
89 if (sumOfDice == myPoint)
90 {
91 messages.innerHTML =
92 "You Win!!! Click Play to play again.";
93 rollButton.disabled = true; // disable rollButton
94 playButton.disabled = false; // enable playButton
95 } // end if
96 else if (sumOfDice == 7) // craps
97 {
98 messages.innerHTML =
99 "Sorry. You Lose. Click Play to play again.";
100 rollButton.disabled = true; // disable rollButton
101 playButton.disabled = false; // enable playButton
102 } // end else if
103 } // end function rollAgain
104
105 // roll the dice
106 function rollDice()
107 {
108
109
110 // clear old die images while rolling sound plays
111 die1Value = NaN;
112 die2Value = NaN;
113 showDice();
114
115 die1Value = Math.floor(1 + Math.random() * 6);
116 die2Value = Math.floor(1 + Math.random() * 6);
117 return die1Value + die2Value;
118 } // end function rollDice
119

Fig. 9.7 | Craps game simulation. (Part 3 of 6.)

var sumOfDice = rollDice(); // subsequent roll of the dice

dicerolling.play(); // play dice rolling sound

iw3htp5_09_JSFunctions.fm Page 330 Wednesday, November 16, 2011 1:06 PM

9.6 Game of Chance; Introducing the HTML5 audio and video Elements 331

120 // display rolled dice
121 function showDice()
122 {
123 setImage(rollDie1Img, die1Value);
124 setImage(rollDie2Img, die2Value);
125 } // end function showDice
126
127 // set image source for a die
128 function setImage(dieImg, dieValue)
129 {
130 if ()
131 dieImg.src = "die" + dieValue + ".png";
132 else
133 dieImg.src = "blank.png";
134 } // end function setImage
135
136 // register event liseners
137 function start()
138 {
139 var playButton = document.getElementById("play");
140 playButton.addEventListener("click", startGame, false);
141 var rollButton = document.getElementById("roll");
142 rollButton.addEventListener("click", rollAgain, false);
143
144
145 } // end function start
146
147 window.addEventListener("load", start, false);
148 </script>
149 </head>
150 <body>
151
152
153
154
155
156
157 <p>Click here for a short video
158 explaining the basic Craps rules</p>
159 <div id = "pointDiv">
160 <p class = "point">Point is:</p>
161 <img id = "pointDie1" src = "blank.png"
162 alt = "Die 1 of Point Value">
163 <img id = "pointDie2" src = "blank.png"
164 alt = "Die 2 of Point Value">
165 </div>
166 <div class = "rollDiv">
167 <img id = "rollDie1" src = "blank.png"
168 alt = "Die 1 of Roll Value">
169 <img id = "rollDie2" src = "blank.png"
170 alt = "Die 2 of Roll Value">
171 </div>

Fig. 9.7 | Craps game simulation. (Part 4 of 6.)

isFinite(dieValue)

var diceSound = document.getElementById("dicerolling");
diceSound.addEventListener("ended", showDice, false);

<audio id = "dicerolling" preload = "auto">
 <source src = "http://test.deitel.com/dicerolling.mp3"
 type = "audio/mpeg">
 <source src = "http://test.deitel.com/dicerolling.ogg"
 type = "audio/ogg">
 Browser does not support audio tag</audio>

iw3htp5_09_JSFunctions.fm Page 331 Wednesday, November 16, 2011 1:06 PM

332 Chapter 9 JavaScript: Functions

172 <form action = "#">
173 <input id = "play" type = "button" value = "Play">
174 <input id = "roll" type = "button" value = "Roll">
175 </form>
176 <p id = "messages" class = "red">Click Play to start the game</p>
177 </body>
178 </html>

Fig. 9.7 | Craps game simulation. (Part 5 of 6.)

a) Win on the first roll. In this case, the pointDiv does
not show any dice and the Roll button remains disabled.

b) Loss on the first roll. In this case, the pointDiv does
not show any dice and the Roll button remains disabled.

c) First roll is a 5, so the user’s point is 5. The Play button
is disabled and the Roll button is enabled.

d) User won on a subsequent roll. The Play button is
enabled and the Roll button is disabled.

iw3htp5_09_JSFunctions.fm Page 332 Wednesday, November 16, 2011 1:06 PM

9.6 Game of Chance; Introducing the HTML5 audio and video Elements 333

The HTML5 audio Element
Line 151–156 define an HTML5 audio element, which is used to embed audio into a web
page. We specify an id for the element, so that we can programmatically control when the
audio clip plays, based on the user’s interactions with the game. Setting the preload attri-
bute to "auto" indicates to the browser that it should consider downloading the audio clip
so that it’s ready to be played when the game needs it. Under certain conditions the brows-
er can ignore this attribute—for example, if the user is on a low-bandwidth Internet con-
nection.

Not all browsers support the same audio file formats, but most support MP3, OGG
and/or WAV format. All of the browsers we tested in this book support MP3, OGG or
both. For this reason, nested in the audio element are two source elements specifying the
locations of the audio clip in MP3 and OGG formats, respectively. Each source element
specifies a src and a type attribute. The src attribute specifies the location of the audio
clip. The type attribute specifies the clip’s MIME type—audio/mpeg for the MP3 clip and
audio/ogg for the OGG clip (WAV would be audio/x-wav; MIME types for these and
other formats can be found online). When a web browser that supports the audio element
encounters the source elements, it will chose the first audio source that represents one of
the browser’s supported formats. If the browser does not support the audio element, the
text in line 156 will be displayed.

We used the online audio-file converter at

to convert our audio clip to other formats. Many other online and downloadable file con-
verters are available on the web.

media.io

Fig. 9.7 | Craps game simulation. (Part 6 of 6.)

e) First roll is a 6, so the user’s point is 6. The Play button
is disabled and the Roll button is enabled.

f) User lost on a subsequent roll. The Play button is
enabled and the Roll button is disabled.

iw3htp5_09_JSFunctions.fm Page 333 Wednesday, November 16, 2011 1:06 PM

334 Chapter 9 JavaScript: Functions

The Link to the CrapsRules.html Page
Lines 157–158 display a link to a separate web page in which we use an HTML5 video
element to display a short video that explains the basic rules for the game of Craps. We
discuss this web page at the end of this section.

pointDiv and rollDiv
The div elements at lines 159–171 contain the img elements in which we display die im-
ages representing the user’s point and the current roll of the dice, respectively. Each img
element has an id attribute so that we can interact with it programmatically. Because the
id attribute, if specified, must have a unique value, JavaScript can reliably refer to any sin-
gle element via its id attribute.

The form Element
Lines 172–175 define an HTML5 form element containing two button input elements.
Each button’s click event handler indicates the action to take when the user clicks the
corresponding button. In this example, clicking the Play button causes a call to function
startGame and clicking the Roll button causes a call to function rollAgain. Initially, the
Roll button is disabled, which prevents the user from initiating an event with this button.

The p Element
Line 176 defines a p element in which the game displays status messages to the user.

The Script Variables
Lines 19–31 create variables that are used throughout the script. Recall that because these are
declared outside the script’s functions, they’re accessible to all the functions in the script. The
variables in lines 19–26 are used to interact with various page elements in the script. Variable
myPoint (line 29) stores the point if the player does not win or lose on the first roll. Variables
die1Value and die2Value keep track of the die values for the current roll.

Function startGame
The user clicks the Play button to start the game and perform the first roll of the dice. This
event invokes function startGame (lines 34–55), which takes no arguments. Line 37–44
use the document object’s getElementById method to get the page elements that the script
interacts with programmatically.

The Roll button should be enabled only if the user does not win or lose on the first
roll. For this reason, line 47 disables the Roll button by setting its disabled property to
true. Each input element has a disabled property.

Lines 48–51 call function setImage (defined in lines 128–134) to display the image
blank.png for the img elements in the pointDiv and rollDiv. We’ll replace blank.png
with die images throughout the game as necessary.

Finally, line 53 sets myPoint to 0, because there can be a point value only after the first
roll of the dice, and line 54 calls method firstRoll (defined in lines 58–82) to perform
the first roll of the dice.

Function firstRoll
Function firstRoll (lines 58–82) calls function rollDice (defined in lines 106–118) to
roll the dice and get their sum, which is stored in the local variable sumOfDice. Because

iw3htp5_09_JSFunctions.fm Page 334 Wednesday, November 16, 2011 1:06 PM

9.6 Game of Chance; Introducing the HTML5 audio and video Elements 335

this variable is defined inside the firstRoll function, it’s accessible only inside that func-
tion. Next, the switch statement (lines 63–81) determines whether the game is won or
lost, or whether it should continue with another roll. If the user won or lost, lines 66–67
or 70–71 display an appropriate message in the messages paragraph (p) element with the
object’s innerHTML property. After the first roll, if the game is not over, the value of local
variable sumOfDice is saved in myPoint (line 74), the images for the rolled die values are
displayed (lines 75–76) in the pointDiv and the message "Roll Again!" is displayed in
the displayed in the messages paragraph (p) element. Also, lines 78–79 enable the Roll
button and disable the Play button, respectively. Function firstRoll takes no arguments,
so it has an empty parameter list.

Function rollAgain
The user clicks the Roll button to continue rolling if the game was not won or lost on the
first roll. Clicking this button calls the rollAgain function (lines 85–103), which takes no
arguments. Line 87 calls function rollDice and stores the sum locally in sumOfDice, then
lines 89–102 determine whether the user won or lost on the current roll, display an appro-
priate message in the messages paragraph (p) element, disable the Roll and enable the Play
button. In either case, the user can now click Play to play another game. If the user did not
win or lose, the program waits for the user to click the Roll button again. Each time the
user clicks Roll, function rollAgain executes and, in turn, calls the rollDice function to
produce a new value for sumOfDice.

Function rollDice
We define a function rollDice (lines 106–118), which takes no arguments, to roll the
dice and compute their sum. Function rollDice is defined once but is called from lines
60 and 87 in the program. The function returns the sum of the two dice (line 117). Line
108 plays the audio clip declared at lines 151–165 by calling its play method, which plays
the clip once. As you’ll soon see, we use the audio element’s ended event, which occurs
when the clip finishes playing, to indicate when to display the new die images. Lines 111–
112 set variables die1Value and die2Value to NaN so that the call to showDice (line 113)
can display the blank.png image while the dice sound is playing. Lines 115–116 pick two
random values in the range 1 to 6 and assign them to the script variables die1Value and
die2Value, respectively.

Function showDice
Function showDice (lines 121–125) is called when the dice rolling sound finishes playing.
At this point, lines 123–124 display the die images representing the die values that were
rolled in function rollDice.

Software Engineering Observation 9.3
Variables declared inside the body of a function are known only in that function. If the
same variable names are used elsewhere in the program, they’ll be entirely separate
variables in memory.

Error-Prevention Tip 9.1
Initializing variables when they’re declared in functions helps avoid incorrect results and
interpreter messages warning of uninitialized data.

iw3htp5_09_JSFunctions.fm Page 335 Wednesday, November 16, 2011 1:06 PM

336 Chapter 9 JavaScript: Functions

Function setImage
Function setImage (lines 128–134) takes two arguments—the img element that will dis-
play an image and the value of a die to specify which die image to display. You might have
noticed that we called this function with one argument in lines 48–51 and with two argu-
ments in lines 75–76 and 123–124. If you call setImage with only one argument, the sec-
ond parameter’s value will be undefined. In this case, we display the image blank.png (line
133). Line 130 uses global JavaScript function isFinite to determine whether the param-
eter dieValue contains a number—if it does, we’ll display the die image that corresponds
to that number (line 131). Function isFinite returns true only if its argument is a valid
number in the range supported by JavaScript. You can learn more about JavaScript’s valid
numeric range in Section 8.5 of the JavaScript standard:

Function start
Function start (lines 137–145) is called when the window’s load event occurs to register
click event handlers for this examples two buttons (lines 139–142) and for the ended
event of the audio element (lines 143–144).

Program-Control Mechanisms
Note the use of the various program-control mechanisms. The craps program uses five
functions—startGame, firstRoll, rollAgain, rollDice and setImage—and the switch
and nested if…else statements. Also, note the use of multiple case labels in the switch
statement to execute the same statements (lines 65 and 69). In the exercises at the end of
this chapter, we investigate additional characteristics of the game of craps.

CrapsRules.html and the HMTL5 video Element
When the user clicks the hyperlink in Craps.html (Fig. 9.7, lines 157–158), the
CrapsRules.html is displayed in the browser. This page consists of a link back to
Craps.html (Fig. 9.8, line 11) and an HTML5 video element (lines 12–25) that displays
a video explaining the basic rules for the game of Craps.

www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

1 <!DOCTYPE html>
2
3 <!-- Fig. 9.8: CrapsRules.html -->
4 <!-- Web page with a video of the basic rules for the dice game Craps. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Craps Rules</title>
9 </head>

10 <body>
11 <p>Back to Craps Game</p>
12
13
14
15 A player rolls two dice. Each die has six faces that contain
16 one, two, three, four, five and six spots, respectively. The

Fig. 9.8 | Web page that displays a video of the basic rules for the dice game Craps. (Part 1 of 2.)

<video controls>
 <source src = "CrapsRules.mp4" type = "video/mp4">
 <source src = "CrapsRules.webm" type = "video/webm">

iw3htp5_09_JSFunctions.fm Page 336 Wednesday, November 16, 2011 1:06 PM

9.6 Game of Chance; Introducing the HTML5 audio and video Elements 337

The video element’s controls attribute indicates that we’d like the video player in the
browser to display controls that allow the user to control video playback (e.g., play and
pause). As with audio, not all browsers support the same video file formats, but most sup-
port MP4, OGG and/or WebM formats. For this reason, nested in the video element are
two source elements specifying the locations of this example’s video clip in MP4 and
WebM formats. The src attribute of each specifies the location of the video. The type attri-
bute specifies the video’s MIME type—video/mp4 for the MP4 video and video/webm for
the WebM video (MIME types for these and other formats can be found online). When a

17 sum of the spots on the two upward faces is calculated. If the
18 sum is 7 or 11 on the first throw, the player wins. If the sum
19 is 2, 3 or 12 on the first throw (called "craps"), the player
20 loses (i.e., the "house" wins). If the sum is 4, 5, 6, 8, 9 or
21 10 on the first throw, that sum becomes the player’s "point."
22 To win, you must continue rolling the dice until you "make your
23 point" (i.e., roll your point value). You lose by rolling a 7
24 before making the point.
25
26 </body>
27 </html>

Fig. 9.8 | Web page that displays a video of the basic rules for the dice game Craps. (Part 2 of 2.)

</video>

iw3htp5_09_JSFunctions.fm Page 337 Wednesday, November 16, 2011 1:06 PM

338 Chapter 9 JavaScript: Functions

web browser that supports the video element encounters the source elements, it will
choose the first video source that represents one of the browser’s supported formats. If the
browser does not support the video element, the text in lines 15–24 will be displayed.

We used the downloadable video converter at

to convert our video from MP4 to WebM format. For more information on the HTML5
audio and video elements, visit:

9.7 Scope Rules
Chapters 6–8 used identifiers for variable names. The attributes of variables include name,
value and data type (e.g., string, number or boolean). We also use identifiers as names for
user-defined functions. Each identifier in a program also has a scope.

The scope of an identifier for a variable or function is the portion of the program in
which the identifier can be referenced. Global variables or script-level variables that are
declared in the head element are accessible in any part of a script and are said to have global
scope. Thus every function in the page’s script(s) can potentially use the variables.

Identifiers declared inside a function have function (or local) scope and can be used
only in that function. Function scope begins with the opening left brace ({) of the function
in which the identifier is declared and ends at the function’s terminating right brace (}).
Local variables of a function and function parameters have function scope. If a local vari-
able in a function has the same name as a global variable, the global variable is “hidden”
from the body of the function.

The script in Fig. 9.9 demonstrates the scope rules that resolve conflicts between
global variables and local variables of the same name. Once again, we use the window’s load
event (line 53), which calls the function start when the HTML5 document is completely
loaded into the browser window. In this example, we build an output string (declared at
line 14) that is displayed at the end of function start’s execution.

www.mirovideoconverter.com

dev.opera.com/articles/view/everything-you-need-to-know-about-
 html5-video-and-audio/

Good Programming Practice 9.2
Avoid local-variable names that hide global-variable names. This can be accomplished by
simply avoiding the use of duplicate identifiers in a script.

1 <!DOCTYPE html>
2
3 <!-- Fig. 9.9: scoping.html -->
4 <!-- Scoping example. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">

Fig. 9.9 | Scoping example. (Part 1 of 3.)

iw3htp5_09_JSFunctions.fm Page 338 Wednesday, November 16, 2011 1:06 PM

9.7 Scope Rules 339

8 <title>Scoping Example</title>
9 <style type = "text/css">

10 p { margin: 0px; }
11 p.space { margin-top: 10px; }
12 </style>
13 <script>
14 var output; // stores the string to display
15 // global variable
16
17 function start()
18 {
19
20
21 output = "<p>local x in start is " + x + "</p>";
22
23 functionA(); // functionA has local x
24 functionB(); // functionB uses global variable x
25 functionA(); // functionA reinitializes local x
26 functionB(); // global variable x retains its value
27
28 output += "<p class='space'>local x in start is " + x +
29 "</p>";
30
31 } // end function start
32
33 function functionA()
34 {
35
36
37 output += "<p class='space'>local x in functionA is " + x +
38 " after entering functionA</p>";
39
40 output += "<p>local x in functionA is " + x +
41 " before exiting functionA</p>";
42 } // end functionA
43
44 function functionB()
45 {
46 output += "<p class='space'>global variable x is " + x +
47 " on entering functionB";
48
49 output += "<p>global variable x is " + x +
50 " on exiting functionB</p>";
51 } // end functionB
52
53 window.addEventListener("load", start, false);
54 </script>
55 </head>
56 <body>
57
58 </body>
59 </html>

Fig. 9.9 | Scoping example. (Part 2 of 3.)

var x = 1;

var x = 5; // variable local to function start

document.getElementById("results").innerHTML = output;

var x = 25; // initialized each time functionA is called

++x;

x *= 10;

<div id = "results"></div>

iw3htp5_09_JSFunctions.fm Page 339 Wednesday, November 16, 2011 1:06 PM

340 Chapter 9 JavaScript: Functions

Global variable x (line 15) is declared and initialized to 1. This global variable is
hidden in any block (or function) that declares a variable named x. Function start (lines
17–31) declares a local variable x (line 19) and initializes it to 5. Line 21 creates a para-
graph element containing x’s value as a string and assigns the string to the global variable
output (which is displayed later). In the sample output, this shows that the global variable
x is hidden in start.

The script defines two other functions—functionA and functionB—each taking no
arguments and returning nothing. Each function is called twice from function start (lines
23–26). Function functionA defines local variable x (line 35) and initializes it to 25.
When functionA is called, the variable’s value is placed in a paragraph element and
appended to variable output to show that the global variable x is hidden in functionA;
then the variable is incremented and appended to output again before the function exits.
Each time this function is called, local variable x is re-created and initialized to 25.

Function functionB does not declare any variables. Therefore, when it refers to vari-
able x, the global variable x is used. When functionB is called, the global variable’s value
is placed in a paragraph element and appended to variable output, then it’s multiplied by
10 and appended to variable output again before the function exits. The next time func-
tion functionB is called, the global variable has its modified value, 10, which again gets
multiplied by 10, and 100 is output. Finally, lines 28–29 append the value of local variable
x in start to variable output, to show that none of the function calls modified the value
of x in start, because the functions all referred to variables in other scopes. Line 30 uses
the document object’s getElementById method to get the results div element (line 57),
then assigns variable output’s value to the element’s innerHTML property, which renders
the HTML in variable output on the page.

9.8 JavaScript Global Functions
JavaScript provides nine standard global functions. We’ve already used parseInt, parse-
Float and isFinite. Some of the global functions are summarized in Fig. 9.10.

Fig. 9.9 | Scoping example. (Part 3 of 3.)

iw3htp5_09_JSFunctions.fm Page 340 Wednesday, November 16, 2011 1:06 PM

9.9 Recursion 341

The global functions in Fig. 9.10 are all part of JavaScript’s Global object. The
Global object contains all the global variables in the script, all the user-defined functions
in the script and all the functions listed in Fig. 9.10. Because global functions and user-
defined functions are part of the Global object, some JavaScript programmers refer to
these functions as methods. You do not need to use the Global object directly—JavaScript
references it for you. For information on JavaScript’s other global functions, see Section
15.1.2 of the ECMAScript Specification:

9.9 Recursion
The programs we’ve discussed thus far are generally structured as functions that call one
another in a disciplined, hierarchical manner. A recursive function is a function that calls
itself, either directly, or indirectly through another function. Recursion is an important
computer science topic. In this section, we present a simple example of recursion.

We consider recursion conceptually first; then we examine several programs con-
taining recursive functions. Recursive problem-solving approaches have a number of ele-
ments in common. A recursive function is called to solve a problem. The function actually

Global function Description

isFinite Takes a numeric argument and returns true if the value of the argument
is not NaN, Number.POSITIVE_INFINITY or Number.NEGATIVE_INFINITY
(values that are not numbers or numbers outside the range that JavaScript
supports)—otherwise, the function returns false.

isNaN Takes a numeric argument and returns true if the value of the argument
is not a number; otherwise, it returns false. The function is commonly
used with the return value of parseInt or parseFloat to determine
whether the result is a proper numeric value.

parseFloat Takes a string argument and attempts to convert the beginning of the
string into a floating-point value. If the conversion is unsuccessful, the
function returns NaN; otherwise, it returns the converted value (e.g.,
parseFloat("abc123.45") returns NaN, and parseFloat("123.45abc")
returns the value 123.45).

parseInt Takes a string argument and attempts to convert the beginning of the
string into an integer value. If the conversion is unsuccessful, the func-
tion returns NaN; otherwise, it returns the converted value (for example,
parseInt("abc123") returns NaN, and parseInt("123abc") returns the
integer value 123). This function takes an optional second argument,
from 2 to 36, specifying the radix (or base) of the number. Base 2 indi-
cates that the first argument string is in binary format, base 8 that it’s in
octal format and base 16 that it’s in hexadecimal format. See
Appendix E, for more information on binary, octal and hexadecimal
numbers.

Fig. 9.10 | JavaScript global functions.

www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

iw3htp5_09_JSFunctions.fm Page 341 Wednesday, November 16, 2011 1:06 PM

342 Chapter 9 JavaScript: Functions

knows how to solve only the simplest case(s), or base case(s). If the function is called with
a base case, the function returns a result. If the function is called with a more complex
problem, it divides the problem into two conceptual pieces—a piece that the function
knows how to process (the base case) and a piece that the function does not know how to
process. To make recursion feasible, the latter piece must resemble the original problem
but be a simpler or smaller version of it. Because this new problem looks like the original
problem, the function invokes (calls) a fresh copy of itself to go to work on the smaller
problem; this invocation is referred to as a recursive call, or the recursion step. The recur-
sion step also normally includes the keyword return, because its result will be combined
with the portion of the problem the function knew how to solve to form a result that will
be passed back to the original caller.

The recursion step executes while the original call to the function is still open (i.e., it
has not finished executing). The recursion step can result in many more recursive calls as
the function divides each new subproblem into two conceptual pieces. For the recursion
eventually to terminate, each time the function calls itself with a simpler version of the
original problem, the sequence of smaller and smaller problems must converge on the base case.
At that point, the function recognizes the base case, returns a result to the previous copy
of the function, and a sequence of returns ensues up the line until the original function
call eventually returns the final result to the caller. This process sounds exotic when com-
pared with the conventional problem solving we’ve performed to this point.

As an example of these concepts at work, let’s write a recursive program to perform a
popular mathematical calculation. The factorial of a nonnegative integer n, written n! (and
pronounced “n factorial”), is the product

where 1! is equal to 1 and 0! is defined as 1. For example, 5! is the product 5 · 4 · 3 · 2 · 1,
which is equal to 120.

The factorial of an integer (number in the following example) greater than or equal to
zero can be calculated iteratively (non-recursively) using a for statement, as follows:

A recursive definition of the factorial function is arrived at by observing the following
relationship:

For example, 5! is clearly equal to 5 * 4!, as is shown by the following equations:

The evaluation of 5! would proceed as shown in Fig. 9.11. Figure 9.11(a) shows how
the succession of recursive calls proceeds until 1! is evaluated to be 1, which terminates the
recursion. Figure 9.11(b) shows the values returned from each recursive call to its caller
until the final value is calculated and returned.

n · (n – 1) · (n – 2) · … · 1

var factorial = 1;

for (var counter = number; counter >= 1; --counter)
 factorial *= counter;

n! = n · (n – 1)!

5! = 5 · 4 · 3 · 2 · 1
5! = 5 · (4 · 3 · 2 · 1)
5! = 5 · (4!)

iw3htp5_09_JSFunctions.fm Page 342 Wednesday, November 16, 2011 1:06 PM

9.9 Recursion 343

Figure 9.12 uses recursion to calculate and print the factorials of the integers 0 to 10.
The recursive function factorial first tests (line 27) whether a terminating condition is
true, i.e., whether number is less than or equal to 1. If so, factorial returns 1, no further
recursion is necessary and the function returns. If number is greater than 1, line 30
expresses the problem as the product of number and the value returned by a recursive call
to factorial evaluating the factorial of number - 1. Note that factorial(number - 1) is
a simpler problem than the original calculation, factorial(number).

Fig. 9.11 | Recursive evaluation of 5!.

1 <!DOCTYPE html>
2
3 <!-- Fig. 9.12: FactorialTest.html -->
4 <!-- Factorial calculation with a recursive function. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Recursive Factorial Function</title>
9 <style type = "text/css">

10 p { margin: 0px; }
11 </style>
12 <script>
13 var output = ""; // stores the output
14
15 // calculates factorials of 0 - 10
16 function calculateFactorials()
17 {

Fig. 9.12 | Factorial calculation with a recursive function. (Part 1 of 2.)

(a) Sequence of recursive calls.

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

(b) Values returned from each recursive call.

Final value = 120

5! = 5 * 24 = 120 is returned

4! = 4 * 6 = 24 is returned

3! = 3 * 2 = 6 is returned

2! = 2 * 1 = 2 is returned

1 is returned

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

iw3htp5_09_JSFunctions.fm Page 343 Wednesday, November 16, 2011 1:06 PM

344 Chapter 9 JavaScript: Functions

Function factorial (lines 25–31) receives as its argument the value for which to cal-
culate the factorial. As can be seen in the screen capture in Fig. 9.12, factorial values
become large quickly.

18 for (var i = 0; i <= 10; ++i)
19 output += "<p>" + i + "! = " + + "</p>";
20
21 document.getElementById("results").innerHTML = output;
22 } // end function calculateFactorials
23
24 // Recursive definition of function factorial
25
26
27
28
29
30
31
32
33
34 </script>
35 </head>
36 <body>
37 <h1>Factorials of 0 to 10</h1>
38 <div id = "results"></div>
39 </body>
40 </html>

Common Programming Error 9.3
Omitting the base case and writing the recursion step incorrectly so that it does not con-
verge on the base case are both errors that cause infinite recursion, eventually exhausting
memory. This situation is analogous to the problem of an infinite loop in an iterative
(non-recursive) solution.

Fig. 9.12 | Factorial calculation with a recursive function. (Part 2 of 2.)

factorial(i)

function factorial(number)
{
 if (number <= 1) // base case
 return 1;
 else
 return number * factorial(number - 1);
} // end function factorial

window.addEventListener("load", calculateFactorials, false);

iw3htp5_09_JSFunctions.fm Page 344 Wednesday, November 16, 2011 1:06 PM

9.10 Recursion vs. Iteration 345

9.10 Recursion vs. Iteration
In the preceding section, we studied a function that can easily be implemented either re-
cursively or iteratively. In this section, we compare the two approaches and discuss why
you might choose one approach over the other in a particular situation.

Both iteration and recursion are based on a control statement: Iteration uses a repeti-
tion statement (e.g., for, while or do…while); recursion uses a selection statement (e.g.,
if, if…else or switch).

Both iteration and recursion involve repetition: Iteration explicitly uses a repetition
statement; recursion achieves repetition through repeated function calls.

Iteration and recursion each involve a termination test: Iteration terminates when the
loop-continuation condition fails; recursion terminates when a base case is recognized.

Iteration both with counter-controlled repetition and with recursion gradually
approaches termination: Iteration keeps modifying a counter until the counter assumes a
value that makes the loop-continuation condition fail; recursion keeps producing simpler
versions of the original problem until the base case is reached.

Both iteration and recursion can occur infinitely: An infinite loop occurs with itera-
tion if the loop-continuation test never becomes false; infinite recursion occurs if the
recursion step does not reduce the problem each time via a sequence that converges on the
base case or if the base case is incorrect.

One negative aspect of recursion is that function calls require a certain amount of time
and memory space not directly spent on executing program instructions. This is known as
function-call overhead. Because recursion uses repeated function calls, this overhead greatly
affects the performance of the operation. In many cases, using repetition statements in
place of recursion is more efficient. However, some problems can be solved more elegantly
(and more easily) with recursion.

In addition to the factorial function example (Fig. 9.12), we also provide recursion
exercises—raising an integer to an integer power (Exercise 9.29) and “What does the fol-
lowing function do?” (Exercise 9.30). Also, Fig. 15.25 uses recursion to traverse an XML
document tree.

Error-Prevention Tip 9.2
Internet Explorer displays an error message when a script seems to be going into infinite re-
cursion. Firefox simply terminates the script after detecting the problem. This allows the user
of the web page to recover from a script that contains an infinite loop or infinite recursion.

Software Engineering Observation 9.4
Any problem that can be solved recursively can also be solved iteratively (non-recursively).
A recursive approach is normally chosen in preference to an iterative approach when the
recursive approach more naturally mirrors the problem and results in a program that’s
easier to understand and debug. Another reason to choose a recursive solution is that an
iterative solution may not be apparent.

Performance Tip 9.1
Avoid using recursion in performance-critical situations. Recursive calls take time and
consume additional memory.

iw3htp5_09_JSFunctions.fm Page 345 Wednesday, November 16, 2011 1:06 PM

346 Chapter 9 JavaScript: Functions

Summary
Section 9.1 Introduction
• The best way to develop and maintain a large program is to construct it from small, simple pieces,

or modules (p. 311). This technique is called divide and conquer (p. 311).

Section 9.2 Program Modules in JavaScript
• JavaScript programs are written by combining new functions (p. 311) that the programmer

writes with “prepackaged” functions and objects available in JavaScript.

• The term method (p. 311) implies that the function belongs to a particular object. We refer to
functions that belong to a particular JavaScript object as methods; all others are referred to as
functions.

• JavaScript provides several objects that have a rich collection of methods for performing common
mathematical calculations, string manipulations, date and time manipulations, and manipula-
tions of collections of data called arrays. These objects make your job easier, because they provide
many of the capabilities programmers frequently need.

• You can define functions that perform specific tasks and use them at many points in a script.
These functions are referred to as programmer-defined functions (p. 311). The actual statements
defining the function are written only once and are hidden from other functions.

• Functions are invoked (p. 312) by writing the name of the function, followed by a left parenthesis,
followed by a comma-separated list of zero or more arguments, followed by a right parenthesis.

• Methods are called in the same way as functions (p. 312) but require the name of the object to
which the method belongs and a dot preceding the method name.

• Function arguments (p. 312) may be constants, variables or expressions.

Section 9.3 Function Definitions
• The return statement passes information from inside a function back to the point in the program

where it was called.

• A function must be called explicitly for the code in its body to execute.

• The format of a function definition is

function function-name(parameter-list)
{
 declarations and statements
}

• Each function should perform a single, well-defined task, and the name of the function should
express that task effectively. This promotes software reusability (p. 317).

• There are three ways to return control to the point at which a function was invoked. If the func-
tion does not return a result, control returns when the program reaches the function-ending right
brace or when the statement return; is executed. If the function does return a result, the state-
ment return expression; returns the value of expression to the caller.

Section 9.4 Notes on Programmer-Defined Functions
• All variables declared with the keyword var in function definitions are local variables (p. 317)—

this means that they can be accessed only in the function in which they’re defined.

• A function’s parameters (p. 317) are considered to be local variables. When a function is called,
the arguments in the call are assigned to the corresponding parameters in the function definition.

• Code that’s packaged as a function can be executed from several locations in a program by calling
the function.

iw3htp5_09_JSFunctions.fm Page 346 Wednesday, November 16, 2011 1:06 PM

 Summary 347

Section 9.5 Random Number Generation
• Method random generates a floating-point value from 0.0 up to, but not including, 1.0.

• JavaScript can execute actions in response to the user’s interaction with an element in an
HTML5 form. This is referred to as GUI event handling (p. 322).

• An HTML5 element’s click event handler (p. 321) indicates the action to take when the user
of the HTML5 document clicks on the element.

• In event-driven programming (p. 322), the user interacts with an element, the script is notified
of the event (p. 322) and the script processes the event. The user’s interaction with the GUI
“drives” the program. The function that’s called when an event occurs is known as an event-han-
dling function or event handler.

• The getElementById method (p. 322), given an id as an argument, finds the HTML5 element
with a matching id attribute and returns a JavaScript object representing the element.

• The scaling factor (p. 328) determines the size of the range. The shifting value (p. 328) is added
to the result to determine where the range begins.

Section 9.6 Example: Game of Chance; Introducing the HTML5 audio and video
Elements
• An HTML5 audio element (p. 333) embeds audio into a web page. Setting the preload attribute

(p. 333) to "auto" indicates to the browser that it should consider downloading the audio clip
so that it’s ready to be played.

• Not all browsers support the same audio file formats, but most support MP3, OGG and/or
WAV format. For this reason, you can use source elements (p. 333) nested in the audio element
to specify the locations of an audio clip in different formats. Each source element specifies a src
and a type attribute. The src attribute specifies the location of the audio clip. The type attribute
specifies the clip’s MIME type.

• When a web browser that supports the audio element encounters the source elements, it chooses
the first audio source that represents one of the browser’s supported formats.

• When interacting with an audio element from JavaScript, you can use the play method (p. 335)
to play the clip once.

• Global JavaScript function isFinite (p. 336) returns true only if its argument is a valid number
in the range supported by JavaScript.

• The HTML5 video element (p. 336) embeds a video in a web page.

• The video element’s controls attribute (p. 337) indicates that the video player in the browser
should display controls that allow the user to control video playback.

• As with audio, not all browsers support the same video file formats, but most support MP4,
OGG and/or WebM formats. For this reason, you can use source elements nested in the video
element to specify the locations of a video clip’s multiple formats.

Section 9.7 Scope Rules
• Each identifier in a program has a scope (p. 338). The scope of an identifier for a variable or func-

tion is the portion of the program in which the identifier can be referenced.

• Global variables or script-level variables (i.e., variables declared in the head element of the
HTML5 document, p. 338) are accessible in any part of a script and are said to have global scope
(p. 338). Thus every function in the script can potentially use the variables.

• Identifiers declared inside a function have function (or local) scope (p. 338) and can be used only
in that function. Function scope begins with the opening left brace ({) of the function in which

iw3htp5_09_JSFunctions.fm Page 347 Wednesday, November 16, 2011 1:06 PM

348 Chapter 9 JavaScript: Functions

the identifier is declared and ends at the terminating right brace (}) of the function. Local vari-
ables of a function and function parameters have function scope.

• If a local variable in a function has the same name as a global variable, the global variable is “hid-
den” from the body of the function.

Section 9.8 JavaScript Global Functions
• JavaScript provides several global functions as part of a Global object (p. 341). This object con-

tains all the global variables in the script, all the user-defined functions in the script and all the
built-in global functions listed in Fig. 9.10.

• You do not need to use the Global object directly; JavaScript uses it for you.

Section 9.9 Recursion
• A recursive function (p. 341) calls itself, either directly, or indirectly through another function.

• A recursive function knows how to solve only the simplest case, or base case. If the function is
called with a base case, it returns a result. If the function is called with a more complex problem,
it knows how to divide the problem into two conceptual pieces—a piece that the function knows
how to process (the base case, p. 342) and a simpler or smaller version of the original problem.

• The function invokes (calls) a fresh copy of itself to go to work on the smaller problem; this in-
vocation is referred to as a recursive call or the recursion step (p. 342).

• The recursion step executes while the original call to the function is still open (i.e., it has not fin-
ished executing).

• For recursion eventually to terminate, each time the function calls itself with a simpler version of
the original problem, the sequence of smaller and smaller problems must converge on the base
case. At that point, the function recognizes the base case, returns a result to the previous copy of
the function, and a sequence of returns ensues up the line until the original function call even-
tually returns the final result to the caller.

Section 9.10 Recursion vs. Iteration
• Both iteration and recursion involve repetition: Iteration explicitly uses a repetition statement;

recursion achieves repetition through repeated function calls.

• Iteration and recursion each involve a termination test: Iteration terminates when the loop-con-
tinuation condition fails; recursion terminates when a base case is recognized.

• Iteration both with counter-controlled repetition and with recursion gradually approaches ter-
mination: Iteration keeps modifying a counter until the counter assumes a value that makes the
loop-continuation condition fail; recursion keeps producing simpler versions of the original
problem until the base case is reached.

Self-Review Exercises
9.1 Fill in the blanks in each of the following statements:

a) The term implies that the function belongs to a particular object.
b) Function arguments may be or .
c) All variables declared in function definitions are variables.
d) An HTML5 element’s attribute indicates the action to take when the user of

the HTML5 document clicks on the element.
e) JavaScript provides several global functions as part of a(n) object

9.2 For the program in Fig. 9.13, state the scope (either global scope or function scope) of each
of the following elements:

iw3htp5_09_JSFunctions.fm Page 348 Wednesday, November 16, 2011 1:06 PM

 Self-Review Exercises 349

a) The variable x.
b) The variable y.
c) The function cube.
d) The function output.

9.3 Fill in the blanks in each of the following statements:
a) Programmer-defined functions, global variables and JavaScript’s global functions are all

part of the object.
b) Function determines whether its argument is or is not a number.
c) Function takes a string argument and returns a string in which all spaces,

punctuation, accent characters and any other character that’s not in the ASCII character
set are encoded in a hexadecimal format.

d) Function takes a string argument representing JavaScript code to execute.
e) Function takes a string as its argument and returns a string in which all char-

acters that were previously encoded with escape are decoded.

9.4 Fill in the blanks in each of the following statements:
a) The method is given an id as an argument.
b) The factor determines the size of the range. The number is added

to the result to determine where the range begins.
c) Method random generates a floating-point value from up to, but not including, 1.0.
d) The HTML5 element embeds a video in a web page.

9.5 Locate the error in each of the following program segments and explain how to correct it:
a) fn()

{

 document.writeln("Inside method fn");

}

1 <!DOCTYPE html>
2
3 <!-- Exercise 9.2: cube.html -->
4 <html>
5 <head>
6 <meta charset = "utf-8">
7 <title>Scoping</title>
8 <script>
9 var x;

10
11 function output()
12 {
13 for (x = 1; x <= 10; x++)
14 document.writeln("<p>" + cube(x) + "</p>");
15 } // end function output
16
17 function cube(y)
18 {
19 return y * y * y;
20 } // end function cube
21
22 window.addEventListener("load", output, false);
23 </script>
24 </head><body></body>
25 </html>

Fig. 9.13 | Scope exercise.

iw3htp5_09_JSFunctions.fm Page 349 Wednesday, November 16, 2011 1:06 PM

350 Chapter 9 JavaScript: Functions

b) // This function should return the difference of its arguments

function differ(x, y)

{

 var result;

 result = x - y;

}
c) function f(a);

{

 document.writeln(a);

}

9.6 Write a complete JavaScript program to prompt the user for the radius of a sphere, then call
function sphereVolume to calculate and display the volume of the sphere. Use the statement

volume = (4.0 / 3.0) * Math.PI * Math.pow(radius, 3);

to calculate the volume. The user should enter the radius in an HTML5 input element of type
"number" in a form. Give the input element the id value "inputField". You can use this id with
the document object’s getElementById method to get the element for use in the script. To access the
string in the inputField, use its value property as in inputField.value, then convert the string to
a number using parseFloat. Use an input element of type "button" in the form to allow the user
to initiate the calculation. [Note: In HTML5, input elements of type "number" have a property
named valueAsNumber that enables a script to get the floating-point number in the input element
without having to convert it from a string to a number using parseFloat. At the time of this writ-
ing, valueAsNumber was not supported in all browsers.]

Answers to Self-Review Exercises
9.1 a) method. b) constants, variables. c) local. d) onclick. e) Global.

9.2 a) global scope. b) function scope. c) global scope. d) global scope.

9.3 a) Global. b) isNaN. c) escape. d) eval. e) unescape.

9.4 a) getElementById. b) scaling, shift. c) 0.0. d) video.

9.5 a) Error: Every function definition should start with the keyword function.
Correction: Add function before fn().

b) Error: The function is supposed to return a value, but does not.
Correction: Either delete variable result and place the statement
 return x - y;

in the function or add the following statement at the end of the function body:
 return result;

c) Error: No semicolon after the statement: document.writeln(a).
Correction: Add a semicolon after the statement: document.writeln(a).

9.6 The solution below calculates the volume of a sphere using the radius entered by the user.

1 <!DOCTYPE html>
2
3 <!-- Exercise 9.6: volume.html -->
4 <html>
5 <head>
6 <meta charset = "utf-8">
7 <title>Calculating Sphere Volume</title>
8 <script>

iw3htp5_09_JSFunctions.fm Page 350 Wednesday, November 16, 2011 1:06 PM

 Exercises 351

Exercises
9.7 Write a script that uses a form to get the radius of a circle from the user, then calls the function
circlePerimeter to calculate the perimeter of the circle and display the result in a paragraph on the
page. To get the number from the form, use the techniques shown in Self-Review Exercise 9.6.

9.8 A parking garage charges a $4.00 minimum fee to park for up to two hours. The garage
charges an additional $0.50 per hour for each hour or part thereof in excess of two hours. The max-
imum charge for any given 24-hour period is $12.00. Assume that no car parks for longer than 24
hours at a time. Write a script that calculates and displays the parking charges for each customer
who parked a car in this garage yesterday. You should use a form to input from the user the hours
parked for each customer. The program should display the charge for the current customer and
should calculate and display the running total of yesterday’s receipts. The program should use the
function calculateCharges to determine the charge for each customer. To get the number from the
form, use the techniques shown in Self-Review Exercise 9.6.

9 function start()
10 {
11 var button = document.getElementById("calculateButton");
12 button.addEventListener("click", displayVolume, false);
13 } // end function start
14
15 function displayVolume()
16 {
17 var inputField = document.getElementById("radiusField");
18 var radius = parseFloat(inputField.value);
19 var result = document.getElementById("result");
20 result.innerHTML = "Sphere volume is: " + sphereVolume(radius);
21 } // end function displayVolume
22
23 function sphereVolume(radius)
24 {
25 return (4.0 / 3.0) * Math.PI * Math.pow(radius, 3);
26 } // end function sphereVolume
27
28 window.addEventListener("load", start, false);
29 </script>
30 </head>
31 <body>
32 <form action = "#">
33 <p><label>Radius:
34 <input id = "radiusField" type = "number"></label>
35 <input id = "calculateButton" type = "button" value = "Calculate"></p>
36 </form>
37 <p id = "result"></p>
38 </body>
39 </html>

iw3htp5_09_JSFunctions.fm Page 351 Wednesday, November 16, 2011 1:06 PM

352 Chapter 9 JavaScript: Functions

9.9 Write a function distance that calculates the slope between two points (x1, y1) and (x2, y2).
All numbers and return values should be floating-point values. Incorporate this function into a script
that enables the user to enter the coordinates of the points through an HTML5 form. To get the num-
bers from the form, use the techniques shown in Self-Review Exercise 9.6.

9.10 Answer each of the following questions:
a) What is the scope of an identifier?
b) What is function scope?
c) What is the scope of a script-level variable?
d) What happens if a local variable in a function has the same name as a global variable?

9.11 Write statements that assign random integers to the variable n in the following ranges:
a) 1 ≤ n ≤ 5
b) 1 ≤ n ≤ 1000
c) 0 ≤ n ≤ 99
d) 1000 ≤ n ≤ 1100
e) –2 ≤ n ≤ 2
f) –1 ≤ n ≤ 11

9.12 For each of the following sets of integers, write a single statement that will print a number
at random from the set:

a) 2, 4, 8, 10, 12, 14.
b) 5, 7, 9, 11, 13.
c) 2, 6, 10, 14, 18, 22.

9.13 Write a function SumN(m, n) that returns the value of

m + m+ … + n times.

For example, SumN(3, 4) = 3 + 3 + 3 + 3. Assume that m and n are integers. Function SumN
should use a for or while statement to control the calculation. Do not use any math library func-
tions. Incorporate this function into a script that reads integer values from an HTML5 form for m
and n and performs the calculation with the SumN function. The HTML5 form should consist of
two text fields and a button to initiate the calculation. The user should interact with the program
by typing numbers in both text fields then clicking the button.

9.14 Write a function maximum that finds, for a pair of integers, the maximum value between the
two numbers. The function should take two integer arguments and return the maximum value. In-
corporate this function into a script that inputs a series of pairs of integers (one pair at a time). The
HTML5 form should consist of two text fields and a button to initiate the calculation. The user
should interact with the program by typing numbers in both text fields, then clicking the button.

9.15 Write a script that inputs integers (one at a time) and passes them one at a time to a function
isPositive, which finds whether a number is positive or negative. The function should take an integer
argument and return true if the integer is positive and false otherwise. Use sentinel- controlled loop-
ing and a prompt dialog.

9.16 Write program segments that accomplish each of the following tasks:
a) Calculate the integer part of the quotient when integer a is divided by integer b.
b) Calculate the integer remainder when integer a is divided by integer b.
c) Use the program pieces developed in parts (a) and (b) to write a function displayDigits

that receives an integer between 1 and 99999 and prints it as a series of digits, each pair
of which is separated by two spaces. For example, the integer 4562 should be printed as

4 5 6 2

iw3htp5_09_JSFunctions.fm Page 352 Wednesday, November 16, 2011 1:06 PM

 Exercises 353

d) Incorporate the function developed in part (c) into a script that inputs an integer from
a prompt dialog and invokes displayDigits by passing to the function the integer en-
tered.

9.17 Implement the following functions:
a) Function celsius returns the Celsius equivalent of a Fahrenheit temperature, using the

calculation

C = 5.0 / 9.0 * (F - 32);

b) Function fahrenheit returns the Fahrenheit equivalent of a Celsius temperature, using
the calculation

F = 9.0 / 5.0 * C + 32;

c) Use these functions to write a script that enables the user to enter either a Fahrenheit or
a Celsius temperature and displays the Celsius or Fahrenheit equivalent.

Your HTML5 document should contain two buttons—one to initiate the conversion from Fahren-
heit to Celsius and one to initiate the conversion from Celsius to Fahrenheit.

9.18 Write a function maximum3 that returns the largest of three floating-point numbers. Use the
Math.max function to implement maximum3. Incorporate the function into a script that reads three
values from the user and determines the largest value.

9.19 The factorial of a number n is n * (n - 1) * (n - 2)* … *2 * 1. For example, the factorial
of 4 is 24, of 5 is 120, etc.

a) Write a function that determines the factorial of a number.
b) Use this function in a script that determines and prints the factorial of all numbers

between 1 and 10. Display the results in a <textarea>.

9.20 Write a function averageGrade that inputs a student’s marks and returns the grade E (Excellent)
if the student's average is 90–100, G (Good) if the average is 80–89, A (Average) if the average is 70–79,
B (Bad) if the average is 60– 69, and F (Fail) if the average is lower than 60. Incorporate the function into
a script that reads a value from the user.

9.21 Write a script that simulates coin tossing. Let the program toss the coin each time the user
clicks the Toss button. Count the number of times each side of the coin appears. Display the results.
The program should call a separate function flip that takes no arguments and returns false for tails
and true for heads. [Note: If the program realistically simulates the coin tossing, each side of the
coin should appear approximately half the time.]

9.22 Computers are playing an increasing role in education. Write a program that will help an
elementary-school student learn multiplication. Use Math.random to produce two positive one-digit
integers. It should then display a question such as

How much is 6 times 7?

The student then types the answer into a text field. Your program checks the student’s answer. If it’s
correct, display the string "Very good!" and generate a new question. If the answer is wrong, dis-
play the string "No. Please try again." and let the student try the same question again repeatedly
until he or she finally gets it right. A separate function should be used to generate each new ques-
tion. This function should be called once when the script begins execution and each time the user
answers the question correctly.

iw3htp5_09_JSFunctions.fm Page 353 Wednesday, November 16, 2011 1:06 PM

354 Chapter 9 JavaScript: Functions

9.23 The use of computers in education is referred to as computer-assisted instruction (CAI).
One problem that develops in CAI environments is student fatigue. This problem can be eliminated
by varying the computer's dialogue to hold the student's attention. Modify the program in
Exercise 9.22 to print one of a variety of comments for each correct answer and each incorrect an-
swer. The set of responses for correct answers is as follows:

Very good!
Excellent!
Nice work!
Keep up the good work!

The set of responses for incorrect answers is as follows:

No. Please try again.
Wrong. Try once more.
Don't give up!
No. Keep trying.

Use random number generation to choose a number from 1 to 4 that will be used to select an
appropriate response to each answer. Use a switch statement to issue the responses.

9.24 More sophisticated computer-assisted instruction systems monitor the student’s perfor-
mance over a period of time. The decision to begin a new topic is often based on the student’s suc-
cess with previous topics. Modify the program in Exercise 9.23 to count the number of correct and
incorrect responses typed by the student. After the student answers 10 questions, your program
should calculate the percentage of correct responses. If the percentage is lower than 75 percent, dis-
play Please ask your instructor for extra help, and reset the quiz so another student can try it.

9.25 Write a script that plays a “guess the number” game as follows: Your program chooses the
number to be guessed by selecting a random integer in the range 1 to 1000. The script displays the
prompt Guess a number between 1 and 1000 next to a text field. The player types a first guess into
the text field and clicks a button to submit the guess to the script. If the player's guess is incorrect,
your program should display Too high. Try again. or Too low. Try again. to help the player “zero
in” on the correct answer and should clear the text field so the user can enter the next guess. When
the user enters the correct answer, display Congratulations. You guessed the number! and clear the
text field so the user can play again. [Note: The guessing technique employed in this problem is sim-
ilar to a binary search, which we discuss in Chapter 10, JavaScript: Arrays.]

9.26 Modify the program of Exercise 9.25 to count the number of guesses the player makes. If
the number is 10 or fewer, display Either you know the secret or you got lucky! If the player guess-
es the number in 10 tries, display Ahah! You know the secret! If the player makes more than 10
guesses, display You should be able to do better! Why should it take no more than 10 guesses?
Well, with each good guess, the player should be able to eliminate half of the numbers. Now show
why any number 1 to 1000 can be guessed in 10 or fewer tries.

9.27 (Project) Exercises 9.22 through 9.24 developed a computer-assisted instruction program
to teach an elementary-school student multiplication. This exercise suggests enhancements to that
program.

a) Modify the program to allow the user to enter a grade-level capability. A grade level of
1 means to use only single-digit numbers in the problems, a grade level of 2 means to
use numbers as large as two digits, and so on.

b) Modify the program to allow the user to pick the type of arithmetic problems he or she
wishes to study. An option of 1 means addition problems only, 2 means subtraction
problems only, 3 means multiplication problems only, 4 means division problems only
and 5 means to intermix randomly problems of all these types.

iw3htp5_09_JSFunctions.fm Page 354 Wednesday, November 16, 2011 1:06 PM

 Exercises 355

9.28 Modify the craps program in Fig. 9.7 to allow wagering. Initialize variable bankBalance to
1000 dollars. Prompt the player to enter a wager. Check whether the wager is less than or equal to
bankBalance and, if not, have the user reenter wager until a valid wager is entered. After a valid wager
is entered, run one game of craps. If the player wins, increase bankBalance by wager, and print the new
bankBalance. If the player loses, decrease bankBalance by wager, print the new bankBalance, check
whether bankBalance has become zero and, if so, print the message Sorry. You busted! As the game
progresses, print various messages to create some chatter, such as Oh, you're going for broke, huh?
or Aw c'mon, take a chance! or You're up big. Now's the time to cash in your chips!. Implement
the chatter as a separate function that randomly chooses the string to display.

9.29 Write a recursive function power(base, exponent) that, when invoked, returns

base exponent

for example, power(3, 4) = 3 * 3 * 3 * 3. Assume that exponent is an integer greater than or
equal to 1. The recursion step would use the relationship

base exponent = base · base exponent –1

and the terminating condition occurs when exponent is equal to 1, because

base 1 = base

Incorporate this function into a script that enables the user to enter the base and exponent.

9.30 What does the following function do?

// Parameter n must be a positive
// integer to prevent infinite recursion
function too(n)
{
 if (n == 1)
 return 1;
 else
 return n * too(n - 1);
}

iw3htp5_09_JSFunctions.fm Page 355 Wednesday, November 16, 2011 1:06 PM

10 JavaScript: Arrays

Yea, from the table of my
memory I’ll wipe away all
trivial fond records.
—William Shakespeare

Praise invariably implies a
reference to a higher standard.
—Aristotle

With sobs and tears
he sorted out
Those of the largest size…
—Lewis Carroll

Attempt the end, and never
stand to doubt;
Nothing’s so hard, but search
will find it out.
—Robert Herrick

O b j e c t i v e s
In this chapter you’ll:

■ Declare arrays, initialize
arrays and refer to individual
elements of arrays.

■ Store lists and tables of
values in arrays.

■ Pass arrays to functions.

■ Search and sort arrays.

■ Declare and manipulate
multidimensional arrays.

iw3htp5_10_JSArrays.fm Page 356 Wednesday, November 16, 2011 1:06 PM

10.1 Introduction 357

10.1 Introduction
Arrays are data structures consisting of related data items. JavaScript arrays are “dynamic”
entities in that they can change size after they’re created. Many techniques demonstrated
in this chapter are used frequently in Chapters 12–13 when we introduce the collections
that allow you to dynamically manipulate all of an HTML5 document’s elements.

10.2 Arrays
An array is a group of memory locations that all have the same name and normally are of
the same type (although this attribute is not required in JavaScript). To refer to a particular
location or element in the array, we specify the name of the array and the position number
of the particular element in the array.

Figure 10.1 shows an array of integer values named c. This array contains 12 ele-
ments. We may refer to any one of these elements by giving the array’s name followed by
the position number of the element in square brackets ([]). The first element in every array
is the zeroth element. Thus, the first element of array c is referred to as c[0], the second
element as c[1], the seventh element as c[6] and, in general, the ith element of array c is
referred to as c[i-1]. Array names follow the same conventions as other identifiers.

The position number in square brackets is called an index and must be an integer or
an integer expression. If a program uses an expression as an index, then the expression is
evaluated to determine the value of the index. For example, if the variable a is equal to 5
and b is equal to 6, then the statement

adds 2 to the value of array element c[11]. An indexed array name can be used on the left
side of an assignment to place a new value into an array element. It can also be used on the
right side of an assignment to assign its value to another variable.

Let’s examine array c in Fig. 10.1 more closely. The array’s name is c. The array’s
length is 12 and can be found by using the array’s length property, as in:

10.1 Introduction
10.2 Arrays
10.3 Declaring and Allocating Arrays
10.4 Examples Using Arrays

10.4.1 Creating, Initializing and Growing
Arrays

10.4.2 Initializing Arrays with Initializer Lists
10.4.3 Summing the Elements of an Array with

for and for…in
10.4.4 Using the Elements of an Array as

Counters
10.5 Random Image Generator Using Arrays

10.6 References and Reference
Parameters

10.7 Passing Arrays to Functions
10.8 Sorting Arrays with Array Method

sort
10.9 Searching Arrays with Array

Method indexOf
10.10 Multidimensional Arrays

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

c[a + b] += 2;

c.length

iw3htp5_10_JSArrays.fm Page 357 Wednesday, November 16, 2011 1:06 PM

358 Chapter 10 JavaScript: Arrays

The array’s 12 elements are referred to as c[0], c[1], c[2], …, c[11]. The value of c[0]
is -45, the value of c[1] is 6, the value of c[2] is 0, the value of c[7] is 62 and the value
of c[11] is 78. The following statement calculates the sum of the values contained in the
first three elements of array c and stores the result in variable sum:

The brackets that enclose an array index are a JavaScript operator. Brackets have the
same level of precedence as parentheses. Figure 10.2 shows the precedence and associa-
tivity of the operators introduced so far in the text. They’re shown from top to bottom in
decreasing order of precedence.

Fig. 10.1 | Array with 12 elements.

sum = c[0] + c[1] + c[2];

Operators Associativity Type

() [] . left to right highest

++ -- ! right to left unary

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= right to left assignment

Fig. 10.2 | Precedence and associativity of the operators discussed so far.

-45

62

-3

1

6453

78

0

-89

1543

72

0

6

c[0]

Name of the array is c

Position number of the
element within the array c

c[7]

c[8]

c[9]

c[10]

c[11]

c[6]

c[5]

c[4]

c[3]

c[2]

c[1]

Value of array
element c[4]

Name of an individual
array element

iw3htp5_10_JSArrays.fm Page 358 Wednesday, November 16, 2011 1:06 PM

10.3 Declaring and Allocating Arrays 359

10.3 Declaring and Allocating Arrays
Arrays occupy space in memory. Actually, an array in JavaScript is an Array object. You
use the new operator to create an array and to specify the number of elements in an array.
The new operator creates an object as the script executes by obtaining enough memory to
store an object of the type specified to the right of new. To allocate 12 elements for integer
array c, use a new expression like:

The preceding statement can also be performed in two steps, as follows:

When arrays are created, the elements are not initialized—they have the value undefined.

10.4 Examples Using Arrays
This section presents several examples of creating and manipulating arrays.

10.4.1 Creating, Initializing and Growing Arrays
Our next example (Figs. 10.3–10.4) uses operator new to allocate an array of five elements
and an empty array. The script demonstrates initializing an array of existing elements and
also shows that an array can grow dynamically to accommodate new elements. The array’s
values are displayed in HTML5 tables.

HTML5 Document for Displaying Results
Figure 10.3 shows the HTML5 document in which we display the results. You’ll notice
that we’ve placed the CSS styles and JavaScript code into separate files. Line 9 links the
CSS file tablestyle.css to this document as shown in Chapter 4. (There are no new con-
cepts in the CSS file used in this chapter, so we don’t show them in the text.) Line 10 dem-
onstrates how to link a script that’s stored in a separate file to this document. To do so,
use the script element’s src attribute to specify the location of the JavaScript file (named
with the .js filename extension). This document’s body contains two divs in which we’ll
display the contents of two arrays. When the document finishes loading, the JavaScript
function start (Fig. 10.4) is called.

var c = new Array(12);

var c; // declares a variable that will hold the array
c = new Array(12); // allocates the array

Software Engineering Observation 10.1
It’s considered good practice to separate your JavaScript scripts into separate files so that
they can be reused in multiple web pages.

1 <!DOCTYPE html>
2
3 <!-- Fig. 10.3: InitArray.html -->
4 <!-- Web page for showing the results of initializing arrays. -->
5 <html>
6 <head>

Fig. 10.3 | Web page for showing the results of initializing arrays. (Part 1 of 2.)

iw3htp5_10_JSArrays.fm Page 359 Wednesday, November 16, 2011 1:06 PM

360 Chapter 10 JavaScript: Arrays

Script that Creates, Initializes and Displays the Contents of Arrays
Figure 10.4 presents the script used by the document in Fig. 10.3. Function start (lines
3–24) is called when the window’s load event occurs.

7 <meta charset = "utf-8">
8 <title>Initializing an Array</title>
9 <link rel = "stylesheet" type = "text/css" href = "tablestyle.css">

10
11 </head>
12 <body>
13 <div id = "output1"></div>
14 <div id = "output2"></div>
15 </body>
16 </html>

1 // Fig. 10.4: InitArray.js
2 // Create two arrays, initialize their elements and display them
3 function start()
4 {

Fig. 10.4 | Create two arrays, initialize their elements and display them. (Part 1 of 2.)

Fig. 10.3 | Web page for showing the results of initializing arrays. (Part 2 of 2.)

<script src = "InitArray.js"></script>

iw3htp5_10_JSArrays.fm Page 360 Wednesday, November 16, 2011 1:06 PM

10.4 Examples Using Arrays 361

Line 5 creates array n1 with five elements. Line 6 creates array n2 as an empty array.
Lines 9–14 use a for statement to initialize the elements of n1 to their index values (0 to
4). With arrays, we use zero-based counting so that the loop can access every array element.
Line 9 uses the expression n1.length to determine the array’s length. JavaScript’s arrays
are dynamically resizable, so it’s important to get an array’s length once before a loop that
processes the array—in case the script changes the array’s length. In this example, the
array’s length is 5, so the loop continues executing as long as the value of control variable

5
6
7
8 // assign values to each element of array n1
9 var length = ; // get array's length once before the loop

10
11 for (var i = 0; i < length; ++i)
12 {
13
14 } // end for
15
16 // create and initialize five elements in array n2
17 for (i = 0; i < 5; ++i)
18 {
19
20 } // end for
21
22 outputArray("Array n1:", n1, document.getElementById("output1"));
23 outputArray("Array n2:", n2, document.getElementById("output2"));
24 } // end function start
25
26 // output the heading followed by a two-column table
27 // containing indices and elements of "theArray"
28 function outputArray(heading, theArray, output)
29 {
30 var content = "<h2>" + heading + "</h2><table>" +
31 "<thead><th>Index</th><th>Value</th></thead><tbody>";
32
33 // output the index and value of each array element
34 var length = theArray.length; // get array's length once before loop
35
36
37
38
39
40
41
42 content += "</tbody></table>";
43 output.innerHTML = content; // place the table in the output element
44 } // end function outputArray
45
46 window.addEventListener("load", start, false);

Fig. 10.4 | Create two arrays, initialize their elements and display them. (Part 2 of 2.)

var n1 = new Array(5); // allocate five-element array
var n2 = new Array(); // allocate empty array

n1.length

n1[i] = i;

n2[i] = i;

for (var i = 0; i < length; ++i)
{
 content += "<tr><td>" + i + "</td><td>" + theArray[i] +
 "</td></tr>";
} // end for

iw3htp5_10_JSArrays.fm Page 361 Wednesday, November 16, 2011 1:06 PM

362 Chapter 10 JavaScript: Arrays

i is less than 5. This process is known as iterating through the array’s elements. For a five-
element array, the index values are 0 through 4, so using the less-than operator, <, guaran-
tees that the loop does not attempt to access an element beyond the end of the array. Zero-
based counting is usually used to iterate through arrays.

Growing an Array Dynamically
Lines 17–20 use a for statement to add five elements to the array n2 and initialize each
element to its index value (0 to 4). The array grows dynamically to accommodate each val-
ue as it’s assigned to each element of the array.

Lines 22–23 invoke function outputArray (defined in lines 28–44) to display the
contents of each array in an HTML5 table in a corresponding div. Function outputArray
receives three arguments—a string to be output as an h2 element before the HTML5 table
that displays the contents of the array, the array to output and the div in which to place
the table. Lines 36–40 use a for statement to define each row of the table.

Using an Initializer List
If an array’s element values are known in advance, the elements can be allocated and ini-
tialized in the declaration of the array. There are two ways in which the initial values can
be specified. The statement

uses a comma-separated initializer list enclosed in square brackets ([and]) to create a five-
element array with indices of 0, 1, 2, 3 and 4. The array size is determined by the number
of values in the initializer list. The preceding declaration does not require the new operator
to create the Array object—this functionality is provided by the JavaScript interpreter
when it encounters an array declaration that includes an initializer list. The statement

also creates a five-element array with indices of 0, 1, 2, 3 and 4. In this case, the initial val-
ues of the array elements are specified as arguments in the parentheses following new Ar-
ray. The size of the array is determined by the number of values in parentheses. It’s also
possible to reserve a space in an array for a value to be specified later by using a comma as
a place holder in the initializer list. For example, the statement

creates a five-element array in which the third element (n[2]) has the value undefined.

Software Engineering Observation 10.2
JavaScript automatically reallocates an array when a value is assigned to an element that’s
outside the bounds of the array. Elements between the last element of the original array
and the new element are undefined.

Error-Prevention Tip 10.1
When accessing array elements, the index values should never go below 0 and should be
less than the number of elements in the array (i.e., one less than the array’s size), unless
it’s your explicit intent to grow the array by assigning a value to a nonexistent element.

var n = [10, 20, 30, 40, 50];

var n = new Array(10, 20, 30, 40, 50);

var n = [10, 20, , 40, 50];

iw3htp5_10_JSArrays.fm Page 362 Wednesday, November 16, 2011 1:06 PM

10.4 Examples Using Arrays 363

10.4.2 Initializing Arrays with Initializer Lists
The example in Figs. 10.5–10.6 creates three Array objects to demonstrate initializing ar-
rays with initializer lists. Figure 10.5 is nearly identical to Fig. 10.3 but provides three divs
in its body element for displaying this example’s arrays.

1 <!DOCTYPE html>
2
3 <!-- Fig. 10.5: InitArray2.html -->
4 <!-- Web page for showing the results of initializing arrays. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Initializing an Array</title>
9 <link rel = "stylesheet" type = "text/css" href = "tablestyle.css">

10
11 </head>
12 <body>
13 <div id = "output1"></div>
14 <div id = "output2"></div>
15 <div id = "output3"></div>
16 </body>
17 </html>

Fig. 10.5 | Web page for showing the results of initializing arrays.

<script src = "InitArray2.js"></script>

iw3htp5_10_JSArrays.fm Page 363 Wednesday, November 16, 2011 1:06 PM

364 Chapter 10 JavaScript: Arrays

The start function in Fig. 10.6 demonstrates array initializer lists (lines 7–9) and dis-
plays each array in an HTML5 table using the same function outputArray as Fig. 10.4.
Note that when array integers2 is displayed in the web page, the elements with indices 1
and 2 (the second and third elements of the array) appear in the web page as undefined.
These are the two elements for which we did not supply values in line 9.

10.4.3 Summing the Elements of an Array with for and for…in
The example in Figs. 10.7–10.8 sums an array’s elements and displays the results. The
document in Fig. 10.7 shows the results of the script in Fig. 10.8.

1 // Fig. 10.6: InitArray2.js
2 // Initializing arrays with initializer lists.
3 function start()
4 {
5 // Initializer list specifies the number of elements and
6 // a value for each element.
7
8
9

10
11 outputArray("Array colors contains", colors,
12 document.getElementById("output1"));
13 outputArray("Array integers1 contains", integers1,
14 document.getElementById("output2"));
15 outputArray("Array integers2 contains", integers2,
16 document.getElementById("output3"));
17 } // end function start
18
19 // output the heading followed by a two-column table
20 // containing indices and elements of "theArray"
21 function outputArray(heading, theArray, output)
22 {
23 var content = "<h2>" + heading + "</h2><table>" +
24 "<thead><th>Index</th><th>Value</th></thead><tbody>";
25
26 // output the index and value of each array element
27 var length = theArray.length; // get array's length once before loop
28
29 for (var i = 0; i < length; ++i)
30 {
31 content += "<tr><td>" + i + "</td><td>" + theArray[i] +
32 "</td></tr>";
33 } // end for
34
35 content += "</tbody></table>";
36 output.innerHTML = content; // place the table in the output element
37 } // end function outputArray
38
39 window.addEventListener("load", start, false);

Fig. 10.6 | Initializing arrays with initializer lists.

var colors = new Array("cyan", "magenta","yellow", "black");
var integers1 = [2, 4, 6, 8];
var integers2 = [2, , , 8];

iw3htp5_10_JSArrays.fm Page 364 Wednesday, November 16, 2011 1:06 PM

10.4 Examples Using Arrays 365

The script in Fig. 10.8 sums the values contained in theArray, the 10-element integer
array declared, allocated and initialized in line 5. The statement in line 14 in the body of
the first for statement does the totaling.

1 <!DOCTYPE html>
2
3 <!-- Fig. 10.7: SumArray.html -->
4 <!-- HTML5 document that displays the sum of an array's elements. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Sum Array Elements</title>
9 <script src = "SumArray.js"></script>

10 </head>
11 <body>
12 <div id = "output"></div>
13 </body>
14 </html>

Fig. 10.7 | HTML5 document that displays the sum of an array's elements.

1 // Fig. 10.8: SumArray.js
2 // Summing the elements of an array with for and for...in
3 function start()
4 {
5 var theArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
6 var total1 = 0, total2 = 0;
7
8 // iterates through the elements of the array in order and adds
9 // each element's value to total1

10 var length = theArray.length; // get array's length once before loop
11
12 for (var i = 0; i < length; ++i)
13 {
14
15 } // end for
16
17 var results = "<p>Total using indices: " + total1 + "</p>";
18
19 // iterates through the elements of the array using a for... in
20 // statement to add each element's value to total2
21
22 {
23
24 } // end for
25
26 results += "<p>Total using for...in: " + total2 + "</p>";
27 document.getElementById("output").innerHTML = results;
28 } // end function start
29
30 window.addEventListener("load", start, false);

Fig. 10.8 | Summing the elements of an array with for and for...in. (Part 1 of 2.)

total1 += theArray[i];

for (var element in theArray)

total2 += theArray[element];

iw3htp5_10_JSArrays.fm Page 365 Wednesday, November 16, 2011 1:06 PM

366 Chapter 10 JavaScript: Arrays

The for…in Repetition Statement
In this example, we introduce JavaScript’s for…in statement, which enables a script to
perform a task for each element in an array (or, as we’ll see in Chapters 12–13, for each
element in a collection). Lines 21–24 show the syntax of a for…in statement. Inside the
parentheses, we declare the element variable used to select each element in the object to
the right of keyword in (theArray in this case). When you use for…in, JavaScript auto-
matically determines the number of elements in the array. As the JavaScript interpreter it-
erates over theArray’s elements, variable element is assigned a value that can be used as
an index for theArray. In the case of an array, the value assigned is an index in the range
from 0 up to, but not including, theArray.length. Each value is added to total2 to pro-
duce the sum of the elements in the array.

10.4.4 Using the Elements of an Array as Counters
In Section 9.5.3, we indicated that there’s a more elegant way to implement the dice-roll-
ing example presented in that section. The example allowed the user to roll 12 dice at a
time and kept statistics showing the number of times and the percentage of the time each
face occurred. An array version of this example is shown in Figs. 10.9–10.10. We divided
the example into three files—style.css contains the styles (not shown here), Roll-
Dice.html (Fig. 10.9) contains the HTML5 document and RollDice.js (Fig. 10.10)
contains the JavaScript.

Error-Prevention Tip 10.2
When iterating over all the elements of an array, use a for…in statement to ensure that
you manipulate only the existing elements. The for…in statement skips any undefined
elements in the array.

1 <!DOCTYPE html>
2
3 <!-- Fig. 10.9: RollDice.html -->
4 <!-- HTML5 document for the dice-rolling example. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Roll a Six-Sided Die 6000000 Times</title>
9 <link rel = "stylesheet" type = "text/css" href = "style.css">

Fig. 10.9 | HTML5 document for the dice-rolling example. (Part 1 of 2.)

Fig. 10.8 | Summing the elements of an array with for and for...in. (Part 2 of 2.)

iw3htp5_10_JSArrays.fm Page 366 Wednesday, November 16, 2011 1:06 PM

10.4 Examples Using Arrays 367

In Fig. 10.10, lines 3–5 declare the scripts global variables. The frequency array (line
3) contains seven elements representing the counters we use in this script. We ignore ele-
ment 0 of the array and use only the elements that correspond to values on the sides of a
die (the elements with indices 1–6). Variable totalDice tracks the total number of dice

10 <script src = "RollDice.js"></script>
11 </head>
12 <body>
13 <p>
14
15
16
17
18 </p>
19 <p>
20
21
22
23
24 </p>
25 <form action = "#">
26 <input id = "rollButton" type = "button" value = "Roll Dice">
27 </form>
28 <div id = "frequencyTableDiv"></div>
29 </body>
30 </html>

Fig. 10.9 | HTML5 document for the dice-rolling example. (Part 2 of 2.)

iw3htp5_10_JSArrays.fm Page 367 Wednesday, November 16, 2011 1:06 PM

368 Chapter 10 JavaScript: Arrays

rolled. The dieImages array contains 12 elements that will refer to the 12 img elements in
the HTML document (Fig. 10.9).

1 // Fig. 10.10: RollDice.js
2 // Summarizing die-rolling frequencies with an array instead of a switch
3
4 var totalDice = 0;
5
6
7 // get die img elements
8 function start()
9 {

10 var button = document.getElementById("rollButton");
11 button.addEventListener("click", rollDice, false);
12 var length = dieImages.length; // get array's length once before loop
13
14 for (var i = 0; i < length; ++i)
15 {
16
17 } // end for
18 } // end function start
19
20 // roll the dice
21 function rollDice()
22 {
23 var face; // face rolled
24 var length = dieImages.length;
25
26 for (var i = 0; i < length; ++i)
27 {
28 face = Math.floor(1 + Math.random() * 6);
29 tallyRolls(face); // increment a frequency counter
30 setImage(i, face); // display appropriate die image
31 ++totalDice; // increment total
32 } // end for
33
34 updateFrequencyTable();
35 } // end function rollDice
36
37 // increment appropriate frequency counter
38 function tallyRolls(face)
39 {
40
41 } // end function tallyRolls
42
43 // set image source for a die
44 function setImage(dieImg)
45 {
46 .setAttribute("src", "die" + face + ".png");
47 .setAttribute("alt",
48 "die with " + face + " spot(s)");
49 } // end function setImage

Fig. 10.10 | Summarizing die-rolling frequencies with an array instead of a switch. (Part 1 of 2.)

var frequency = [, 0, 0, 0, 0, 0, 0]; // frequency[0] uninitialized

var dieImages = new Array(12); // array to store img elements

dieImages[i] = document.getElementById("die" + (i + 1));

++frequency[face]; // increment appropriate counte

dieImages[dieNumber]
dieImages[dieNumber]

iw3htp5_10_JSArrays.fm Page 368 Wednesday, November 16, 2011 1:06 PM

10.5 Random Image Generator Using Arrays 369

When the document finishes loading, the script’s start function (lines 8–18) is called
to register the button’s event handler and to get the img elements and store them in the
global array dieImages for use in the rest of the script. Each time the user clicks the Roll
Dice button, function rollDice (lines 21–35) is called to roll 12 dice and update the
results on the page.

The switch statement in Fig. 9.6 is replaced by line 40 in function tallyRolls. This
line uses the random face value (calculated at line 28) as the index for the array frequency
to determine which element to increment during each iteration of the loop. Because the
random number calculation in line 28 produces numbers from 1 to 6 (the values for a six-
sided die), the frequency array must have seven elements (index values 0 to 6). Also, lines
60–64 of this program generate the table rows that were written one line at a time in
Fig. 9.6. We can loop through array frequency to help produce the output, so we do not
have to enumerate each HTML5 table row as we did in Fig. 9.6.

10.5 Random Image Generator Using Arrays
In Chapter 9, we created a random image generator that required image files to be named
with the word die followed by a number from 1 to 6 and the file extension .png (e.g,
die1.png). In this example (Figs. 10.11–10.12), we create a more elegant random image
generator that does not require the image filenames to contain integers in sequence. This

50
51 // update frequency table in the page
52 function updateFrequencyTable()
53 {
54 var results = "<table><caption>Die Rolling Frequencies</caption>" +
55 "<thead><th>Face</th><th>Frequency</th>" +
56 "<th>Percent</th></thead><tbody>";
57 var length = frequency.length;
58
59 // create table rows for frequencies
60 for (var i = 1; i < length; ++i)
61 {
62
63
64 } // end for
65
66 results += "</tbody></table>";
67 document.getElementById("frequencyTableDiv").innerHTML = results;
68 } // end function updateFrequencyTable
69
70 // format percentage
71 function formatPercent(value)
72 {
73 value *= 100;
74 return value.toFixed(2);
75 } // end function formatPercent
76
77 window.addEventListener("load", start, false);

Fig. 10.10 | Summarizing die-rolling frequencies with an array instead of a switch. (Part 2 of 2.)

results += "<tr><td>1</td><td>" + i + "</td><td>" +
 formatPercent(frequency[i] / totalDice) + "</td></tr>";

iw3htp5_10_JSArrays.fm Page 369 Wednesday, November 16, 2011 1:06 PM

370 Chapter 10 JavaScript: Arrays

version uses an array pictures to store the names of the image files as strings. Each time
you click the image in the document (Fig. 10.11), the script generates a random integer
and uses it as an index into the pictures array. The script updates the img element’s src
attribute with the image filename at the randomly selected position in the pictures array.
In addition, we update the alt attribute with an appropriate description of the image from
the descriptions array.

The script (Fig. 10.12) declares the array pictures in line 4 and initializes it with the
names of seven image files—the files contain our bug icons that we associate with our pro-
gramming tips. Lines 5–8 create a separate array descriptions that contains the alt text
for the corresponding images in the pictures array. When the user clicks the img element
in the document, function pickImage (lines 12–17) is called to pick a random integer
index from 0 to 6 and display the associated image. Line 15 uses that index to get a value
from the pictures array, appends ".png" to it, then sets the img element’s src attribute
to the new image file name. Similarly, line 16 uses the index to get the corresponding text
from the descriptions array and assigns that text to the img element’s alt attribute.

1 <!DOCTYPE html>
2
3 <!-- Fig. 10.11: RandomPicture.html -->
4 <!-- HTML5 document that displays randomly selected images. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Random Image Generator</title>
9 <script src = "RandomPicture.js"></script>

10 </head>
11 <body>
12
13 </body>
14 </html>

Fig. 10.11 | HTML5 document that displays randomly selected images.

1 // Fig. 10.12: RandomPicture2.js
2 // Random image selection using arrays
3 var iconImg;
4

Fig. 10.12 | Random image selection using arrays. (Part 1 of 2.)

var pictures = ["CPE", "EPT", "GPP", "GUI", "PERF", "PORT", "SEO"];

iw3htp5_10_JSArrays.fm Page 370 Wednesday, November 16, 2011 1:06 PM

10.6 References and Reference Parameters 371

10.6 References and Reference Parameters
Two ways to pass arguments to functions (or methods) in many programming languages
are pass-by-value and pass-by-reference. When an argument is passed to a function by val-
ue, a copy of the argument’s value is made and is passed to the called function. In Java-
Script, numbers, boolean values and strings are passed to functions by value.

With pass-by-reference, the caller gives the called function access to the caller’s data
and allows the called function to modify the data if it so chooses. This procedure is accom-
plished by passing to the called function the address in memory where the data resides.
Pass-by-reference can improve performance because it can eliminate the overhead of
copying large amounts of data, but it can weaken security because the called function can
access the caller’s data. In JavaScript, all objects (and thus all arrays) are passed to functions
by reference.

5
6
7
8
9

10 // pick a random image and corresponding description, then modify
11 // the img element in the document's body
12 function pickImage()
13 {
14 var index = Math.floor(Math.random() * 7);
15
16
17 } // end function pickImage
18
19 // registers iconImg's click event handler
20 function start()
21 {
22 iconImg = document.getElementById("iconImg");
23 iconImg.addEventListener("click", pickImage, false);
24 } // end function start
25
26 window.addEventListener("load", start, false);

Error-Prevention Tip 10.3
With pass-by-value, changes to the copy of the value received by the called function do not
affect the original variable’s value in the calling function. This prevents the accidental
side effects that hinder the development of correct and reliable software systems.

Software Engineering Observation 10.3
When information is returned from a function via a return statement, numbers and
boolean values are returned by value (i.e., a copy is returned), and objects are returned by
reference (i.e., a reference to the object is returned). When an object is passed-by-reference,
it’s not necessary to return the object, because the function operates on the original object
in memory.

Fig. 10.12 | Random image selection using arrays. (Part 2 of 2.)

var descriptions = ["Common Programming Error",
 "Error-Prevention Tip", "Good Programming Practice",
 "Look-and-Feel Observation", "Performance Tip", "Portability Tip",
 "Software Engineering Observation"];

iconImg.setAttribute("src", pictures[index] + ".png");
iconImg.setAttribute("alt", descriptions[index]);

iw3htp5_10_JSArrays.fm Page 371 Wednesday, November 16, 2011 1:06 PM

372 Chapter 10 JavaScript: Arrays

The name of an array actually is a reference to an object that contains the array ele-
ments and the length variable. To pass a reference to an object into a function, simply
specify the reference name in the function call. The reference name is the identifier that
the program uses to manipulate the object. Mentioning the reference by its parameter
name in the body of the called function actually refers to the original object in memory,
and the original object is accessed directly by the called function.

10.7 Passing Arrays to Functions
To pass an array argument to a function, specify the array’s name (a reference to the array)
without brackets. For example, if array hourlyTemperatures has been declared as

then the function call

passes array hourlyTemperatures to function modifyArray. As stated in Section 10.2, ev-
ery array object in JavaScript knows its own size (via the length attribute). Thus, when we
pass an array object into a function, we do not pass the array’s size separately as an argu-
ment. Figure 10.4 demonstrated this concept.

Although entire arrays are passed by reference, individual numeric and boolean array
elements are passed by value exactly as simple numeric and boolean variables are passed.
Such simple single pieces of data are called scalars, or scalar quantities. Objects referred
to by individual array elements are still passed by reference. To pass an array element to a
function, use the indexed name of the element as an argument in the function call.

For a function to receive an array through a function call, the function’s parameter list
must specify a parameter that will refer to the array in the body of the function. JavaScript
does not provide a special syntax for this purpose—it simply requires that the identifier for
the array be specified in the parameter list. For example, the function header for function
modifyArray might be written as

indicating that modifyArray expects to receive a parameter named b. Arrays are passed by
reference, and therefore when the called function uses the array name b, it refers to the ac-
tual array in the caller (array hourlyTemperatures in the preceding call). The script in
Figures 10.13–10.14 demonstrates the difference between passing an entire array and
passing an array element. The body of the document in Fig. 10.13 contains the p elements
that the script in Fig. 10.14 uses to display the results.

var hourlyTemperatures = new Array(24);

modifyArray(hourlyTemperatures);

function modifyArray(b)

1 <!DOCTYPE html>
2
3 <!-- Fig. 10.13: PassArray.html -->
4 <!-- HTML document that demonstrates passing arrays and -->
5 <!-- individual array elements to functions. -->
6 <html>

Fig. 10.13 | HTML document that demonstrates passing arrays and individual array elements to
functions. (Part 1 of 2.)

iw3htp5_10_JSArrays.fm Page 372 Wednesday, November 16, 2011 1:06 PM

10.7 Passing Arrays to Functions 373

When the document of Fig. 10.13 loads, function start (Fig. 10.14, lines 3–20) is
called. Lines 8–9 invoke outputArray to display the array a’s contents before it’s modified.
Function outputArray (lines 23–26) receives a string to display, the array to display and
the element in which to place the content. Line 25 uses Array method join to create a
string containing all the elements in theArray. Method join takes as its argument a string
containing the separator that should be used to separate the array elements in the string
that’s returned. If the argument is not specified, the empty string is used as the separator.

Line 10 invokes modifyArray (lines 29–35) and passes it array a. The function mul-
tiplies each element by 2. To illustrate that array a’s elements were modified, lines 11–12
invoke outputArray again to display the array a’s contents after it’s modified. As the
screen capture in Fig. 10.13 shows, the elements of a are indeed modified by modifyArray.

7 <head>
8 <meta charset = "utf-8">
9 <title>Arrays as Arguments</title>

10 <link rel = "stylesheet" type = "text/css" href = "style.css">
11 <script src = "PassArray.js"></script>
12 </head>
13 <body>
14 <h2>Effects of passing entire array by reference</h2>
15 <p id = "originalArray"></p>
16 <p id = "modifiedArray"></p>
17 <h2>Effects of passing array element by value</h2>
18 <p id = "originalElement"></p>
19 <p id = "inModifyElement"></p>
20 <p id = "modifiedElement"></p>
21 </body>
22 </html>

Software Engineering Observation 10.4
JavaScript does not check the number of arguments or types of arguments that are passed
to a function. It’s possible to pass any number of values to a function.

Fig. 10.13 | HTML document that demonstrates passing arrays and individual array elements to
functions. (Part 2 of 2.)

iw3htp5_10_JSArrays.fm Page 373 Wednesday, November 16, 2011 1:06 PM

374 Chapter 10 JavaScript: Arrays

Lines 15–16 display the value of a[3] before the call to modifyElement. Line 17
invokes modifyElement (lines 38–43), passing a[3] as the argument. Remember that a[3]
actually is one integer value in the array, and that numeric values and boolean values are
always passed to functions by value. Therefore, a copy of a[3] is passed. Function modify-
Element multiplies its argument by 2, stores the result in its parameter e, then displays e’s

1 // Fig. 10.14: PassArray.js
2 // Passing arrays and individual array elements to functions.
3 function start()
4 {
5 var a = [1, 2, 3, 4, 5];
6
7 // passing entire array
8 outputArray("Original array: ", a,
9 document.getElementById("originalArray"));

10
11 outputArray("Modified array: ", a,
12 document.getElementById("modifiedArray"));
13
14 // passing individual array element
15 document.getElementById("originalElement").innerHTML =
16 "a[3] before modifyElement: " + a[3];
17
18 document.getElementById("modifiedElement").innerHTML =
19 "a[3] after modifyElement: " + a[3];
20 } // end function start()
21
22 // outputs heading followed by the contents of "theArray"
23 function outputArray(heading, theArray, output)
24 {
25 output.innerHTML = heading + ;
26 } // end function outputArray
27
28 // function that modifies the elements of an array
29
30 {
31
32
33
34
35 } // end function modifyArray
36
37 // function that modifies the value passed
38
39 {
40
41 document.getElementById("inModifyElement").innerHTML =
42 "Value in modifyElement: " + e;
43 } // end function modifyElement
44
45 window.addEventListener("load", start, false);

Fig. 10.14 | Passing arrays and individual array elements to functions.

modifyArray(a); // array a passed by reference

modifyElement(a[3]); // array element a[3] passed by value

theArray.join(" ")

function modifyArray(theArray)

for (var j in theArray)
{
 theArray[j] *= 2;
} // end for

function modifyElement(e)

e *= 2; // scales element e only for the duration of the function

iw3htp5_10_JSArrays.fm Page 374 Wednesday, November 16, 2011 1:06 PM

10.8 Sorting Arrays with Array Method sort 375

value. A parameter is a local variable in a function, so when the function terminates, the
local variable is no longer accessible. Thus, when control is returned to start, the unmod-
ified original value of a[3] is displayed by the statement in lines 18–19.

10.8 Sorting Arrays with Array Method sort
Sorting data (putting data in a particular order, such as ascending or descending) is one of
the most important computing functions. The Array object in JavaScript has a built-in
method sort for sorting arrays. The example in Figs. 10.15–10.16 demonstrates the
Array object’s sort method. The unsorted and sorted values are displayed in Figs. 10.15’s
paragraph elements (lines 14–15).

By default, Array method sort (with no arguments) uses string comparisons to deter-
mine the sorting order of the array elements. The strings are compared by the ASCII values
of their characters. [Note: String comparison is discussed in more detail in Chapter 11.] In
this script (Fig. 10.16), we’d like to sort an array of integers.

Method sort (line 9) takes as its argument the name of a comparator function that
compares its two arguments and returns one of the following:

• a negative value if the first argument is less than the second argument,

1 <!DOCTYPE html>
2
3 <!-- Fig. 10.15: Sort.html -->
4 <!-- HTML5 document that displays the results of sorting an array. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Array Method sort</title>
9 <link rel = "stylesheet" type = "text/css" href = "style.css">

10 <script src = "Sort.js"></script>
11 </head>
12 <body>
13 <h1>Sorting an Array</h1>
14 <p id = "originalArray"></p>
15 <p id = "sortedArray"></p>
16 </body>
17 </html>

Fig. 10.15 | HTML5 document that displays the results of sorting an array.

iw3htp5_10_JSArrays.fm Page 375 Wednesday, November 16, 2011 1:06 PM

376 Chapter 10 JavaScript: Arrays

• zero if the arguments are equal, or

• a positive value if the first argument is greater than the second argument.

This example uses the comparator function compareIntegers (defined in lines 21–24). It
calculates the difference between the integer values of its two arguments (function parse-
Int ensures that the arguments are handled properly as integers).

Line 9 invokes Array object a’s sort method and passes function compareIntegers
as an argument. Method sort then uses function compareIntegers to compare elements
of the array a to determine their sorting order.

10.9 Searching Arrays with Array Method indexOf
When working with data stored in arrays, it’s often necessary to determine whether an ar-
ray contains a value that matches a certain key value. The process of locating a particular
element value in an array is called searching. The Array object in JavaScript has built-in
methods indexOf and lastIndexOf for searching arrays. Method indexOf searches for the
first occurrence of the specified key value, and method lastIndexOf searches for the last
occurrence of the specified key value. If the key value is found in the array, each method

1 // Fig. 10.16: Sort.js
2 // Sorting an array with sort.
3 function start()
4 {
5 var a = [10, 1, 9, 2, 8, 3, 7, 4, 6, 5];
6
7 outputArray("Data items in original order: ", a,
8 document.getElementById("originalArray"));
9

10 outputArray("Data items in ascending order: ", a,
11 document.getElementById("sortedArray"));
12 } // end function start
13
14 // output the heading followed by the contents of theArray
15 function outputArray(heading, theArray, output)
16 {
17 output.innerHTML = heading + theArray.join(" ");
18 } // end function outputArray
19
20 // comparison function for use with sort
21
22
23
24
25
26 window.addEventListener("load", start, false);

Fig. 10.16 | Sorting an array with sort.

Software Engineering Observation 10.5
Functions in JavaScript are considered to be data. Therefore, functions can be assigned to
variables, stored in arrays and passed to functions just like other data types.

a.sort(compareIntegers); // sort the array

function compareIntegers(value1, value2)
{
 return parseInt(value1) - parseInt(value2);
} // end function compareIntegers

iw3htp5_10_JSArrays.fm Page 376 Wednesday, November 16, 2011 1:06 PM

10.9 Searching Arrays with Array Method indexOf 377

returns the index of that value; otherwise, -1 is returned. The example in Figs. 10.17–
10.18 demonstrates method indexOf. You enter the integer search key in the form’s num-
ber input element (Fig. 10.17, line 14) then press the button (lines 15–16) to invoke the
script’s buttonPressed function, which performs the search and displays the results in the
paragraph at line 17.

The script in Fig. 10.18 creates an array containing 100 elements (line 3), then ini-
tializes the array’s elements with the even integers from 0 to 198 (lines 6–9). When the
user presses the button in Fig. 10.17, function buttonPressed (lines 12–32) performs the
search and displays the results. Line 15 gets the inputVal number input element, which
contains the key value specified by the user, and line 18 gets the paragraph where the script
displays the results. Next, we get the integer value entered by the user (line 21). Every
input element has a value property that can be used to get or set the element’s value.

1 <!DOCTYPE html>
2
3 <!-- Fig. 10.17: search.html -->
4 <!-- HTML5 document for searching an array with indexOf. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Search an Array</title>
9 <script src = "search.js"></script>

10 </head>
11 <body>
12 <form action = "#">
13 <p><label>Enter integer search key:
14 <input id = "inputVal" type = "number"></label>
15 <input id = "searchButton" type = "button" value = "Search">
16 </p>
17 <p id = "result"></p>
18 </form>
19 </body>
20 </html>

Fig. 10.17 | HTML5 document for searching an array with indexOf.

iw3htp5_10_JSArrays.fm Page 377 Wednesday, November 16, 2011 1:06 PM

378 Chapter 10 JavaScript: Arrays

Finally, line 22 performs the search by calling method indexOf on the array a, and lines
24–31 display the results.

Optional Second Argument to indexOf and lastIndexOf
You can pass an optional second argument to methods indexOf and lastIndexOf that rep-
resents the index from which to start the search. By default, this argument’s value is 0 and
the methods search the entire array. If the argument is greater than or equal to the array’s
length, the methods simply return -1. If the argument’s value is negative, it’s used as an
offset from the end of the array. For example, the 100-element array in Fig. 10.18 has in-

1 // Fig. 10.18: search.js
2 // Search an array with indexOf.
3 var a = new Array(100); // create an array
4
5 // fill array with even integer values from 0 to 198
6 for (var i = 0; i < a.length; ++i)
7 {
8 a[i] = 2 * i;
9 } // end for

10
11 // function called when "Search" button is pressed
12 function buttonPressed()
13 {
14 // get the input text field
15 var inputVal = document.getElementById("inputVal");
16
17 // get the result paragraph
18 var result = document.getElementById("result");
19
20 // get the search key from the input text field then perform the search
21
22
23
24 if (element != -1)
25 {
26 result.innerHTML = "Found value in element " + element;
27 } // end if
28 else
29 {
30 result.innerHTML = "Value not found";
31 } // end else
32 } // end function buttonPressed
33
34 // register searchButton's click event handler
35 function start()
36 {
37 var searchButton = document.getElementById("searchButton");
38 searchButton.addEventListener("click", buttonPressed, false);
39 } // end function start
40
41 window.addEventListener("load", start, false);

Fig. 10.18 | Search an array with indexOf.

var searchKey = parseInt(inputVal.value);
var element = a.indexOf(searchKey);

iw3htp5_10_JSArrays.fm Page 378 Wednesday, November 16, 2011 1:06 PM

10.10 Multidimensional Arrays 379

dices from 0 to 99. If we pass -10 as the second argument, the search will begin from index
89. If a negative second argument results in an index value less than 0 as the start point,
the entire array will be searched.

10.10 Multidimensional Arrays
Multidimensional arrays with two indices are often used to represent tables of values con-
sisting of information arranged in rows and columns. To identify a particular table ele-
ment, we must specify the two indices; by convention, the first identifies the element’s row
and the second the element’s column. Arrays that require two indices to identify a partic-
ular element are called two-dimensional arrays.

Multidimensional arrays can have more than two dimensions. JavaScript does not sup-
port multidimensional arrays directly, but it does allow you to specify arrays whose ele-
ments are also arrays, thus achieving the same effect. When an array contains one-
dimensional arrays as its elements, we can imagine these one-dimensional arrays as rows
of a table, and the positions in these arrays as columns. Figure 10.19 illustrates a two-
dimensional array named a that contains three rows and four columns (i.e., a three-by-four
array—three one-dimensional arrays, each with four elements). In general, an array with
m rows and n columns is called an m-by-n array.

Every element in array a is identified in Fig. 10.19 by an element name of the form
a[row][column]—a is the name of the array, and row and column are the indices that
uniquely identify the row and column, respectively, of each element in a. The element
names in row 0 all have a first index of 0; the element names in column 3 all have a second
index of 3.

Arrays of One-Dimensional Arrays
Multidimensional arrays can be initialized in declarations like a one-dimensional array. Array
b with two rows and two columns could be declared and initialized with the statement

The values are grouped by row in square brackets. The array [1, 2] initializes element
b[0], and the array [3, 4] initializes element b[1]. So 1 and 2 initialize b[0][0] and
b[0][1], respectively. Similarly, 3 and 4 initialize b[1][0] and b[1][1], respectively. The

Fig. 10.19 | Two-dimensional array with three rows and four columns.

var b = [[1, 2], [3, 4]];

Row 0

Row 1

Row 2

Column subscript
Row subscript
Array name

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

a[0][3]

Column 0 Column 1 Column 2 Column 3

a[1][3]

a[2][3]

iw3htp5_10_JSArrays.fm Page 379 Wednesday, November 16, 2011 1:06 PM

380 Chapter 10 JavaScript: Arrays

interpreter determines the number of rows by counting the number of subinitializer lists—
arrays nested within the outermost array. The interpreter determines the number of col-
umns in each row by counting the number of values in the subarray that initializes the row.

Two-Dimensional Arrays with Rows of Different Lengths
The rows of a two-dimensional array can vary in length. The declaration

creates array b with row 0 containing two elements (1 and 2) and row 1 containing three
elements (3, 4 and 5).

Creating Two-Dimensional Arrays with new
A multidimensional array in which each row has a different number of columns can be al-
located dynamically, as follows:

The preceding code creates a two-dimensional array with two rows. Row 0 has five col-
umns, and row 1 has three columns.

Two-Dimensional Array Example: Displaying Element Values
The example in Figs. 10.20–10.21 initializes two-dimensional arrays in declarations and
uses nested for…in loops to traverse the arrays (i.e., manipulate every element of the ar-
ray). When the document in Fig. 10.20 loads, the script’s start function displays the re-
sults of initializing the arrays.

The script’s start function declares and initializes two arrays (Fig. 10.21, lines 5–9).
The declaration of array1 (lines 5–6) provides six initializers in two sublists. The first sublist

var b = [[1, 2], [3, 4, 5]];

var b;
b = new Array(2); // allocate two rows
b[0] = new Array(5); // allocate columns for row 0
b[1] = new Array(3); // allocate columns for row 1

1 <!DOCTYPE html>
2
3 <!-- Fig. 10.20: InitArray3.html -->
4 <!-- HTML5 document showing multidimensional array initialization. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Multidimensional Arrays</title>
9 <link rel = "stylesheet" type = "text/css" href = "style.css">

10 <script src = "InitArray3.js"></script>
11 </head>
12 <body>
13 <h2>Values in array1 by row</h2>
14 <div id = "output1"></div>
15 <h2>Values in array2 by row</h2>
16 <div id = "output2"></div>
17 </body>
18 </html>

Fig. 10.20 | HTML5 document showing multidimensional array initialization. (Part 1 of 2.)

iw3htp5_10_JSArrays.fm Page 380 Wednesday, November 16, 2011 1:06 PM

10.10 Multidimensional Arrays 381

initializes row 0 of the array to the values 1, 2 and 3; the second sublist initializes row 1 of
the array to the values 4, 5 and 6. The declaration of array2 (lines 7–9) provides six initial-
izers in three sublists. The sublist for row 0 explicitly initializes the row to have two elements,
with values 1 and 2, respectively. The sublist for row 1 initializes the row to have one ele-
ment, with value 3. The sublist for row 2 initializes the third row to the values 4, 5 and 6.

1 // Fig. 10.21: InitArray3.js
2 // Initializing multidimensional arrays.
3 function start()
4 {
5
6
7
8
9

10
11 outputArray("Values in array1 by row", array1,
12 document.getElementById("output1"));
13 outputArray("Values in array2 by row", array2,
14 document.getElementById("output2"));
15 } // end function start
16
17 // display array contents
18 function outputArray(heading, theArray, output)
19 {
20 var results = "";
21
22 // iterates through the set of one-dimensional arrays
23
24 {
25 results += ""; // start ordered list
26

Fig. 10.21 | Initializing multidimensional arrays. (Part 1 of 2.)

Fig. 10.20 | HTML5 document showing multidimensional array initialization. (Part 2 of 2.)

var array1 = [[1, 2, 3], // row 0
 [4, 5, 6]]; // row 1
var array2 = [[1, 2], // row 0
 [3], // row 1
 [4, 5, 6]]; // row 2

for (var row in theArray)

iw3htp5_10_JSArrays.fm Page 381 Wednesday, November 16, 2011 1:06 PM

382 Chapter 10 JavaScript: Arrays

Function start calls function outputArray twice (lines 11–14) to display each array’s
elements in the web page. Function outputArray (lines 18–37) receives a string heading
to output before the array, the array to output (called theArray) and the element in which
to display the array. The function uses a nested for…in statement (lines 23–34) to output
each row of a two-dimensional array as an ordered list. Using CSS, we set each list item’s
display property to inline so that the list items appear unnumbered from left to right on
the page, rather than numbered and listed vertically (the default). The outer for…in

statement iterates over the rows of the array. The inner for…in statement iterates over
the columns of the current row being processed. The nested for…in statement in this
example could have been written with for statements, as follows:

Just before the outer for statement, the expression theArray.length determines the num-
ber of rows in the array. Just before the inner for statement, the expression theAr-
ray[row].length determines the number of columns in the current row of the array. This
enables the loop to determine, for each row, the exact number of columns.

Common Multidimensional-Array Manipulations with for and for…in Statements
Many common array manipulations use for or for…in repetition statements. For exam-
ple, the following for statement sets all the elements in row 2 of array a in Fig. 10.19 to
zero:

27 // iterates through the elements of each one-dimensional array
28
29 {
30
31 } // end inner for
32
33 results += ""; // end ordered list
34 } // end outer for
35
36 output.innerHTML = results;
37 } // end function outputArray
38
39 window.addEventListener("load", start, false);

var numberOfRows = theArray.length;

for (var row = 0; row < numberOfRows; ++row)
{
 results += ""; // start ordered list
 var numberOfcolumns = theArray[row].length;

 for (var column = 0; j < numberOfcolumns; ++j)
 {
 results += "" + theArray[row][column] + "";
 } // end inner for

 results += ""; // end ordered list
} // end outer for

Fig. 10.21 | Initializing multidimensional arrays. (Part 2 of 2.)

for (var column in theArray[row])

results += "" + theArray[row][column] + "";

iw3htp5_10_JSArrays.fm Page 382 Wednesday, November 16, 2011 1:06 PM

10.10 Multidimensional Arrays 383

We specified row 2; therefore, we know that the first index is always 2. The for loop varies
only the second index (i.e., the column index). The preceding for statement is equivalent
to the assignment statements

The following for…in statement is also equivalent to the preceding for statement:

The following nested for statement determines the total of all the elements in array a:

The for statement totals the elements of the array, one row at a time. The outer for state-
ment begins by setting the row index to 0, so that the elements of row 0 may be totaled by
the inner for statement. The outer for statement then increments row to 1, so that the
elements of row 1 can be totaled. Then the outer for statement increments row to 2, so
that the elements of row 2 can be totaled. The result can be displayed when the nested for
statement terminates. The preceding for statement is equivalent to the following for…in

statement:

var columns = a[2].length;

for (var col = 0; col < columns; ++col)
{
 a[2][col] = 0;
}

a[2][0] = 0;
a[2][1] = 0;
a[2][2] = 0;
a[2][3] = 0;

for (var col in a[2])
{
 a[2][col] = 0;
}

var total = 0;
var rows = a.length;

for (var row = 0; row < rows; ++row)
{
 var columns = a[row].length;

 for (var col = 0; col < columns; ++col)
 {
 total += a[row][col];
 }
}

var total = 0;

for (var row in a)
{
 for (var col in a[row])
 {
 total += a[row][col];
 }
}

iw3htp5_10_JSArrays.fm Page 383 Wednesday, November 16, 2011 1:06 PM

384 Chapter 10 JavaScript: Arrays

Summary
Section 10.1 Introduction
• Arrays (p. 357) are data structures consisting of related data items (sometimes called collections

of data items.

• JavaScript arrays are “dynamic” entities in that they can change size after they’re created.

Section 10.2 Arrays
• An array is a group of memory locations that all have the same name and normally are of the

same type (although this attribute is not required in JavaScript).

• Each individual location is called an element (p. 357). Any one of these elements may be referred
to by giving the name of the array followed by the position number (an integer normally referred
to as the index, p. 357) of the element in square brackets ([]).

• The first element in every array is the zeroth element (p. 357). In general, the ith element of array
c is referred to as c[i-1]. Array names (p. 357) follow the same conventions as other identifiers.

• An indexed array name can be used on the left side of an assignment to place a new value (p. 358)
into an array element. It can also be used on the right side of an assignment operation to assign
its value to another variable.

• Every array in JavaScript knows its own length (p. 357), which it stores in its length attribute.

Section 10.3 Declaring and Allocating Arrays
• JavaScript arrays are represented by Array objects (p. 359).

• Arrays are created with operator new (p. 359).

Section 10.4 Examples Using Arrays
• To link a JavaScript file to an HTML document, use the script element’s src attribute (p. 359)

to specify the location of the JavaScript file.

• Zero-based counting is usually used to iterate through arrays.

• JavaScript automatically reallocates an array when a value is assigned to an element that’s outside
the bounds of the original array. Elements between the last element of the original array and the
new element have undefined values.

• Arrays can be created using a comma-separated initializer list (p. 362) enclosed in square brackets
([and]). The array’s size is determined by the number of values in the initializer list.

• The initial values of an array can also be specified as arguments in the parentheses following new
Array. The size of the array is determined by the number of values in parentheses.

• JavaScript’s for…in statement (p. 366) enables a script to perform a task for each element in an
array. This process is known as iterating over the elements of an array.

Section 10.5 Random Image Generator Using Arrays
• We create a more elegant random image generator than the one in Chapter 9 that does not re-

quire the image filenames to be integers by using a pictures array to store the names of the image
files as strings and accessing the array using a randomized index.

Section 10.6 References and Reference Parameters
• Two ways to pass arguments to functions (or methods) in many programming languages are

pass-by-value and pass-by-reference (p. 371).

iw3htp5_10_JSArrays.fm Page 384 Wednesday, November 16, 2011 1:06 PM

 Summary 385

• When an argument is passed to a function by value, a copy of the argument’s value is made and
is passed to the called function.

• In JavaScript, numbers, boolean values and strings are passed to functions by value.

• With pass-by-reference, the caller gives the called function access to the caller’s data and allows
it to modify the data if it so chooses. Pass-by-reference can improve performance because it can
eliminate the overhead of copying large amounts of data, but it can weaken security because the
called function can access the caller’s data.

• In JavaScript, all objects (and thus all arrays) are passed to functions by reference.

• The name of an array is actually a reference to an object that contains the array elements and the
length variable, which indicates the number of elements in the array.

Section 10.7 Passing Arrays to Functions
• To pass an array argument to a function, specify the name of the array (a reference to the array)

without brackets.

• Although entire arrays are passed by reference, individual numeric and boolean array elements
are passed by value exactly as simple numeric and boolean variables are passed. Such simple single
pieces of data are called scalars, or scalar quantities (p. 372). To pass an array element to a func-
tion, use the indexed name of the element as an argument in the function call.

• Method join (p. 373) takes as its argument a string containing the separator (p. 373) that should
be used to separate the elements of the array in the string that’s returned. If the argument is not
specified, the empty string is used as the separator.

Section 10.8 Sorting Arrays with Array Method sort
• Sorting data (putting data in a particular order, such as ascending or descending, p. 375) is one

of the most important computing functions.

• The Array object in JavaScript has a built-in method sort (p. 375) for sorting arrays.

• By default, Array method sort (with no arguments) uses string comparisons to determine the
sorting order of the array elements.

• Method sort takes as its optional argument the name of a function (called the comparator func-
tion, p. 375) that compares its two arguments and returns a negative value, zero, or a positive
value, if the first argument is less than, equal to, or greater than the second, respectively.

• Functions in JavaScript are considered to be data. Therefore, functions can be assigned to vari-
ables, stored in arrays and passed to functions just like other data types.

Section 10.9 Searching Arrays with Array Method indexOf
• Array method indexOf (p. 376) searches for the first occurrence of a value and, if found, returns the

value’s array index; otherwise, it returns -1. Method lastIndexOf searches for the last occurrence.

Section 10.10 Multidimensional Arrays
• To identify a particular two-dimensional multidimensional array element, we must specify the

two indices; by convention, the first identifies the element’s row (p. 379) and the second the el-
ement’s column (p. 379).

• In general, an array with m rows and n columns is called an m-by-n array (p. 379).

• Every element in a two-dimensional array (p. 379) is accessed using an element name of the form
a[row][column]; a is the name of the array, and row and column are the indices that uniquely
identify the row and column, respectively, of each element in a.

• Multidimensional arrays are maintained as arrays of arrays.

iw3htp5_10_JSArrays.fm Page 385 Wednesday, November 16, 2011 1:06 PM

386 Chapter 10 JavaScript: Arrays

Self-Review Exercises
10.1 Fill in the blanks in each of the following statements:

a) Every array in JavaScript knows its own length by attribute.
b) To link a JavaScript file to an HTML document, we use the attribute.
c) Zero-based counting is usually used to iterate through .
d) An array with p rows and q columns is called a(n) .
e) The property contains an array of all the form’s controls.

10.2 State whether each of the following is true or false. If false, explain why.
a) An array can store many different types of values.
b) An array index should normally be a floating-point value.
c) An individual array element that’s passed to a function and modified in it will contain

the modified value when the called function completes execution.

10.3 Write JavaScript statements (regarding array fractions) to accomplish each of the follow-
ing tasks:

a) Declare an array with 15 elements, and initialize the elements of the array to 1.
b) Refer to element 5 of the array.
c) Refer to array element 7.
d) Assign the value 3.14 to array element 6.
e) Assign the value 4.444 to the lowest-numbered element of the array.
f) Multiply all the elements of the array, using a for…in statement. Define variable y as a

control variable for the loop.

10.4 Write JavaScript statements (regarding array table) to accomplish each of the following
tasks:

a) Declare and create the array with four rows and four columns.
b) Display the number of elements present in the second row.
c) Use a for…in statement to initialize each element of the array to the multiplication of its row

and column indices. Assume that the variables i and j are declared as control variables.

10.5 Find the error(s) in each of the following program segments, and correct them.
a) var a = new Array(20);

for (var j = 0; j = 30, ++i)

{

 a[j] = 0;

}
b) var b = [[2, 2, 3], [3, 4, 7]];

b[0, 0] = 8;

Answers to Self-Review Exercises
10.1 a) length. b) src. c) arrays. d) p-by-q array. e) elements.

10.2 a) True. b). False. An array index must be an integer or an integer expression. c) False. In-
dividual primitive-data-type elements are passed by value. If a reference to an array is passed, then
modifications to the elements of the array are reflected in the original element of the array. Also, an
individual element of an object type passed to a function is passed by reference, and changes to the
object will be reflected in the original array element.

10.3 a) var fractions = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1];
b) fractions[5]

iw3htp5_10_JSArrays.fm Page 386 Wednesday, November 16, 2011 1:06 PM

 Exercises 387

c) fractions[7]
d) fractions[6] = 3.14;
e) fractions[0] = 4.444;
f) var total = 1;

for (var y in fractions)

{

 total *= fractions[y];

}

10.4 a) var table = new Array(new Array(4), new Array(4),
new Array(4), new Array(4));

b) document.write("total: " + (table[1].length));

c) for (var i in table)

{

 for (var j in table[i])

 {

 table[i][j] = i * j;

 }

}

10.5 a) Error: Referencing an array element outside the bounds of the array (a[20]). [Note: This
error is actually a logic error, not a syntax error.] Correction: Change the j < 30 to j < 20. b) Error:
The array indexing is done incorrectly. Correction: Change the statement to b[0][0] = 8;.

Exercises
10.6 Fill in the blanks in each of the following statements:

a) JavaScript arrays are entities.
b) Arrays are created with operator .
c) Two ways to pass arguments to functions (or methods) in many programming languages

are and .
d) In JavaScript, , and are passed to functions by value.
e) Multidimensional arrays are maintained as .

10.7 State whether each of the following is true or false. If false, explain why.
a) Arrays are data structures consisting of related data items, sometimes called collections

of data items.
b) The first element in every array is the first element.
c) Pass-by-reference can improve performance but can weaken security.
d) Method concatenate takes as its argument a string containing the separator that should

be used to separate the elements of the array in the string that’s returned.
e) The binary search algorithm is more efficient than the linear search algorithm.

10.8 Write JavaScript statements to accomplish each of the following tasks:
a) Allocate 25 elements in an integer array.
b) Create and initialize a five-element array with indices of 0, 1, 2, 3 and 4.
c) Write statements to pass an array argument to a function.
d) Create an array b with two rows and two columns and initialize it.
e) Create a multidimensional array in which each row has a different number of columns

which can be allocated dynamically.

iw3htp5_10_JSArrays.fm Page 387 Wednesday, November 16, 2011 1:06 PM

388 Chapter 10 JavaScript: Arrays

10.9 Consider a three-by-four array a that will store integer number.
a) Write a statement that declares and creates array a.
b) How many rows does a have?
c) How many columns does a have?
d) How many elements does a have?
e) Write the names of all the elements in row 2 of a.
f) Write the names of all the elements in the second column of a.
g) Write a single statement that sets the element of a in row 2 and column 3 to zero.
h) Write a series of statements that initializes each element of a to one. Do not use a rep-

etition statement.
i) Write a nested for statement that initializes each element of a to one.
j) Write a series of statements that determines and prints the largest value in array a.
k) Write a non-repetition statement that displays the elements of the second row of a.
l) Write a series of statements that prints the array a in neat, tabular format. List the col-

umn indices as headings across the top, and list the row indices at the left of each row.

10.10 Use a one-dimensional array to solve the following problem: A company pays its salespeople
on a commission basis. The salespeople receive $200 per week plus 9 percent of their gross sales for
that week. For example, a salesperson who grosses $5000 in sales in a week receives $200 plus 9 per-
cent of $5000, or a total of $650. Write a script (using an array of counters) that obtains the gross
sales for each employee through an HTML5 form and determines how many of the salespeople
earned salaries in each of the following ranges (assume that each salesperson’s salary is truncated to
an integer amount):

a) $200–299
b) $300–399
c) $400–499
d) $500–599
e) $600–699
f) $700–799
g) $800–899
h) $900–999
i) $1000 and over

10.11 Write statements that perform the following operations for a one-dimensional array:
a) Set the 15 elements of array counts to zeros.
b) Add 2 to each of the 20 elements of array bonus.
c) Display the seven values of array bestScores, separated by spaces.

10.12 Write JavaScript statements to sum the values contained in an array named theArray. The
20-element integer array must first be declared, allocated and initialized. The summation of the
elements of the array must to be done with for and for…in statements.

10.13 Label the elements of two-by-four two-dimensional array table to indicate the order in
which they’re set to five by the following program segment:

for (var row in table)
{
 for (var col in table[row])
 {
 table[row][col] = 5;
 }
}

iw3htp5_10_JSArrays.fm Page 388 Wednesday, November 16, 2011 1:06 PM

 Exercises 389

10.14 Write a script to simulate the rolling of two dice. The script should use Math.random to roll
the first die and again to roll the second die. The sum of the two values should then be calculated.
[Note: Since each die can show an integer value from 1 to 6, the sum of the values will vary from 2
to 12, with 7 being the most frequent sum, and 2 and 12 the least frequent sums. Figure 10.22
shows the 36 possible combinations of the two dice. Your program should roll the dice 36,000
times. Use a one-dimensional array to tally the number of times each possible sum appears. Display
the results in an HTML5 table. Also determine whether the totals are reasonable (e.g., there are six
ways to roll a 7, so approximately 1/6 of all the rolls should be 7).]

10.15 (Turtle Graphics) The Logo language, which is popular among young computer users,
made the concept of turtle graphics famous. Imagine a mechanical turtle that walks around the room
under the control of a JavaScript program. The turtle holds a pen in one of two positions, up or
down. When the pen is down, the turtle traces out shapes as it moves; when the pen is up, the turtle
moves about freely without writing anything. In this problem, you’ll simulate the operation of the
turtle and create a computerized sketchpad as well.

Use a 20-by-20 array floor that’s initialized to zeros. Read commands from an array that con-
tains them. Keep track of the current position of the turtle at all times and of whether the pen is
currently up or down. Assume that the turtle always starts at position (0, 0) of the floor, with its
pen up. The set of turtle commands your script must process are as in Fig. 10.23.

Suppose that the turtle is somewhere near the center of the floor. The following “program”
would draw and print a 12-by-12 square, then leave the pen in the up position:

Fig. 10.22 | The 36 possible combinations of the two dice.

Command Meaning

1 Pen up

2 Pen down

3 Turn right

4 Turn left

5,10 Move forward 10 spaces (or a number other than 10)

6 Print the 20-by-20 array

9 End of data (sentinel)

Fig. 10.23 | Turtle-graphics commands.

0 54321

K

2 1

3

4

0

7

5 6

1

2

0

3

4

5

6

7

6 7

iw3htp5_10_JSArrays.fm Page 389 Wednesday, November 16, 2011 1:06 PM

390 Chapter 10 JavaScript: Arrays

2
5,12
3
5,12
3
5,12
3
5,12
1
6
9

As the turtle moves with the pen down, set the appropriate elements of array floor to 1s. When the
6 command (print) is given, display an asterisk or some other character of your choosing wherever
there’s a 1 in the array. Wherever there’s a zero, display a blank. Write a script to implement the tur-
tle-graphics capabilities discussed here. Write several turtle-graphics programs to draw interesting
shapes. Add other commands to increase the power of your turtle-graphics language.

10.16 (The Sieve of Eratosthenes) A prime integer is an integer greater than 1 that’s evenly divis-
ible only by itself and 1. The Sieve of Eratosthenes is an algorithm for finding prime numbers. It
operates as follows:

a) Create an array with all elements initialized to 1 (true). Array elements with prime in-
dices will remain as 1. All other array elements will eventually be set to zero.

b) Set the first two elements to zero, since 0 and 1 are not prime. Starting with array index
2, every time an array element is found whose value is 1, loop through the remainder of
the array and set to zero every element whose index is a multiple of the index for the
element with value 1. For array index 2, all elements beyond 2 in the array that are mul-
tiples of 2 will be set to zero (indices 4, 6, 8, 10, etc.); for array index 3, all elements
beyond 3 in the array that are multiples of 3 will be set to zero (indices 6, 9, 12, 15,
etc.); and so on.

When this process is complete, the array elements that are still set to 1 indicate that the index is a
prime number. These indices can then be printed. Write a script that uses an array of 1000 ele-
ments to determine and print the prime numbers between 1 and 999. Ignore element 0 of the
array.

10.17 ((Simulation: The Tortoise and the Hare) In this problem, you’ll re-create one of the truly
great moments in history, namely the classic race of the tortoise and the hare. You’ll use random
number generation to develop a simulation of this memorable event.

Our contenders begin the race at square 1 of 70 squares. Each square represents a possible
position along the race course. The finish line is at square 70. The first contender to reach or pass
square 70 is rewarded with a pail of fresh carrots and lettuce. The course weaves its way up the side
of a slippery mountain, so occasionally the contenders lose ground.

There’s a clock that ticks once per second. With each tick of the clock, your script should
adjust the position of the animals according to the rules in Fig. 10.24.

Animal Move type Percentage of the time Actual move

Tortoise Fast plod 50% 3 squares to the right

Slip 20% 6 squares to the left

Slow plod 30% 1 square to the right

Fig. 10.24 | Rules for adjusting the position of the tortoise and the hare. (Part 1 of 2.)

iw3htp5_10_JSArrays.fm Page 390 Wednesday, November 16, 2011 1:06 PM

 Exercises 391

Use variables to keep track of the positions of the animals (i.e., position numbers are 1–70).
Start each animal at position 1 (i.e., the “starting gate”). If an animal slips left before square 1,
move the animal back to square 1.

Generate the percentages in Fig. 10.24 by producing a random integer i in the range
1 ≤ i ≤ 10. For the tortoise, perform a “fast plod” when 1 ≤ i ≤ 5, a “slip” when 6 ≤ i ≤ 7 and a
“slow plod” when 8 ≤ i ≤ 10. Use a similar technique to move the hare.

Begin the race by printing

BANG !!!!!
AND THEY'RE OFF !!!!!

Then, for each tick of the clock (i.e., each repetition of a loop), print a 70-position line show-
ing the letter T in the position of the tortoise and the letter H in the position of the hare. Occa-
sionally, the contenders will land on the same square. In this case, the tortoise bites the hare, and
your script should print OUCH!!! beginning at that position. All print positions other than the T,
the H or the OUCH!!! (in case of a tie) should be blank.

After each line is printed, test whether either animal has reached or passed square 70. If so,
print the winner, and terminate the simulation. If the tortoise wins, print TORTOISE WINS!!! YAY!!!
If the hare wins, print Hare wins. Yuck! If both animals win on the same tick of the clock, you may
want to favor the turtle (the “underdog”), or you may want to print It's a tie. If neither animal
wins, perform the loop again to simulate the next tick of the clock. When you’re ready to run your
script, assemble a group of fans to watch the race. You’ll be amazed at how involved your audience
gets!

Later in the book, we introduce a number of Dynamic HTML capabilities, such as graphics,
images, animation and sound. As you study those features, you might enjoy enhancing your tor-
toise-and-hare contest simulation.

Hare Sleep 20% No move at all

Big hop 20% 9 squares to the right

Big slip 10% 12 squares to the left

Small hop 30% 1 square to the right

Small slip 20% 2 squares to the left

Animal Move type Percentage of the time Actual move

Fig. 10.24 | Rules for adjusting the position of the tortoise and the hare. (Part 2 of 2.)

iw3htp5_10_JSArrays.fm Page 391 Wednesday, November 16, 2011 1:06 PM

11 JavaScript: Objects

My object all sublime
I shall achieve in time.
—W. S. Gilbert

Is it a world to hide virtues in?
—William Shakespeare

O b j e c t i v e s
In this chapter you’ll:

■ Learn object-based
programming terminology
and concepts.

■ Learn the concepts of
encapsulation and data
hiding.

■ Learn the value of object
orientation.

■ Use the methods of the
JavaScript objects Math,
String, Date, Boolean
and Number.

■ Use HTML5 web storage to
create a web application that
stores user data locally.

■ Represent objects simply
using JSON.

iw3htp5_11_JSObjects.fm Page 392 Wednesday, November 16, 2011 11:52 AM

11.1 Introduction 393

11.1 Introduction
This chapter presents a more formal treatment of objects. We presented a brief introduction
to object-oriented programming concepts in Chapter 1. This chapter overviews—and serves
as a reference for—several of JavaScript’s built-in objects and demonstrates many of their ca-
pabilities. We use HTML5’s new web storage capabilities to create a web application that
stores a user’s favorite Twitter searches on the computer for easy access at a later time. We
also provide a brief introduction to JSON, a means for creating JavaScript objects—typically
for transferring data over the Internet between client-side and server-side programs (a tech-
nique we discuss in Chapter 16). In subsequent chapters on the Document Object Model
and JavaScript Events, you’ll work with many objects provided by the browser that enable
scripts to manipulate the elements of an HTML5 document.

11.2 Math Object
The Math object’s methods enable you to conveniently perform many common mathe-
matical calculations. As shown previously, an object’s methods are called by writing the
name of the object followed by a dot (.) and the name of the method. In parentheses fol-
lowing the method name are arguments to the method. For example, to calculate the
square root of 900 you might write

which first calls method Math.sqrt to calculate the square root of the number contained
in the parentheses (900), then assigns the result to a variable. The number 900 is the argu-
ment of the Math.sqrt method. The above statement would return 30. Some Math-object
methods are summarized in Fig. 11.1.

The Math object defines several properties that represent commonly used mathemat-
ical constants. These are summarized in Fig. 11.2. [Note: By convention, the names of
constants are written in all uppercase letters so that they stand out in a program.]

11.1 Introduction
11.2 Math Object
11.3 String Object

11.3.1 Fundamentals of Characters and
Strings

11.3.2 Methods of the String Object
11.3.3 Character-Processing Methods
11.3.4 Searching Methods
11.3.5 Splitting Strings and Obtaining

Substrings

11.4 Date Object
11.5 Boolean and Number Objects
11.6 document Object
11.7 Favorite Twitter Searches: HTML5

Web Storage
11.8 Using JSON to Represent Objects

Summary | Self-Review Exercise | Answers to Self-Review Exercise | Exercises
Special Section: Challenging String-Manipulation Projects

var result = Math.sqrt(900);

Software Engineering Observation 11.1
The difference between invoking a stand-alone function and invoking a method of an
object is that an object name and a dot are not required to call a stand-alone function.

iw3htp5_11_JSObjects.fm Page 393 Wednesday, November 16, 2011 11:52 AM

394 Chapter 11 JavaScript: Objects

Method Description Examples

abs(x) Absolute value of x. abs(7.2) is 7.2
abs(0) is 0
abs(-5.6) is 5.6

ceil(x) Rounds x to the smallest
integer not less than x.

ceil(9.2) is 10
ceil(-9.8) is -9.0

cos(x) Trigonometric cosine of x
(x in radians).

cos(0) is 1

exp(x) Exponential method ex. exp(1) is 2.71828
exp(2) is 7.38906

floor(x) Rounds x to the largest
integer not greater than x.

floor(9.2) is 9
floor(-9.8) is -10.0

log(x) Natural logarithm of x
(base e).

log(2.718282) is 1
log(7.389056) is 2

max(x, y) Larger value of x and y. max(2.3, 12.7) is 12.7
max(-2.3, -12.7) is -2.3

min(x, y) Smaller value of x and y. min(2.3, 12.7) is 2.3
min(-2.3, -12.7) is -12.7

pow(x, y) x raised to power y (xy). pow(2, 7) is 128
pow(9, .5) is 3.0

round(x) Rounds x to the closest
integer.

round(9.75) is 10
round(9.25) is 9

sin(x) Trigonometric sine of x
(x in radians).

sin(0) is 0

sqrt(x) Square root of x. sqrt(900) is 30
sqrt(9) is 3

tan(x) Trigonometric tangent of
x (x in radians).

tan(0) is 0

Fig. 11.1 | Math object methods.

Constant Description Value

Math.E Base of a natural logarithm (e). Approximately 2.718
Math.LN2 Natural logarithm of 2. Approximately 0.693
Math.LN10 Natural logarithm of 10. Approximately 2.302
Math.LOG2E Base 2 logarithm of e. Approximately 1.442
Math.LOG10E Base 10 logarithm of e. Approximately 0.434
Math.PI π—the ratio of a circle’s

circumference to its diameter.
Approximately
3.141592653589793

Math.SQRT1_2 Square root of 0.5. Approximately 0.707
Math.SQRT2 Square root of 2.0. Approximately 1.414

Fig. 11.2 | Properties of the Math object.

iw3htp5_11_JSObjects.fm Page 394 Wednesday, November 16, 2011 11:52 AM

11.3 String Object 395

11.3 String Object
In this section, we introduce JavaScript’s string- and character-processing capabilities. The
techniques discussed here are appropriate for processing names, addresses, telephone num-
bers and other text-based data.

11.3.1 Fundamentals of Characters and Strings
Characters are the building blocks of JavaScript programs. Every program is composed of
a sequence of characters grouped together meaningfully that’s interpreted by the computer
as a series of instructions used to accomplish a task.

A string is a series of characters treated as a single unit. A string may include letters,
digits and various special characters, such as +, -, *, /, and $. JavaScript supports the set
of characters called Unicode®, which represents a large portion of the world’s languages.
(We discuss Unicode in detail in Appendix F.) A string is an object of type String. String
literals or string constants are written as a sequence of characters in double or single quo-
tation marks, as follows:

A String may be assigned to a variable in a declaration. The declaration

initializes variable color with the String object containing the string "blue". Strings can
be compared via the relational (<, <=, > and >=) and equality operators (==, ===, != and
!==). The comparisons are based on the Unicode values of the corresponding characters.
For example, the expression "h" < "H" evaluates to false because lowercase letters have
higher Unicode values.

11.3.2 Methods of the String Object
The String object encapsulates the attributes and behaviors of a string of characters. It pro-
vides many methods (behaviors) that accomplish useful tasks such as selecting characters
from a string, combining strings (called concatenation), obtaining substrings (portions) of a
string, searching for substrings within a string, tokenizing strings (i.e., splitting strings into in-
dividual words) and converting strings to all uppercase or lowercase letters. The String ob-
ject also provides several methods that generate HTML5 tags. Figure 11.3 summarizes many
String methods. Figures 11.4–11.9 demonstrate some of these methods.

"John Q. Doe" (a name)
'9999 Main Street' (a street address)
"Waltham, Massachusetts" (a city and state)
'(201) 555-1212' (a telephone number)

var color = "blue";

Method Description

charAt(index) Returns a string containing the character at the specified index. If
there’s no character at the index, charAt returns an empty string.
The first character is located at index 0.

Fig. 11.3 | Some String-object methods. (Part 1 of 2.)

iw3htp5_11_JSObjects.fm Page 395 Wednesday, November 16, 2011 11:52 AM

396 Chapter 11 JavaScript: Objects

charCodeAt(index) Returns the Unicode value of the character at the specified index,
or NaN (not a number) if there’s no character at that index.

concat(string) Concatenates its argument to the end of the string on which the
method is invoked. The original string is not modified; instead a
new String is returned. This method is the same as adding two
strings with the string-concatenation operator + (e.g., s1.con-
cat(s2) is the same as s1 + s2).

fromCharCode(

 value1, value2, …)

Converts a list of Unicode values into a string containing the cor-
responding characters.

indexOf(

 substring, index)
Searches for the first occurrence of substring starting from posi-
tion index in the string that invokes the method. The method
returns the starting index of substring in the source string or –1 if
substring is not found. If the index argument is not provided, the
method begins searching from index 0 in the source string.

lastIndexOf(

 substring, index)
Searches for the last occurrence of substring starting from posi-
tion index and searching toward the beginning of the string that
invokes the method. The method returns the starting index of
substring in the source string or –1 if substring is not found. If the
index argument is not provided, the method begins searching
from the end of the source string.

replace(searchString,
 replaceString)

Searches for the substring searchString, replaces the first occur-
rence with replaceString and returns the modified string, or
returns the original string if no replacement was made.

slice(start, end) Returns a string containing the portion of the string from index
start through index end. If the end index is not specified, the
method returns a string from the start index to the end of the
source string. A negative end index specifies an offset from the
end of the string, starting from a position one past the end of the
last character (so –1 indicates the last character position in the
string).

split(string) Splits the source string into an array of strings (tokens), where its
string argument specifies the delimiter (i.e., the characters that
indicate the end of each token in the source string).

substr(

 start, length)
Returns a string containing length characters starting from index
start in the source string. If length is not specified, a string con-
taining characters from start to the end of the source string is
returned.

substring(

 start, end)
Returns a string containing the characters from index start up to
but not including index end in the source string.

toLowerCase() Returns a string in which all uppercase letters are converted to
lowercase letters. Non-letter characters are not changed.

toUpperCase() Returns a string in which all lowercase letters are converted to
uppercase letters. Non-letter characters are not changed.

Method Description

Fig. 11.3 | Some String-object methods. (Part 2 of 2.)

iw3htp5_11_JSObjects.fm Page 396 Wednesday, November 16, 2011 11:52 AM

11.3 String Object 397

11.3.3 Character-Processing Methods
The example in Figs. 11.4–11.5 demonstrates some of the String object’s character-pro-
cessing methods, including:

• charAt—returns the character at a specific position

• charCodeAt—returns the Unicode value of the character at a specific position

• fromCharCode—returns a string created from a series of Unicode values

• toLowerCase—returns the lowercase version of a string

• toUpperCase—returns the uppercase version of a string

The HTML document (Fig. 11.4) calls the script’s start function to display the results
in the results div. [Note: Throughout this chapter, we show the CSS style sheets only if
there are new features to discuss. You can view each example’s style-sheet contents by
opening the style sheet in a text editor.]

In the script (Fig. 11.5), lines 10–11 get the first character in String s ("ZEBRA")
using String method charAt and append it to the result string. Method charAt returns
a string containing the character at the specified index (0 in this example). Indices for the
characters in a string start at 0 (the first character) and go up to (but do not include) the

1 <!DOCTYPE html>
2
3 <!-- Fig. 11.4: CharacterProcessing.html -->
4 <!-- HTML5 document to demonstrate String methods charAt, charCodeAt,
5 fromCharCode, toLowercase and toUpperCase. -->
6 <html>
7 <head>
8 <meta charset = "utf-8">
9 <title>Character Processing</title>

10 <link rel = "stylesheet" type = "text/css" href = "style.css">
11 <script src = "CharacterProcessing.js"></script>
12 </head>
13 <body>
14 <div id = "results"></div>
15 </body>
16 </html>

Fig. 11.4 | HTML5 document to demonstrate methods charAt, charCodeAt, fromCharCode,
toLowercase and toUpperCase.

iw3htp5_11_JSObjects.fm Page 397 Wednesday, November 16, 2011 11:52 AM

398 Chapter 11 JavaScript: Objects

string’s length (e.g., if the string contains five characters, the indices are 0 through 4). If
the index is outside the bounds of the string, the method returns an empty string.

Lines 12–13 get the character code for the first character in String s ("ZEBRA") by
calling String method charCodeAt. Method charCodeAt returns the Unicode value of the
character at the specified index (0 in this example). If the index is outside the bounds of
the string, the method returns NaN.

String method fromCharCode receives as its argument a comma-separated list of Uni-
code values and builds a string containing the character representations of those Unicode
values. Lines 15–16 create the string "WORD", which consists of the character codes 87, 79,
82 and 68. Note that we use the String object to call method fromCharCode, rather than
a specific String variable. Appendix D, ASCII Character Set, contains the character codes
for the ASCII character set—a subset of the Unicode character set (Appendix F) that con-
tains only Western characters.

Lines 18–21 use String methods toLowerCase and toUpperCase to get versions of
String s2 ("AbCdEfG") in all lowercase letters and all uppercase letters, respectively.

11.3.4 Searching Methods
The example in Figs. 11.6–11.7 demonstrates the String-object methods indexOf and
lastIndexOf that search for a specified substring in a string. All the searches in this exam-

1 // Fig. 11.5: CharacterProcessing.js
2 // String methods charAt, charCodeAt, fromCharCode,
3 // toLowercase and toUpperCase.
4 function start()
5 {
6 var s = "ZEBRA";
7 var s2 = "AbCdEfG";
8 var result = "";
9

10 result = "<p>Character at index 0 in '" + s + "' is " +
11 + "</p>";
12 result += "<p>Character code at index 0 in '" + s + "' is " +
13 + "</p>";
14
15 result += "<p>'" + +
16 "' contains character codes 87, 79, 82 and 68</p>";
17
18 result += "<p>'" + s2 + "' in lowercase is '" +
19 + "'</p>";
20 result += "<p>'" + s2 + "' in uppercase is '" +
21 + "'</p>";
22
23 document.getElementById("results").innerHTML = result;
24 } // end function start
25
26 window.addEventListener("load", start, false);

Fig. 11.5 | String methods charAt, charCodeAt, fromCharCode, toLowercase and
toUpperCase.

s.charAt(0)

s.charCodeAt(0)

String.fromCharCode(87, 79, 82, 68)

s2.toLowerCase()

s2.toUpperCase()

iw3htp5_11_JSObjects.fm Page 398 Wednesday, November 16, 2011 11:52 AM

11.3 String Object 399

ple are performed on a global string named letters in the script (Fig. 11.7, line 3). The
user types a substring in the HTML5 form searchForm’s inputField and presses the
Search button to search for the substring in letters. Clicking the Search button calls
function buttonPressed (lines 5–18) to respond to the click event and perform the
searches. The results of each search are displayed in the div named results.

In the script (Fig. 11.7), lines 10–11 use String method indexOf to determine the
location of the first occurrence in string letters of the string inputField.value (i.e., the
string the user typed in the inputField text field). If the substring is found, the index at
which the first occurrence of the substring begins is returned; otherwise, –1 is returned.

1 <!DOCTYPE html>
2
3 <!-- Fig. 11.6: SearchingStrings.html -->
4 <!-- HTML document to demonstrate methods indexOf and lastIndexOf. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Searching Strings</title>
9 <link rel = "stylesheet" type = "text/css" href = "style.css">

10 <script src = "SearchingStrings.js"></script>
11 </head>
12 <body>
13 <form id = "searchForm" action = "#">
14 <h1>The string to search is:
15 abcdefghijklmnopqrstuvwxyzabcdefghijklm</h1>
16 <p>Enter the substring to search for
17 <input id = "inputField" type = "search">
18 <input id = "searchButton" type = "button" value = "Search"></p>
19 <div id = "results"></div>
20 </form>
21 </body>
22 </html>

Fig. 11.6 | HTML document to demonstrate methods indexOf and lastIndexOf. (Part 1 of 2.)

iw3htp5_11_JSObjects.fm Page 399 Wednesday, November 16, 2011 11:52 AM

400 Chapter 11 JavaScript: Objects

Lines 12–13 use String method lastIndexOf to determine the location of the last
occurrence in letters of the string in inputField. If the substring is found, the index at
which the last occurrence of the substring begins is returned; otherwise, –1 is returned.

Lines 14–15 use String method indexOf to determine the location of the first occur-
rence in string letters of the string in the inputField text field, starting from index 12
in letters. If the substring is found, the index at which the first occurrence of the sub-
string (starting from index 12) begins is returned; otherwise, –1 is returned.

Lines 16–17 use String method lastIndexOf to determine the location of the last
occurrence in letters of the string in the inputField text field, starting from index 12 in
letters and moving toward the beginning of the input. If the substring is found, the
index at which the first occurrence of the substring (if one appears before index 12) begins
is returned; otherwise, –1 is returned.

1 // Fig. 11.7: SearchingStrings.js
2 // Searching strings with indexOf and lastIndexOf.
3 var letters = "abcdefghijklmnopqrstuvwxyzabcdefghijklm";
4
5 function buttonPressed()
6 {
7 var inputField = document.getElementById("inputField");
8
9 document.getElementById("results").innerHTML =

10 "<p>First occurrence is located at index " +
11 + "</p>" +
12 "<p>Last occurrence is located at index " +
13 + "</p>" +
14 "<p>First occurrence from index 12 is located at index " +
15 + "</p>" +
16 "<p>Last occurrence from index 12 is located at index " +
17 + "</p>";
18 } // end function buttonPressed

Fig. 11.7 | Searching strings with indexOf and lastIndexOf. (Part 1 of 2.)

Fig. 11.6 | HTML document to demonstrate methods indexOf and lastIndexOf. (Part 2 of 2.)

letters.indexOf(inputField.value)

letters.lastIndexOf(inputField.value)

letters.indexOf(inputField.value, 12)

letters.lastIndexOf(inputField.value, 12)

iw3htp5_11_JSObjects.fm Page 400 Wednesday, November 16, 2011 11:52 AM

11.3 String Object 401

11.3.5 Splitting Strings and Obtaining Substrings
When you read a sentence, your mind breaks it into individual words, or tokens, each of
which conveys meaning to you. The process of breaking a string into tokens is called to-
kenization. Interpreters also perform tokenization. They break up statements into such in-
dividual pieces as keywords, identifiers, operators and other elements of a programming
language. The example in Figs. 11.8–11.9 demonstrates String method split, which
breaks a string into its component tokens. Tokens are separated from one another by de-
limiters, typically white-space characters such as blanks, tabs, newlines and carriage re-
turns. Other characters may also be used as delimiters to separate tokens. The HTML5
document displays a form containing a text field where the user types a sentence to token-
ize. The results of the tokenization process are displayed in a div. The script also demon-
strates String method substring, which returns a portion of a string.

The user types a sentence into the text field with id inputField and presses the Split
button to tokenize the string. Function splitButtonPressed (Fig. 11.9) is called in
respons to the button’s click event.

19
20 // register click event handler for searchButton
21 function start()
22 {
23 var searchButton = document.getElementById("searchButton");
24 searchButton.addEventListener("click", buttonPressed, false);
25 } // end function start
26
27 window.addEventListener("load", start, false);

1 <!DOCTYPE html>
2
3 <!-- Fig. 11.8: SplitAndSubString.html -->
4 <!-- HTML document demonstrating String methods split and substring. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>split and substring</title>
9 <link rel = "stylesheet" type = "text/css" href = "style.css">

10 <script src = "SplitAndSubString.js"></script>
11 </head>
12 <body>
13 <form action = "#">
14 <p>Enter a sentence to split into words:</p>
15 <p><input id = "inputField" type = "text">
16 <input id = "splitButton" type = "button" value = "Split"></p>
17 <div id = "results"></p>
18 </form>
19 </body>
20 </html>

Fig. 11.8 | HTML document demonstrating String methods split and substring. (Part 1 of 2.)

Fig. 11.7 | Searching strings with indexOf and lastIndexOf. (Part 2 of 2.)

iw3htp5_11_JSObjects.fm Page 401 Wednesday, November 16, 2011 11:52 AM

402 Chapter 11 JavaScript: Objects

In the script (Fig. 11.9), line 5 gets the value of the input field and stores it in variable
inputString. Line 6 calls String method split to tokenize inputString. The argument
to method split is the delimiter string—the string that determines the end of each token
in the original string. In this example, the space character delimits the tokens. The delim-
iter string can contain multiple characters to be used as delimiters. Method split returns
an array of strings containing the tokens. Line 11 uses Array method join to combine the
tokens in array tokens and separate each token with </p><p class = 'indent'> to end
one paragraph element and start a new one. Line 13 uses String method substring to
obtain a string containing the first 10 characters of the string the user entered (still stored
in inputString). The method returns the substring from the starting index (0 in this
example) up to but not including the ending index (10 in this example). If the ending
index is greater than the length of the string, the substring returned includes the characters
from the starting index to the end of the original string. The result of the string concate-
nations in lines 9–13 is displayed in the document’s results div.

1 // Fig. 11.9: SplitAndSubString.js
2 // String object methods split and substring.
3 function splitButtonPressed()
4 {
5 var inputString = document.getElementById("inputField").value;
6
7
8 var results = document.getElementById("results");

Fig. 11.9 | String-object methods split and substring. (Part 1 of 2.)

Fig. 11.8 | HTML document demonstrating String methods split and substring. (Part 2 of 2.)

var tokens = inputString.split(" ");

iw3htp5_11_JSObjects.fm Page 402 Wednesday, November 16, 2011 11:52 AM

11.4 Date Object 403

11.4 Date Object
JavaScript’s Date object provides methods for date and time manipulations. These can be
performed based on the computer’s local time zone or based on World Time Standard’s
Coordinated Universal Time (abbreviated UTC)—formerly called Greenwich Mean
Time (GMT). Most methods of the Date object have a local time zone and a UTC ver-
sion. Date-object methods are summarized in Fig. 11.10.

9 results.innerHTML = "<p>The sentence split into words is: </p>" +
10 "<p class = 'indent'>" +
11 + "</p>" +
12 "<p>The first 10 characters of the input string are: </p>" +
13 "<p class = 'indent'>'" + + "'</p>";
14 } // end function splitButtonPressed
15
16 // register click event handler for searchButton
17 function start()
18 {
19 var splitButton = document.getElementById("splitButton");
20 splitButton.addEventListener("click", splitButtonPressed, false);
21 } // end function start
22
23 window.addEventListener("load", start, false);

Method Description

getDate()

getUTCDate()

Returns a number from 1 to 31 representing the day of the
month in local time or UTC.

getDay()

getUTCDay()

Returns a number from 0 (Sunday) to 6 (Saturday) represent-
ing the day of the week in local time or UTC.

getFullYear()

getUTCFullYear()

Returns the year as a four-digit number in local time or UTC.

getHours()

getUTCHours()

Returns a number from 0 to 23 representing hours since mid-
night in local time or UTC.

getMilliseconds()

getUTCMilliSeconds()

Returns a number from 0 to 999 representing the number of
milliseconds in local time or UTC, respectively. The time is
stored in hours, minutes, seconds and milliseconds.

getMinutes()

getUTCMinutes()

Returns a number from 0 to 59 representing the minutes for
the time in local time or UTC.

getMonth()

getUTCMonth()

Returns a number from 0 (January) to 11 (December) repre-
senting the month in local time or UTC.

getSeconds()

getUTCSeconds()

Returns a number from 0 to 59 representing the seconds for
the time in local time or UTC.

Fig. 11.10 | Date-object methods. (Part 1 of 2.)

Fig. 11.9 | String-object methods split and substring. (Part 2 of 2.)

tokens.join("</p><p class = 'indent'>")

inputString.substring(0, 10)

iw3htp5_11_JSObjects.fm Page 403 Wednesday, November 16, 2011 11:52 AM

404 Chapter 11 JavaScript: Objects

getTime() Returns the number of milliseconds between January 1, 1970,
and the time in the Date object.

getTimezoneOffset() Returns the difference in minutes between the current time on
the local computer and UTC (Coordinated Universal Time).

setDate(val)
setUTCDate(val)

Sets the day of the month (1 to 31) in local time or UTC.

setFullYear(y, m, d)
setUTCFullYear(y, m, d)

Sets the year in local time or UTC. The second and third argu-
ments representing the month and the date are optional. If an
optional argument is not specified, the current value in the
Date object is used.

setHours(h, m, s, ms)
setUTCHours(h, m, s, ms)

Sets the hour in local time or UTC. The second, third and
fourth arguments, representing the minutes, seconds and milli-
seconds, are optional. If an optional argument is not specified,
the current value in the Date object is used.

setMilliSeconds(ms)
setUTCMilliseconds(ms)

Sets the number of milliseconds in local time or UTC.

setMinutes(m, s, ms)
setUTCMinutes(m, s, ms)

Sets the minute in local time or UTC. The second and third
arguments, representing the seconds and milliseconds, are
optional. If an optional argument is not specified, the current
value in the Date object is used.

setMonth(m, d)
setUTCMonth(m, d)

Sets the month in local time or UTC. The second argument,
representing the date, is optional. If the optional argument is
not specified, the current date value in the Date object is used.

setSeconds(s, ms)
setUTCSeconds(s, ms)

Sets the seconds in local time or UTC. The second argument,
representing the milliseconds, is optional. If this argument is
not specified, the current milliseconds value in the Date object
is used.

setTime(ms) Sets the time based on its argument—the number of elapsed
milliseconds since January 1, 1970.

toLocaleString() Returns a string representation of the date and time in a form
specific to the computer’s locale. For example, September 13,
2007, at 3:42:22 PM is represented as 09/13/07 15:47:22 in
the United States and 13/09/07 15:47:22 in Europe.

toUTCString() Returns a string representation of the date and time in the
form: 15 Sep 2007 15:47:22 UTC.

toString() Returns a string representation of the date and time in a form
specific to the locale of the computer (Mon Sep 17 15:47:22
EDT 2007 in the United States).

valueOf() The time in number of milliseconds since midnight, January 1,
1970. (Same as getTime.)

Method Description

Fig. 11.10 | Date-object methods. (Part 2 of 2.)

iw3htp5_11_JSObjects.fm Page 404 Wednesday, November 16, 2011 11:52 AM

11.4 Date Object 405

The example in Figs. 11.11–11.12 demonstrates many of the local-time-zone
methods in Fig. 11.10. The HTML document (Fig. 11.11) provides several sections in
which the results are displayed.

Date-Object Constructor with No Arguments
In the script (Fig. 11.12), line 5 creates a new Date object. The new operator creates the
Date object. The empty parentheses indicate a call to the Date object’s constructor with
no arguments. A constructor is an initializer method for an object. Constructors are called
automatically when an object is allocated with new. The Date constructor with no arguments
initializes the Date object with the local computer’s current date and time.

Methods toString, toLocaleString, toUTCString and valueOf
Lines 9–12 demonstrate the methods toString, toLocaleString, toUTCString and val-
ueOf. Method valueOf returns a large integer value representing the total number of mil-
liseconds between midnight, January 1, 1970, and the date and time stored in Date object
current.

Date-Object get Methods
Lines 16–25 demonstrate the Date object’s get methods for the local time zone. The meth-
od getFullYear returns the year as a four-digit number. The method getTimeZoneOffset
returns the difference in minutes between the local time zone and UTC time (i.e., a dif-
ference of four hours in our time zone when this example was executed).

1 <!DOCTYPE html>
2
3 <!-- Fig. 11.11: DateTime.html -->
4 <!-- HTML document to demonstrate Date-object methods. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Date and Time Methods</title>
9 <link rel = "stylesheet" type = "text/css" href = "style.css">

10 <script src = "DateTime.js"></script>
11 </head>
12 <body>
13 <h1>String representations and valueOf</h1>
14 <section id = "strings"></section>
15 <h1>Get methods for local time zone</h1>
16 <section id = "getMethods"></section>
17 <h1>Specifying arguments for a new Date</h1>
18 <section id = "newArguments"></section>
19 <h1>Set methods for local time zone</h1>
20 <section id = "setMethods"></section>
21 </body>
22 </html>

Fig. 11.11 | HTML document to demonstrate Date-object methods. (Part 1 of 2.)

iw3htp5_11_JSObjects.fm Page 405 Wednesday, November 16, 2011 11:52 AM

406 Chapter 11 JavaScript: Objects

1 // Fig. 11.12: DateTime.js
2 // Date and time methods of the Date object.
3 function start()
4 {
5 var current = new Date();
6
7 // string-formatting methods and valueOf
8 document.getElementById("strings").innerHTML =
9 "<p>toString: " + + "</p>" +

10 "<p>toLocaleString: " + + "</p>" +
11 "<p>toUTCString: " + + "</p>" +
12 "<p>valueOf: " + + "</p>";
13
14 // get methods
15 document.getElementById("getMethods").innerHTML =
16 "<p>getDate: " + + "</p>" +
17 "<p>getDay: " + + "</p>" +
18 "<p>getMonth: " + + "</p>" +
19 "<p>getFullYear: " + + "</p>" +

Fig. 11.12 | Date and time methods of the Date object. (Part 1 of 2.)

Fig. 11.11 | HTML document to demonstrate Date-object methods. (Part 2 of 2.)

current.toString()
current.toLocaleString()

current.toUTCString()
current.valueOf()

current.getDate()
current.getDay()
current.getMonth()

current.getFullYear()

iw3htp5_11_JSObjects.fm Page 406 Wednesday, November 16, 2011 11:52 AM

11.4 Date Object 407

Date-Object Constructor with Arguments
Line 28 creates a new Date object and supplies arguments to the Date constructor for year,
month, date, hours, minutes, seconds and milliseconds. The hours, minutes, seconds and milli-
seconds arguments are all optional. If an argument is not specified, 0 is supplied in its place.
For hours, minutes and seconds, if the argument to the right of any of these is specified, it
too must be specified (e.g., if the minutes argument is specified, the hours argument must
be specified; if the milliseconds argument is specified, all the arguments must be specified).

Date-Object set Methods
Lines 33–38 demonstrate the Date-object set methods for the local time zone. Date objects
represent the month internally as an integer from 0 to 11. These values are off by one from
what you might expect (i.e., 1 for January, 2 for February, …, and 12 for December).
When creating a Date object, you must specify 0 to indicate January, 1 to indicate Febru-
ary, …, and 11 to indicate December.

Date-Object parse and UTC Methods
The Date object provides methods Date.parse and Date.UTC that can be called without
creating a new Date object. Date.parse receives as its argument a string representing a date
and time, and returns the number of milliseconds between midnight, January 1, 1970, and

20 "<p>getTime: " + + "</p>" +
21 "<p>getHours: " + + "</p>" +
22 "<p>getMinutes: " + + "</p>" +
23 "<p>getSeconds: " + + "</p>" +
24 "<p>getMilliseconds: " + + "</p>" +
25 "<p>getTimezoneOffset: " + + "</p>";
26
27 // creating a Date
28
29 document.getElementById("newArguments").innerHTML =
30 "<p>Date: " + anotherDate + "</p>";
31
32 // set methods
33
34
35
36
37
38
39 document.getElementById("setMethods").innerHTML =
40 "<p>Modified date: " + anotherDate + "</p>";
41 } // end function start
42
43 window.addEventListener("load", start, false);

Common Programming Error 11.1
Assuming that months are represented as numbers from 1 to 12 leads to off-by-one errors
when you’re processing Dates.

Fig. 11.12 | Date and time methods of the Date object. (Part 2 of 2.)

current.getTime()
current.getHours()

current.getMinutes()
current.getSeconds()

current.getMilliseconds()
current.getTimezoneOffset()

var anotherDate = new Date(2011, 2, 18, 1, 5, 0, 0);

anotherDate.setDate(31);
anotherDate.setMonth(11);
anotherDate.setFullYear(2011);
anotherDate.setHours(23);
anotherDate.setMinutes(59);
anotherDate.setSeconds(59);

iw3htp5_11_JSObjects.fm Page 407 Wednesday, November 16, 2011 11:52 AM

408 Chapter 11 JavaScript: Objects

the specified date and time. This value can be converted to a Date object with the state-
ment

Method parse converts the string using the following rules:

• Short dates can be specified in the form MM-DD-YY, MM-DD-YYYY, MM/DD/YY or MM/
DD/YYYY. The month and day are not required to be two digits.

• Long dates that specify the complete month name (e.g., “January”), date and year
can specify the month, date and year in any order.

• Text in parentheses within the string is treated as a comment and ignored. Com-
mas and white-space characters are treated as delimiters.

• All month and day names must have at least two characters. The names are not
required to be unique. If the names are identical, the name is resolved as the last
match (e.g., “Ju” represents “July” rather than “June”).

• If the name of the day of the week is supplied, it’s ignored.

• All standard time zones (e.g., EST for Eastern Standard Time), Coordinated
Universal Time (UTC) and Greenwich Mean Time (GMT) are recognized.

• When specifying hours, minutes and seconds, separate them with colons.

• In 24-hour-clock format, “PM” should not be used for times after 12 noon.

Date method UTC returns the number of milliseconds between midnight, January 1,
1970, and the date and time specified as its arguments. The arguments to the UTC method
include the required year, month and date, and the optional hours, minutes, seconds and mil-
liseconds. If any of the hours, minutes, seconds or milliseconds arguments is not specified, a
zero is supplied in its place. For the hours, minutes and seconds arguments, if the argument
to the right of any of these arguments in the argument list is specified, that argument must
also be specified (e.g., if the minutes argument is specified, the hours argument must be
specified; if the milliseconds argument is specified, all the arguments must be specified). As
with the result of Date.parse, the result of Date.UTC can be converted to a Date object by
creating a new Date object with the result of Date.UTC as its argument.

11.5 Boolean and Number Objects
JavaScript provides the Boolean and Number objects as object wrappers for boolean true/
false values and numbers, respectively. These wrappers define methods and properties
useful in manipulating boolean values and numbers.

When a JavaScript program requires a boolean value, JavaScript automatically creates
a Boolean object to store the value. JavaScript programmers can create Boolean objects
explicitly with the statement

The booleanValue specifies whether the Boolean object should contain true or false. If
booleanValue is false, 0, null, Number.NaN or an empty string (""), or if no argument is
supplied, the new Boolean object contains false. Otherwise, the new Boolean object con-
tains true. Figure 11.13 summarizes the methods of the Boolean object.

var theDate = new Date(numberOfMilliseconds);

var b = new Boolean(booleanValue);

iw3htp5_11_JSObjects.fm Page 408 Wednesday, November 16, 2011 11:52 AM

11.6 document Object 409

JavaScript automatically creates Number objects to store numeric values in a script.
You can create a Number object with the statement

The constructor argument numericValue is the number to store in the object. Although
you can explicitly create Number objects, normally the JavaScript interpreter creates them
as needed. Figure 11.14 summarizes the methods and properties of the Number object.

11.6 document Object
The document object, which we’ve used extensively, is provided by the browser and allows
JavaScript code to manipulate the current document in the browser. The document object
has several properties and methods, such as method document.getElementByID, which
has been used in many examples. Figure 11.15 shows the methods of the document object
that are used in this chapter. We’ll cover several more in Chapter 12.

Method Description

toString() Returns the string "true" if the value of the Boolean object is true; otherwise,
returns the string "false".

valueOf() Returns the value true if the Boolean object is true; otherwise, returns false.

Fig. 11.13 | Boolean-object methods.

var n = new Number(numericValue);

Method or property Description

toString(radix) Returns the string representation of the number. The
optional radix argument (a number from 2 to 36) specifies
the number’s base. Radix 2 results in the binary representa-
tion, 8 in the octal representation, 10 in the decimal represen-
tation and 16 in the hexadecimal representation. See
Appendix E, Number Systems, for an explanation of the
binary, octal, decimal and hexadecimal number systems.

valueOf() Returns the numeric value.

Number.MAX_VALUE The largest value that can be stored in a JavaScript program.

Number.MIN_VALUE The smallest value that can be stored in a JavaScript program.

Number.NaN Not a number—a value returned from an arithmetic expres-
sion that doesn’t result in a number (e.g., parseInt("hello")
cannot convert the string "hello" to a number, so parseInt
would return Number.NaN.) To determine whether a value is
NaN, test the result with function isNaN, which returns true
if the value is NaN; otherwise, it returns false.

Number.NEGATIVE_INFINITY A value less than -Number.MAX_VALUE.

Number.POSITIVE_INFINITY A value greater than Number.MAX_VALUE.

Fig. 11.14 | Number-object methods and properties.

iw3htp5_11_JSObjects.fm Page 409 Wednesday, November 16, 2011 11:52 AM

410 Chapter 11 JavaScript: Objects

11.7 Favorite Twitter Searches: HTML5 Web Storage
Before HTML5, websites could store only small amounts of text-based information on a
user’s computer using cookies. A cookie is a key/value pair in which each key has a corre-
sponding value. The key and value are both strings. Cookies are stored by the browser on
the user’s computer to maintain client-specific information during and between browser
sessions. A website might use a cookie to record user preferences or other information that
it can retrieve during the client’s subsequent visits. For example, a website can retrieve the
user’s name from a cookie and use it to display a personalized greeting. Similarly, many
websites used cookies during a browsing session to track user-specific information, such as
the contents of an online shopping cart.

When a user visits a website, the browser locates any cookies written by that website
and sends them to the server. Cookies may be accessed only by the web server and scripts of the
website from which the cookies originated (i.e., a cookie set by a script on amazon.com can be
read only by amazon.com servers and scripts). The browser sends these cookies with every
request to the server.

Problems with Cookies
There are several problems with cookies. One is that they’re extremely limited in size. To-
day’s web apps often allow users to manipulate large amounts of data, such as documents
or thousands of emails. Some web applications allow so-called offline access—for example,
a word-processing web application might allow a user to access documents locally, even
when the computer is not connected to the Internet. Cookies cannot store entire docu-
ments.

Another problem is that a user often opens many tabs in the same browser window.
If the user browses the same site from multiple tabs, all of the site’s cookies are shared by
the pages in each tab. This could be problematic in web applications that allow the user to
purchase items. For example, if the user is purchasing different items in each tab, with
cookies it’s possible that the user could accidentally purchase the same item twice.

Introducing localStorage and sessionStorage
As of HTML5, there are two new mechanisms for storing key/value pairs that help elim-
inate some of the problems with cookies. Web applications can use the window object’s
localStorage property to store up to several megabytes of key/value-pair string data on
the user’s computer and can access that data across browsing sessions and browser tabs.
Unlike cookies, data in the localStorage object is not sent to the web server with each
request. Each website domain (such as deitel.com or google.com) has a separate local-

Method Description

getElementById(id) Returns the HTML5 element whose id attribute
matches id.

getElementByTagName(tagName) Returns an array of the HTML5 elements with the
specified tagName.

Fig. 11.15 | document-object methods.

iw3htp5_11_JSObjects.fm Page 410 Wednesday, November 16, 2011 11:52 AM

11.7 Favorite Twitter Searches: HTML5 Web Storage 411

Storage object—all the pages from a given domain share one localStorage object. Typ-
ically, 5MB are reserved for each localStorage object, but a web browser can ask the user
if more space should be allocated when the space is full.

Web applications that need access to data for only a browsing session and that must
keep that data separate among multiple tabs can use the window object’s sessionStorage
property. There’s a separate sessionStorage object for every browsing session, including
separate tabs that are accessing the same website.

Favorite Twitter Searches App Using localStorage and sessionStorage
To demonstrate these new HTML5 storage capabilities, we’ll implement a Favorite Twitter
Searches app. Twitter’s search feature is a great way to follow trends and see what people
are saying about specific topics. The app we present here allows users to save their favorite
(possibly lengthy) Twitter search strings with easy-to-remember, user-chosen, short tag
names. Users can then conveniently follow the tweets on their favorite topics by visiting
this web page and clicking the link for a saved search. Twitter search queries can be finely
tuned using Twitter’s search operators (dev.twitter.com/docs/using-search)—but
more complex queries are lengthy, time consuming and error prone to type. The user’s fa-
vorite searches are saved using localStorage, so they’re immediately available each time
the user browses the app’s web page.

Figure 11.16(a) shows the app when it’s loaded for the first time. The app uses ses-
sionStorage to determine whether the user has visited the page previously during the cur-
rent browsing session. If not, the app displays a welcome message. The user can save many
searches and view them in alphabetical order. Search queries and their corresponding tags
are entered in the text inputs at the top of the page. Clicking the Save button adds the
new search to the favorites list. Clicking a the link for a saved search requests the search
page from Twitter’s website, passing the user’s saved search as an argument, and displays
the search results in the web browser.

Fig. 11.16 | Sample outputs from the Favorite Twitter Searches web application. (Part 1 of 2.)

a) Favorite Twitter Searches app when it’s loaded for the first time in this browsing
session and there are no tagged searches

Tag your search

Enter Twitter
search query here

Welcome message
appears only on

the first visit to the
page during this

browsing session

iw3htp5_11_JSObjects.fm Page 411 Wednesday, November 16, 2011 11:52 AM

412 Chapter 11 JavaScript: Objects

Fig. 11.16 | Sample outputs from the Favorite Twitter Searches web application. (Part 2 of 2.)

b) App with several saved searches and the user saving a new search

Saved searches

c) App after new search is saved—the user is about to click the Deitel search

d) Results of touching the Deitel link

iw3htp5_11_JSObjects.fm Page 412 Wednesday, November 16, 2011 11:52 AM

11.7 Favorite Twitter Searches: HTML5 Web Storage 413

Figure 11.16(b) shows the app with several previously saved searches. Figure 11.16(c)
shows the user entering a new search. Figure 11.16(d) shows the result of touching the
Deitel link, which searches for tweets from Deitel—specified in Fig. 11.16(c) with the
Twitter search from:Deitel. You can edit the searches using the Edit buttons to the right
of each search link. This enables you to tweak your searches for better results after you save
them as favorites. Touching the Clear All Saved Searches button removes all the searches
from the favorites list. Some browsers support localStorage and sessionStorage only
for web pages that are downloaded from a web server, not for web pages that are loaded
directly from the local file system. So, we’ve posted the app online for testing at:

Favorite Twitter Searches HTML5 Document
The Favorite Twitter Searches application contains three files—FavoriteTwitterSearch-

es.html (Fig. 11.17), styles.css (Fig. 11.18) and FavoriteTwitterSearches.js

(Fig. 11.18). The HTML5 document provides a form (lines 14–24) that allows the user
to enter new searches. Previously tagged searches are displayed in the div named searches
(line 26).

http://test.deitel.com/iw3htp5/ch11/fig11_20-22/
 FavoriteTwitterSearches.html

1 <!DOCTYPE html>
2
3 <!-- Fig. 11.17: FavoriteTwitterSearchs.html -->
4 <!-- Favorite Twitter Searches web application. -->
5 <html>
6 <head>
7 <title>Twitter Searches</title>
8 <link rel = "stylesheet" type = "text/css" href = "style.css">
9 <script src = "FavoriteTwitterSearches.js"></script>

10 </head>
11 <body>
12 <h1>Favorite Twitter Searches</h1>
13 <p id = "welcomeMessage"></p>
14 <form action = "#">
15 <p><input id = "query" type = "text"
16 placeholder = "Entery Twitter search query">
17
18 Twitter search operators</p>
19 <p><input id = "tag" type = "text" placeholder = "Tag your query">
20 <input type = "button" value = "Save"
21 id = "saveButton">
22 <input type = "button" value = "Clear All Saved Searches"
23 id = "clearButton"></p>
24 </form>
25 <h1>Previously Tagged Searches</h1>
26
27 </body>
28 </html>

Fig. 11.17 | Favorite Twitter Searches web application.

<div id = "searches"></div>

iw3htp5_11_JSObjects.fm Page 413 Wednesday, November 16, 2011 11:52 AM

414 Chapter 11 JavaScript: Objects

CSS for Favorite Twitter Searches
Figure 11.18 contains the CSS styles for this app. Line 3 uses a CSS3 attribute selector to
select all input elements that have the type "text" and sets their width to 250px. Each
link that represents a saved search is displayed in a span that has a fixed width (line 6). To
specify the width, we set the display property of the spans to inline-block. Line 8 spec-
ifies a :first-child selector that’s used to select the first list item in the unordered list of
saved searches that’s displayed at the bottom of the web page. Lines 9–10 and 11–12 use
:nth-child selectors to specify the styles of the odd (first, third, fifth, etc.) and even (sec-
ond, fourth, sixth, etc.) list items, respectively. We use these selectors or alternate the back-
ground colors of the saved searches.

Script for Favorite Twitter Searches
Figure 11.19 presents the JavaScript for the Favorite Twitter Searches app. When the
HTML5 document in Fig. 11.17 loads, function start (lines 80–87) is called to register
event handlers and call function loadSearches (lines 7–44). Line 9 uses the sessionStor-
age object to determine whether the user has already visited the page during this browsing
session. The getItem method receives a name of a key as an argument. If the key exists,
the method returns the corresponding string value; otherwise, it returns null. If this is the
user’s first visit to the page during this browsing session, line 11 uses the setItem method
to set the key "herePreviously" to the string "true", then lines 12–13 display a welcome
message in the welcomeMessage paragraph element. Next, line 16 gets the localStorage
object’s length, which represents the number of key/value pairs stored. Line 17 creates an
array and assigns it to the script variable tags, then lines 20–23 get the keys from the lo-
calStorage object and store them in the tags array. Method key (line 22) receives an in-
dex as an argument and returns the corresponding key. Line 25 sorts the tags array, so
that we can display the searches in alphabetical order by tag name (i.e., key). Lines 27–42
build the unordered list of links representing the saved searches. Line 33 calls the local-
Storage object’s getItem method to obtain the search string for a given tag and appends
the search string to the Twitter search URL (line 28). Notice that, for simplicity, lines 37
and 38 use the onclick attributes of the dynamically generated Edit and Delete buttons to
set the buttons’ event handlers—this is an older mechanism for registering event handlers.
To register these with the elements’ addEventListener method, we’d have to dynamically
locate the buttons in the page after we’ve created them, then register the event handlers,

1 p { margin: 0px; }
2 #welcomeMessage { margin-bottom: 10px; font-weight: bold; }
3
4
5 /* list item styles */
6 span { margin-left: 10px; width: 100px; }
7 li { list-style-type: none; width: 220px;}
8
9

10
11
12

Fig. 11.18 | Styles used in the Favorite Twitter Searches app.

input[type = "text"] { width: 250px; }

display: inline-block;

li:first-child { border-top: 1px solid grey; }
li:nth-child(even) { background-color: lightyellow;
 border-bottom: 1px solid grey; }
li:nth-child(odd) { background-color: lightblue;
 border-bottom: 1px solid grey; }

iw3htp5_11_JSObjects.fm Page 414 Wednesday, November 16, 2011 11:52 AM

11.7 Favorite Twitter Searches: HTML5 Web Storage 415

which would require significant additional code. Separately, notice that each event handler
is receiving the button input element’s id as an argument—this enables the event handler
to use the id value when handling the event. [Note: The localStorage and sessionStor-
age properties and methods we discuss throughout this section apply to both objects.]

1 // Fig. 11.19: FavoriteTwitterSearchs.js
2 // Storing and retrieving key/value pairs using
3 // HTML5 localStorage and sessionStorage
4 var tags; // array of tags for queries
5
6 // loads previously saved searches and displays them in the page
7 function loadSearches()
8 {
9 if ()

10 {
11
12 document.getElementById("welcomeMessage").innerHTML =
13 "Welcome to the Favorite Twitter Searches App";
14 } // end if
15
16 var length = ; // number of key/value pairs
17 tags = []; // create empty array
18
19 // load all keys
20 for (var i = 0; i < length; ++i)
21 {
22
23 } // end for
24
25 tags.sort(); // sort the keys
26
27 var markup = ""; // used to store search link markup
28
29
30 // build list of links
31 for (var tag in tags)
32 {
33 var query = url + ;
34 markup += "" + tags[tag] +
35 "" +
36 "<input id = '" + tags[tag] + "' type = 'button' " +
37 "value = 'Edit' '>" +
38 "<input id = '" + tags[tag] + "' type = 'button' " +
39 "value = 'Delete' '>";
40 } // end for
41
42 markup += "";
43 document.getElementById("searches").innerHTML = markup;
44 } // end function loadSearches
45

Fig. 11.19 | Storing and retrieving key/value pairs using HTML5 localStorage and
sessionStorage. (Part 1 of 2.)

!sessionStorage.getItem("herePreviously")

sessionStorage.setItem("herePreviously", "true");

localStorage.length

tags[i] = localStorage.key(i);

var url = "http://search.twitter.com/search?q=";

localStorage.getItem(tags[tag])

onclick = 'editTag(id)

onclick = 'deleteTag(id)

iw3htp5_11_JSObjects.fm Page 415 Wednesday, November 16, 2011 11:52 AM

416 Chapter 11 JavaScript: Objects

Function clearAllSearches (lines 47–51) is called when the user clicks the Clear All
Saved Searches button. The clear method of the localStorage object (line 49) removes
all key/value pairs from the object. We then call loadSearches to refresh the list of saved
searches in the web page.

46 // deletes all key/value pairs from localStorage
47 function clearAllSearches()
48 {
49
50 loadSearches(); // reload searches
51 } // end function clearAllSearches
52
53 // saves a newly tagged search into localStorage
54 function saveSearch()
55 {
56 var query = document.getElementById("query");
57 var tag = document.getElementById("tag");
58
59 tag.value = ""; // clear tag input
60 query.value = ""; // clear query input
61 loadSearches(); // reload searches
62 } // end function saveSearch
63
64 // deletes a specific key/value pair from localStorage
65 function deleteTag(tag)
66 {
67
68 loadSearches(); // reload searches
69 } // end function deleteTag
70
71 // display existing tagged query for editing
72 function editTag(tag)
73 {
74 document.getElementById("query").value = ;
75 document.getElementById("tag").value = tag;
76 loadSearches(); // reload searches
77 } // end function editTag
78
79 // register event handlers then load searches
80 function start()
81 {
82 var saveButton = document.getElementById("saveButton");
83 saveButton.addEventListener("click", saveSearch, false);
84 var clearButton = document.getElementById("clearButton");
85 clearButton.addEventListener("click", clearAllSearches, false);
86 loadSearches(); // load the previously saved searches
87 } // end function start
88
89 window.addEventListener("load", start, false);

Fig. 11.19 | Storing and retrieving key/value pairs using HTML5 localStorage and
sessionStorage. (Part 2 of 2.)

localStorage.clear();

localStorage.setItem(tag.value, query.value);

localStorage.removeItem(tag);

localStorage[tag]

iw3htp5_11_JSObjects.fm Page 416 Wednesday, November 16, 2011 11:52 AM

11.8 Using JSON to Represent Objects 417

Function saveSearch (lines 54–62) is called when the user clicks Save to save a
search. Line 58 uses the setItem method to store a key/value pair in the localStorage
object. If the key already exits, setItem replaces the corresponding value; otherwise, it cre-
ates a new key/value pair. We then call loadSearches to refresh the list of saved searches
in the web page.

Function deleteTag (lines 65–69) is called when the user clicks the Delete button
next to a particular search. The function receives the tag representing the key/value pair to
delete, which we set in line 38 as the button’s id. Line 67 uses the removeItem method to
remove a key/value pair from the localStorage object. We then call loadSearches to
refresh the list of saved searches in the web page.

Function editTag (lines 72–77) is called when the user clicks the Edit button next to
a particular search. The function receives the tag representing the key/value pair to edit,
which we set in line 36 as the button’s id. In this case, we display the corresponding key/
value pair’s contents in the input elements with the ids "tag" and "query", respectively,
so the user can edit them. Line 74 uses the [] operator to access the value for a specified
key (tag)—this performs the same task as calling getItem on the localStorage object.
We then call loadSearches to refresh the list of saved searches in the web page.

11.8 Using JSON to Represent Objects
In 1999, JSON (JavaScript Object Notation)—a simple way to represent JavaScript ob-
jects as strings—was introduced as an alternative to XML as a data-exchange technique.
JSON has gained acclaim due to its simple format, making objects easy to read, create and
parse. Each JSON object is represented as a list of property names and values contained in
curly braces, in the following format:

Arrays are represented in JSON with square brackets in the following format:

Each value can be a string, a number, a JSON object, true, false or null. To appreciate
the simplicity of JSON data, examine this representation of an array of address-book en-
tries that we’ll use in Chapter 16:

JSON provides a straightforward way to manipulate objects in JavaScript, and many
other programming languages now support this format. In addition to simplifying object
creation, JSON allows programs to easily extract data and efficiently transmit it across the
Internet. JSON integrates especially well with Ajax applications, discussed in Chapter 16.
See Section 16.6 for a more detailed discussion of JSON, as well as an Ajax-specific
example. For more information on JSON, visit our JSON Resource Center at
www.deitel.com/json.

{ propertyName1 : value1, propertyName2 : value2 }

[value0, value1, value2]

[{ first: 'Cheryl', last: 'Black' },
 { first: 'James', last: 'Blue' },
 { first: 'Mike', last: 'Brown' },
 { first: 'Meg', last: 'Gold' }]

iw3htp5_11_JSObjects.fm Page 417 Wednesday, November 16, 2011 11:52 AM

418 Chapter 11 JavaScript: Objects

Summary
Section 11.2 Math Object
• Math-object methods (p. 393) enable you to perform many common mathematical calculations.

• An object’s methods are called by writing the name of the object followed by a dot (.) and the
name of the method. In parentheses following the method name are arguments to the method.

Section 11.3 String Object
• Characters are the building blocks of JavaScript programs. Every program is composed of a se-

quence of characters grouped together meaningfully that’s interpreted by the computer as a series
of instructions used to accomplish a task.

• A string is a series of characters treated as a single unit.

• A string may include letters, digits and various special characters, such as +, -, *, /, and $.

• JavaScript supports Unicode (p. 395), which represents a large portion of the world’s languages.

• String literals or string constants (p. 395) are written as a sequence of characters in double or sin-
gle quotation marks.

• Combining strings is called concatenation (p. 395).

• String method charAt (p. 397) returns the character at a specific index in a string. Indices for the
characters in a string start at 0 (the first character) and go up to (but do not include) the string’s
length (i.e., if the string contains five characters, the indices are 0 through 4). If the index is out-
side the bounds of the string, the method returns an empty string.

• String method charCodeAt (p. 397) returns the Unicode value of the character at a specific index
in a string. If the index is outside the bounds of the string, the method returns NaN. String meth-
od fromCharCode (p. 397) creates a string from a list of Unicode values.

• String method toLowerCase (p. 397) returns the lowercase version of a string. String method
toUpperCase (p. 397) returns the uppercase version of a string.

• String method indexOf (p. 398) determines the location of the first occurrence of its argument
in the string used to call the method. If the substring is found, the index at which the first occur-
rence of the substring begins is returned; otherwise, -1 is returned. This method receives an op-
tional second argument specifying the index from which to begin the search.

• String method lastIndexOf (p. 398) determines the location of the last occurrence of its argu-
ment in the string used to call the method. If the substring is found, the index at which the last
occurrence of the substring begins is returned; otherwise, -1 is returned. This method receives an
optional second argument specifying the index from which to begin the search.

• The process of breaking a string into tokens (p. 401) is called tokenization (p. 401). Tokens are
separated from one another by delimiters, typically white-space characters such as blank, tab,
newline and carriage return. Other characters may also be used as delimiters to separate tokens.

• String method split (p. 401) breaks a string into its component tokens. The argument to meth-
od split is the delimiter string (p. 402)—the string that determines the end of each token in the
original string. Method split returns an array of strings containing the tokens.

• String method substring returns the substring from the starting index (its first argument,
p. 402) up to but not including the ending index (its second argument, p. 402). If the ending
index is greater than the length of the string, the substring returned includes the characters from
the starting index to the end of the original string.

Section 11.4 Date Object
• JavaScript’s Date object (p. 403) provides methods for date and time manipulations.

iw3htp5_11_JSObjects.fm Page 418 Wednesday, November 16, 2011 11:52 AM

 Summary 419

• Date and time processing can be performed based either on the computer’s local time zone
(p. 403) or on World Time Standard’s Coordinated Universal Time (abbreviated UTC,
p. 403)—formerly called Greenwich Mean Time (GMT, p. 403).

• Most methods of the Date object have a local time zone and a UTC version.

• Date method parse receives as its argument a string representing a date and time and returns the
number of milliseconds between midnight, January 1, 1970, and the specified date and time.

• Date method UTC (p. 407) returns the number of milliseconds between midnight, January 1,
1970, and the date and time specified as its arguments. The arguments to the UTC method include
the required year, month and date, and the optional hours, minutes, seconds and milliseconds.
If any of the hours, minutes, seconds or milliseconds arguments is not specified, a zero is supplied
in its place. For the hours, minutes and seconds arguments, if the argument to the right of any
of these arguments is specified, that argument must also be specified (e.g., if the minutes argu-
ment is specified, the hours argument must be specified; if the milliseconds argument is specified,
all the arguments must be specified).

Section 11.5 Boolean and Number Objects
• JavaScript provides the Boolean (p. 408) and Number (p. 408) objects as object wrappers for bool-

ean true/false values and numbers, respectively.

• When a boolean value is required in a JavaScript program, JavaScript automatically creates a
Boolean object to store the value.

• JavaScript programmers can create Boolean objects explicitly with the statement

var b = new Boolean(booleanValue);

The argument booleanValue specifies the value of the Boolean object (true or false). If boolean-
Value is false, 0, null, Number.NaN or the empty string (""), or if no argument is supplied, the
new Boolean object contains false. Otherwise, the new Boolean object contains true.

• JavaScript automatically creates Number objects to store numeric values in a JavaScript program.

• JavaScript programmers can create a Number object with the statement

var n = new Number(numericValue);

The argument numericValue is the number to store in the object. Although you can explicitly cre-
ate Number objects, normally they’re created when needed by the JavaScript interpreter.

Section 11.6 document Object
• JavaScript provides the document object (p. 409) for manipulating the document that’s currently

visible in the browser window.

Section 11.7 Favorite Twitter Searches: HTML5 Web Storage
• Before HTML5, websites could store only small amounts of text-based information on a user’s

computer using cookies. A cookie (p. 410) is a key/value pair in which each key has a correspond-
ing value. The key and value are both strings.

• Cookies are stored by the browser on the user’s computer to maintain client-specific information
during and between browser sessions.

• When a user visits a website, the browser locates any cookies written by that website and sends
them to the server. Cookies may be accessed only by the web server and scripts of the website
from which the cookies originated.

• Web applications can use the window object’s localStorage property (p. 410) to store up to sev-
eral megabytes of key/value-pair string data on the user’s computer and can access that data across
browsing sessions and browser tabs.

iw3htp5_11_JSObjects.fm Page 419 Wednesday, November 16, 2011 11:52 AM

420 Chapter 11 JavaScript: Objects

• Unlike cookies, data in the localStorage object is not sent to the web server with each request.

• Each website domain has a separate localStorage object—all the pages from a given domain
share it. Typically, 5MB are reserved for each localStorage object, but a web browser can ask
the user whether more space should be allocated when the space is full.

• Web applications that need access to key/value pair data for only a browsing session and that
must keep that data separate among multiple tabs can use the window object’s sessionStorage
property (p. 411). There’s a separate sessionStorage object for every browsing session, includ-
ing separate tabs that are accessing the same website.

• A CSS3 :first-child selector (p. 414) selects the first child of an element.

• A CSS3 :nth-child selector (p. 414) with the argument "odd" selects the odd child elements,
and one with the argument "even" selects the even child elements.

• The localStorage and sessionStorage method getItem (p. 414) receives a name of a key as an
argument. If the key exists, the method returns the corresponding string value; otherwise, it re-
turns null. Method setItem (p. 414) sets a key/value pair. If the key already exits, setItem re-
places the value for the specified key; otherwise, it creates a new key/value pair.

• The localStorage and sessionStorage length property (p. 414) returns the number of key/val-
ue pairs stored in the corresponding object.

• The localStorage and sessionStorage method key (p. 414) receives an index as an argument
and returns the corresponding key.

• The localStorage and sessionStorage method clear (p. 416) removes all key/value pairs from
the corresponding object.

• The localStorage and sessionStorage method removeItem (p. 417) removes a key/value pair
from the corresponding object.

• In addition to getItem, you can use the [] operator to access the value for a specified key in a
localStorage or sessionStorage object.

Section 11.8 Using JSON to Represent Objects
• JSON (JavaScript Object Notation, p. 417) is a simple way to represent JavaScript objects as

strings.

• JSON was introduced in 1999 as an alternative to XML for data exchange.

• Each JSON object is represented as a list of property names and values contained in curly braces,
in the following format:

{ propertyName1 : value1, propertyName2 : value2 }

• Arrays are represented in JSON with square brackets in the following format:

[value0, value1, value2]

• Values in JSON can be strings, numbers, JSON objects, true, false or null.

Self-Review Exercise
11.1 Fill in the blanks in each of the following statements:

a) Because JavaScript uses objects to perform many tasks, JavaScript is commonly referred
to as a(n) .

b) All objects have and exhibit .
c) The methods of the object allow you to perform many common mathematical

calculations.
d) Invoking (or calling) a method of an object is referred to as .

iw3htp5_11_JSObjects.fm Page 420 Wednesday, November 16, 2011 11:52 AM

 Answers to Self-Review Exercise 421

e) String literals or string constants are written as a sequence of characters in or
.

f) Indices for the characters in a string start at .
g) String methods and search for the first and last occurrences of a

substring in a String, respectively.
h) The process of breaking a string into tokens is called .
i) Date and time processing can be performed based on the or on World Time

Standard’s .
j) Date method receives as its argument a string representing a date and time and

returns the number of milliseconds between midnight, January 1, 1970, and the speci-
fied date and time.

k) Web applications can use the window object’s property to store up to several
megabytes of key/value-pair string data on the user’s computer and can access that data
across browsing sessions and browser tabs.

l) Web applications that need access to key/value pair data for only a browsing session and
that must keep that data separate among multiple tabs can use the window object’s

 property.
m) A CSS3 selector selects the first child of an element.
n) A CSS3 selector with the argument "odd" selects the odd child elements, and

one with the argument "even" selects the even child elements.

Answers to Self-Review Exercise
11.1 a) object-based programming language. b) attributes, behaviors. c) Math. d) sending a mes-
sage to the object. e) double quotation marks, single quotation marks. f) 0. g) indexOf, lastIn-
dexOf. h) tokenization. i) computer’s local time zone, Coordinated Universal Time (UTC).
j) parse. k) localStorage. l) sessionStorage. m) :first-child. n) :nth-child.

Exercises
11.2 Create a web page that contains four buttons. Each button, when clicked, should cause an
alert dialog to display a different time or date in relation to the current time. Create a Now button
that alerts the current time and date and a Yesterday button that alerts the time and date 24 hours
ago. The other two buttons should alert the time and date ten years ago and one week from today.

11.3 Write a script that tests as many of the Math library functions in Fig. 11.1 as you can. Exer-
cise each of these functions by having your program display tables of return values for several argu-
ment values in an HTML5 textarea.

11.4 Math method floor may be used to round a number to a specific decimal place. For exam-
ple, the statement

y = Math.floor(x * 10 + .5) / 10;

rounds x to the tenths position (the first position to the right of the decimal point). The statement

y = Math.floor(x * 100 + .5) / 100;

rounds x to the hundredths position (i.e., the second position to the right of the decimal point).
Write a script that defines four functions to round a number x in various ways:

a) roundToInteger(number)
b) roundToTenths(number)
c) roundToHundredths(number)
d) roundToThousandths(number)

iw3htp5_11_JSObjects.fm Page 421 Wednesday, November 16, 2011 11:52 AM

422 Chapter 11 JavaScript: Objects

For each value read, your program should display the original value, the number rounded to
the nearest integer, the number rounded to the nearest tenth, the number rounded to the nearest
hundredth and the number rounded to the nearest thousandth.

11.5 Modify the solution to Exercise 11.4 to use Math method round instead of method floor.

11.6 Write a script that uses relational and equality operators to compare two Strings input by
the user through an HTML5 form. Display whether the first string is less than, equal to or greater
than the second.

11.7 Write a script that uses random number generation to create sentences. Use four arrays of
strings called article, noun, verb and preposition. Create a sentence by selecting a word at random
from each array in the following order: article, noun, verb, preposition, article and noun. As each
word is picked, concatenate it to the previous words in the sentence. The words should be separated
by spaces. When the final sentence is output, it should start with a capital letter and end with a period.

The arrays should be filled as follows: the article array should contain the articles "the", "a",
"one", "some" and "any"; the noun array should contain the nouns "boy", "girl", "dog", "town" and
"car"; the verb array should contain the verbs "drove", "jumped", "ran", "walked" and "skipped";
the preposition array should contain the prepositions "to", "from", "over", "under" and "on".

The program should generate 20 sentences to form a short story and output the result to an
HTML5 textarea. The story should begin with a line reading "Once upon a time..." and end
with a line reading "THE END".

11.8 (Limericks) A limerick is a humorous five-line verse in which the first and second lines
rhyme with the fifth, and the third line rhymes with the fourth. Using techniques similar to those
developed in Exercise 11.7, write a script that produces random limericks. Polishing this program
to produce good limericks is a challenging problem, but the result will be worth the effort!

11.9 (Pig Latin) Write a script that encodes English-language phrases in pig Latin. Pig Latin is
a form of coded language often used for amusement. Many variations exist in the methods used to
form pig Latin phrases. For simplicity, use the following algorithm:

To form a pig Latin phrase from an English-language phrase, tokenize the phrase into an array
of words using String method split. To translate each English word into a pig Latin word, place
the first letter of the English word at the end of the word and add the letters “ay.” Thus the word
“jump” becomes “umpjay,” the word “the” becomes “hetay” and the word “computer” becomes
“omputercay.” Blanks between words remain as blanks. Assume the following: The English phrase
consists of words separated by blanks, there are no punctuation marks and all words have two or
more letters. Function printLatinWord should display each word. Each token (i.e., word in the
sentence) is passed to method printLatinWord to print the pig Latin word. Enable the user to
input the sentence through an HTML5 form. Keep a running display of all the converted sen-
tences in an HTML5 textarea.

11.10 Write a script that inputs a telephone number as a string in the form (555) 555-5555. The
script should use String method split to extract the area code as a token, the first three digits of
the phone number as a token and the last four digits of the phone number as a token. Display the
area code in one text field and the seven-digit phone number in another text field.

11.11 Write a script that inputs a line of text, tokenizes it with String method split and outputs
the tokens in reverse order.

11.12 Write a script that inputs text from an HTML5 form and outputs it in uppercase and low-
ercase letters.

11.13 Write a script that inputs several lines of text and a search character and uses String method
indexOf to determine the number of occurrences of the character in the text.

iw3htp5_11_JSObjects.fm Page 422 Wednesday, November 16, 2011 11:52 AM

 Special Section: Challenging String-Manipulation Projects 423

11.14 Write a script based on the program in Exercise 11.13 that inputs several lines of text and
uses String method indexOf to determine the total number of occurrences of each letter of the
alphabet in the text. Uppercase and lowercase letters should be counted together. Store the totals for
each letter in an array, and print the values in tabular format in an HTML5 textarea after the totals
have been determined.

11.15 Write a script that reads a series of strings and outputs in an HTML5 textarea only those
strings beginning with the character “b.”

11.16 Write a script that reads a series of strings and outputs in an HTML5 textarea only those
strings ending with the characters “ed.”

11.17 Write a script that inputs an integer code for a character and displays the corresponding
character.

11.18 Modify your solution to Exercise 11.17 so that it generates all possible three-digit codes in
the range 000 to 255 and attempts to display the corresponding characters. Display the results in an
HTML5 textarea.

11.19 Write your own version of the String method indexOf and use it in a script.

11.20 Write your own version of the String method lastIndexOf and use it in a script.

11.21 Write a program that reads a five-letter word from the user and produces all possible three-
letter words that can be derived from the letters of the five-letter word. For example, the three-letter
words produced from the word “bathe” include the commonly used words “ate,” “bat,” “bet,” “tab,”
“hat,” “the” and “tea.” Output the results in an HTML5 textarea.

11.22 (Printing Dates in Various Formats) Dates are printed in several common formats. Write
a script that reads a date from an HTML5 form and creates a Date object in which to store it. Then
use the various methods of the Date object that convert Dates into strings to display the date in sev-
eral formats.

Special Section: Challenging String-Manipulation Projects
The preceding exercises are keyed to the text and designed to test the reader's understanding of
fundamental string-manipulation concepts. This section includes a collection of intermediate and
advanced string-manipulation exercises. The reader should find these problems challenging, yet
entertaining. The problems vary considerably in difficulty. Some require an hour or two of pro-
gram writing and implementation. Others are useful for lab assignments that might require two or
three weeks of study and implementation. Some are challenging term projects.

11.23 (Text Analysis) The availability of computers with string-manipulation capabilities has re-
sulted in some rather interesting approaches to analyzing the writings of great authors. Much atten-
tion has been focused on whether William Shakespeare really wrote the works attributed to him.
Some scholars believe there’s substantial evidence indicating that Christopher Marlowe actually
penned these masterpieces. Researchers have used computers to find similarities in the writings of
these two authors. This exercise examines three methods for analyzing texts with a computer.

a) Write a script that reads several lines of text from the keyboard and prints a table indi-
cating the number of occurrences of each letter of the alphabet in the text. For example,
the phrase

To be, or not to be: that is the question:

contains one “a,” two “b’s,” no “c’s,” etc.

iw3htp5_11_JSObjects.fm Page 423 Wednesday, November 16, 2011 11:52 AM

424 Chapter 11 JavaScript: Objects

b) Write a script that reads several lines of text and prints a table indicating the number of
one-letter words, two-letter words, three-letter words, etc., appearing in the text. For ex-
ample, the phrase

Whether 'tis nobler in the mind to suffer

contains

c) Write a script that reads several lines of text and prints a table indicating the number of
occurrences of each different word in the text. The first version of your program should
include the words in the table in the same order in which they appear in the text. For
example, the lines

To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer

contain the word “to” three times, the word “be” twice, and the word “or” once. A
more interesting (and useful) printout should then be attempted in which the words
are sorted alphabetically.

11.24 (Check Protection) Computers are frequently employed in check-writing systems such as
payroll and accounts payable applications. Many strange stories circulate regarding weekly pay-
checks being printed (by mistake) for amounts in excess of $1 million. Incorrect amounts are print-
ed by computerized check-writing systems because of human error and/or machine failure. Systems
designers build controls into their systems to prevent erroneous checks from being issued.

Another serious problem is the intentional alteration of a check amount by someone who
intends to cash a check fraudulently. To prevent a dollar amount from being altered, most
computerized check-writing systems employ a technique called check protection.

Checks designed for imprinting by computer contain a fixed number of spaces in which the
computer may print an amount. Suppose a paycheck contains eight blank spaces in which the
computer is supposed to print the amount of a weekly paycheck. If the amount is large, then all
eight of those spaces will be filled, for example:

1,230.60 (check amount)

12345678 (position numbers)

On the other hand, if the amount is less than $1000, then several of the spaces will ordinarily
be left blank. For example,

 99.87

12345678

Word length Occurrences

1 0

2 2

3 1

4 2 (including ’tis)

5 0

6 2

7 1

iw3htp5_11_JSObjects.fm Page 424 Wednesday, November 16, 2011 11:52 AM

 Special Section: Challenging String-Manipulation Projects 425

contains three blank spaces. If a check is printed with blank spaces, it’s easier for someone to alter
the amount of the check. To prevent a check from being altered, many check-writing systems insert
leading asterisks to protect the amount as follows:

***99.87

12345678

Write a script that inputs a dollar amount to be printed on a check, then prints the amount in
check-protected format with leading asterisks if necessary. Assume that nine spaces are available for
printing the amount.

11.25 (Writing the Word Equivalent of a Check Amount) Continuing the discussion in the pre-
ceding exercise, we reiterate the importance of designing check-writing systems to prevent alteration
of check amounts. One common security method requires that the check amount be both written
in numbers and spelled out in words. Even if someone is able to alter the numerical amount of the
check, it’s extremely difficult to change the amount in words.

Many computerized check-writing systems do not print the amount of the check in words.
Perhaps the main reason for this omission is that most high-level languages used in commercial
applications do not contain adequate string-manipulation features. Another reason is that the logic
for writing word equivalents of check amounts is somewhat involved.

Write a script that inputs a numeric check amount and writes the word equivalent of the
amount. For example, the amount 112.43 should be written as

ONE HUNDRED TWELVE and 43/100

11.26 (Metric Conversion Program) Write a script that will assist the user with metric conver-
sions. Your program should allow the user to specify the names of the units as strings (e.g., centi-
meters, liters, grams, for the metric system and inches, quarts, pounds, for the English system) and
should respond to simple questions such as

"How many inches are in 2 meters?"
"How many liters are in 10 quarts?"

Your program should recognize invalid conversions. For example, the question

"How many feet are in 5 kilograms?"

is not a meaningful question because "feet" is a unit of length whereas "kilograms" is a unit of mass.

11.27 (Project: A Spell Checker) Many popular word-processing software packages have built-in
spell checkers.

In this project, you’re asked to develop your own spell-checker utility. We make suggestions to
help get you started. You should then consider adding more capabilities. Use a computerized dic-
tionary (if you have access to one) as a source of words.

Why do we type so many words with incorrect spellings? In some cases, it’s because we simply
do not know the correct spelling, so we make a best guess. In some cases, it’s because we transpose
two letters (e.g., “defualt” instead of “default”). Sometimes we double-type a letter accidentally
(e.g., “hanndy” instead of “handy”). Sometimes we type a nearby key instead of the one we
intended (e.g., “biryhday” instead of “birthday”). And so on.

Design and implement a spell-checker application in JavaScript. Your program should main-
tain an array wordList of strings. Enable the user to enter these strings.

Your program should ask a user to enter a word. The program should then look up the word
in the wordList array. If the word is present in the array, your program should print “Word is
spelled correctly.”

If the word is not present in the array, your program should print “word is not spelled cor-
rectly.” Then your program should try to locate other words in wordList that might be the word

iw3htp5_11_JSObjects.fm Page 425 Wednesday, November 16, 2011 11:52 AM

426 Chapter 11 JavaScript: Objects

the user intended to type. For example, you can try all possible single transpositions of adjacent let-
ters to discover that the word “default” is a direct match to a word in wordList. Of course, this
implies that your program will check all other single transpositions, such as “edfault,” “dfeault,”
“deafult,” “defalut” and “defautl.” When you find a new word that matches one in wordList, print
that word in a message, such as “Did you mean "default?"”

Implement any other tests you can develop, such as replacing each double letter with a single
letter, to improve the value of your spell checker.

11.28 (Project: Crossword Puzzle Generator) Most people have worked a crossword puzzle, but
few have ever attempted to generate one. Generating a crossword puzzle is suggested here as a string-
manipulation project requiring substantial sophistication and effort.

You must resolve many issues to get even the simplest crossword puzzle generator program
working. For example, how does one represent the grid of a crossword puzzle in the computer?
Should one use a series of strings, or use double-subscripted arrays?

You need a source of words (i.e., a computerized dictionary) that can be directly referenced by
the program. In what form should these words be stored to facilitate the complex manipulations
required by the program?

The really ambitious reader will want to generate the clues portion of the puzzle, in which the
brief hints for each across word and each down word are printed for the puzzle worker. Merely
printing a version of the blank puzzle itself is not a simple problem.

iw3htp5_11_JSObjects.fm Page 426 Wednesday, November 16, 2011 11:52 AM

12Document Object Model
(DOM): Objects and
Collections

Though leaves are many, the
root is one.
—William Butler Yeats

Most of us become parents long
before we have stopped being
children.
—Mignon McLaughlin

Sibling rivalry is inevitable.
The only sure way to avoid it is
to have one child.
—Nancy Samalin

O b j e c t i v e s
In this chapter you will:

■ Use JavaScript and the W3C
Document Object Model to
create dynamic web pages.

■ Learn the concept of DOM
nodes and DOM trees.

■ Traverse, edit and modify
elements in an HTML5
document.

■ Change CSS styles
dynamically.

■ Create JavaScript animations.

iw3htp5_12_DOMObjColl.fm Page 427 Wednesday, November 16, 2011 11:52 AM

428 Chapter 12 Document Object Model (DOM): Objects and Collections

12.1 Introduction
In this chapter we introduce the Document Object Model (DOM). The DOM gives you
scripting access to all the elements on a web page. Inside the browser, the whole web
page—paragraphs, forms, tables, etc.—is represented in an object hierarchy. Using
JavaScript, you can dynamically create, modify and remove elements in the page.

We introduce the concepts of DOM nodes and DOM trees. We discuss properties
and methods of DOM nodes and cover additional methods of the document object. We
show how to dynamically change style properties, which enables you to create effects, such
as user-defined background colors and animations.

12.2 Modeling a Document: DOM Nodes and Trees
As we saw in previous chapters, the document’s getElementById method is the simplest
way to access a specific element in a page. The method returns objects called DOM nodes.
Every piece of an HTML5 page (elements, attributes, text, etc.) is modeled in the web
browser by a DOM node. All the nodes in a document make up the page’s DOM tree,
which describes the relationships among elements. Nodes are related to each other through
child-parent relationships. An HTML5 element inside another element is said to be its
child—the containing element is known as the parent. A node can have multiple children
but only one parent. Nodes with the same parent node are referred to as siblings.

Today’s desktop browsers provide developer tools that can display a visual representa-
tion of a document’s DOM tree. Figure 12.1 shows how to access the developer tools for
each of the desktop browsers we use for testing web apps in this book. For the most part,
the developer tools are similar across the browsers. [Note: For Firefox, you must first install
the DOM Inspector add-on from https://addons.mozilla.org/en-US/firefox/addon/
dom-inspector-6622/. Other developer tools are available in the Firefox menu’s Web
Developer menu item, and more Firefox web-developer add-ons are available from https:/
/addons.mozilla.org/en-US/firefox/collections/mozilla/webdeveloper/.]

12.1 Introduction

12.2 Modeling a Document: DOM Nodes
and Trees

12.3 Traversing and Modifying a DOM
Tree

12.4 DOM Collections

12.5 Dynamic Styles

12.6 Using a Timer and Dynamic Styles to
Create Animated Effects

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Software Engineering Observation 12.1
With the DOM, HTML5 elements can be treated as objects, and many attributes of
HTML5 elements can be treated as properties of those objects. Then objects can be scripted
with JavaScript to achieve dynamic effects.

iw3htp5_12_DOMObjColl.fm Page 428 Wednesday, November 16, 2011 11:52 AM

12.2 Modeling a Document: DOM Nodes and Trees 429

Viewing a Document’s DOM
Figure 12.2 shows an HTML5 document in the Chrome web browser. At the bottom of
the window, the document’s DOM tree is displayed in the Elements tab of the Chrome
developer tools. The HTML5 document contains a few simple elements. A node can be
expanded and collapsed using the and arrows next to a given node. Figure 12.2
shows all the nodes in the document fully expanded. The html node at the top of the tree
is called the root node, because it has no parent. Below the html node, the head node is
indented to signify that the head node is a child of the html node. The html node represents
the html element (lines 5–21).

Browser Command to display developer tools

Chrome Windows/Linux: Control + Shift + i
Mac OS X: Command + Option + i

Firefox Windows/Linux: Control + Shift + i
Mac OS X: Command + Shift + i

Internet Explorer F12

Opera Windows/Linux: Control + Shift + i
Mac OS X: Command + Option + i

Safari Windows/Linux: Control + Shift + i
Mac OS X: Command + Option + i

Fig. 12.1 | Commands for displaying developer tools in
desktop browsers.

1 <!DOCTYPE html>
2
3 <!-- Fig. 12.2: domtree.html -->
4 <!-- Demonstration of a document's DOM tree. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>DOM Tree Demonstration</title>
9 </head>

10 <body>
11 <h1>An HTML5 Page</h1>
12 <p>This page contains some basic HTML5 elements. The DOM tree
13 for the document contains a DOM node for every element</p>
14 <p>Here's an unordered list:</p>
15
16 One
17 Two
18 Three
19
20 </body>
21 </html>

Fig. 12.2 | Demonstration of a document’s DOM tree. (Part 1 of 2.)

iw3htp5_12_DOMObjColl.fm Page 429 Wednesday, November 16, 2011 11:52 AM

430 Chapter 12 Document Object Model (DOM): Objects and Collections

The head and body nodes are siblings, since they’re both children of the html node.
The head contains the meta and title nodes. The body node contains nodes representing
each of the elements in the document’s body element. The li nodes are children of the ul
node, since they’re nested inside it.

When you select a node in the left side of the developer tools Elements tab, the node’s
details are displayed in the right side. In Fig. 12.2, we selected the p node just before the
unordered list. In the Properties section, you can see values for that node’s many proper-
ties, including the innerHTML property that we’ve used in many examples.

In addition to viewing a document’s DOM structure, the developer tools in each
browser typically enable you to view and modify styles, view and debug JavaScripts used
in the document, view the resources (such as images) used by the document, and more.
See each browser’s developer tools documentation online for more detailed information.

Fig. 12.2 | Demonstration of a document’s DOM tree. (Part 2 of 2.)

iw3htp5_12_DOMObjColl.fm Page 430 Wednesday, November 16, 2011 11:52 AM

12.3 Traversing and Modifying a DOM Tree 431

12.3 Traversing and Modifying a DOM Tree
The DOM enables you to programmatically access a document’s elements, allowing you
to modify its contents dynamically using JavaScript. This section introduces some of the
DOM-node properties and methods for traversing the DOM tree, modifying nodes and
creating or deleting content dynamically.

The example in Figs. 12.3–12.5 demonstrates several DOM node features and two
additional document-object methods. It allows you to highlight, modify, insert and remove
elements.

CSS
Figure 12.3 contains the CSS for the example. The CSS class highlighted (line 14) is ap-
plied dynamically to elements in the document as we add, remove and select elements us-
ing the form in Fig. 12.4.

HTML5 Document
Figure 12.4 contains the HTML5 document that we’ll manipulate dynamically by modi-
fying its DOM. Each element in this example has an id attribute, which we also display
at the beginning of the element in square brackets. For example, the id of the h1 element
in lines 13–14 is set to bigheading, and the heading text begins with [bigheading]. This
allows you to see the id of each element in the page. The body also contains an h3 heading,
several p elements, and an unordered list. A div element (lines 29–48) contains the re-
mainder of the document. Line 30 begins a form. Lines 32–46 contain the controls for
modifying and manipulating the elements on the page. The click event handlers (regis-
tered in Fig. 12.5) for the six buttons call corresponding functions to perform the actions
described by the buttons’ values.

JavaScript
The JavaScript code (Fig. 12.5) begins by declaring two variables. Variable currentNode
(line 3) keeps track of the currently highlighted node—the functionality of each button

1 /* Fig. 12.3: style.css */
2 /* CSS for dom.html. */
3 h1, h3 { text-align: center;
4 font-family: tahoma, geneva, sans-serif; }
5 p { margin-left: 5%;
6 margin-right: 5%;
7 font-family: arial, helvetica, sans-serif; }
8 ul { margin-left: 10%; }
9 a { text-decoration: none; }

10 a:hover { text-decoration: underline; }
11 .nav { width: 100%;
12 border-top: 3px dashed blue;
13 padding-top: 10px; }
14 .highlighted { background-color: yellow; }
15 input { width: 150px; }
16 form > p { margin: 0px; }

Fig. 12.3 | CSS for basic DOM functionality example.

iw3htp5_12_DOMObjColl.fm Page 431 Wednesday, November 16, 2011 11:52 AM

432 Chapter 12 Document Object Model (DOM): Objects and Collections

1 <!DOCTYPE html>
2
3 <!-- Fig. 12.4: dom.html -->
4 <!-- Basic DOM functionality. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Basic DOM Functionality</title>
9 <link rel = "stylesheet" type = "text/css" href = "style.css">

10 <script src = "dom.js"></script>
11 </head>
12 <body>
13 <h1 id = "bigheading" class = "highlighted">
14 [bigheading] DHTML Object Model</h1>
15 <h3 id = "smallheading">[smallheading] Element Functionality</h3>
16 <p id = "para1">[para1] The Document Object Model (DOM) allows for
17 quick, dynamic access to all elements in an HTML5 document for
18 manipulation with JavaScript.</p>
19 <p id = "para2">[para2] For more information, check out the
20 "JavaScript and the DOM" section of Deitel's
21
22 [link] JavaScript Resource Center.</p>
23 <p id = "para3">[para3] The buttons below demonstrate:(list)</p>
24 <ul id = "list">
25 <li id = "item1">[item1] getElementById and parentNode
26 <li id = "item2">[item2] insertBefore and appendChild
27 <li id = "item3">[item3] replaceChild and removeChild
28
29 <div id = "nav" class = "nav">
30 <form onsubmit = "return false" action = "#">
31 <p><input type = "text" id = "gbi" value = "bigheading">
32 <input type = "button" value = "Get By id"
33 id = "byIdButton"></p>
34 <p><input type = "text" id = "ins">
35 <input type = "button" value = "Insert Before"
36 id = "insertButton"></p>
37 <p><input type = "text" id = "append">
38 <input type = "button" value = "Append Child"
39 id = "appendButton"></p>
40 <p><input type = "text" id = "replace">
41 <input type = "button" value = "Replace Current"
42 id = "replaceButton()"></p>
43 <p><input type = "button" value = "Remove Current"
44 id = "removeButton"></p>
45 <p><input type = "button" value = "Get Parent"
46 id = "parentButton"></p>
47 </form>
48 </div>
49 </body>
50 </html>

Fig. 12.4 | HTML5 document that’s used to demonstrate DOM functionality for dynamically
adding, removing and selecting elements. (Part 1 of 2.)

iw3htp5_12_DOMObjColl.fm Page 432 Wednesday, November 16, 2011 11:52 AM

12.3 Traversing and Modifying a DOM Tree 433

depends on which node is currently selected. Function start (lines 7–24) registers the ev-
vent handlers for the document’s buttons, then initializes currentNode to the h1 element
with id bigheading. This function is set up to be called when the window’s load event
(line 27) occurs. Variable idcount (line 4) is used to assign a unique id to any new ele-
ments that are created. The remainder of the JavaScript code contains event-handling
functions for the buttons and two helper functions that are called by the event handlers.
We now discuss each button and its corresponding event handler in detail.

1 // Fig. 12.5: dom.js
2 // Script to demonstrate basic DOM functionality.
3 var currentNode; // stores the currently highlighted node
4 var idcount = 0; // used to assign a unique id to new elements
5
6 // register event handlers and initialize currentNode
7 function start()
8 {

Fig. 12.5 | Script to demonstrate basic DOM functionality. (Part 1 of 3.)

Fig. 12.4 | HTML5 document that’s used to demonstrate DOM functionality for dynamically
adding, removing and selecting elements. (Part 2 of 2.)

The document when it first loads. It begins with the large heading highlighted.

iw3htp5_12_DOMObjColl.fm Page 433 Wednesday, November 16, 2011 11:52 AM

434 Chapter 12 Document Object Model (DOM): Objects and Collections

9 document.getElementById("byIdButton").addEventListener(
10 "click", byId, false);
11 document.getElementById("insertButton").addEventListener(
12 "click", insert, false);
13 document.getElementById("appendButton").addEventListener(
14 "click", appendNode, false);
15 document.getElementById("replaceButton").addEventListener(
16 "click", replaceCurrent, false);
17 document.getElementById("removeButton").addEventListener(
18 "click", remove, false);
19 document.getElementById("parentButton").addEventListener(
20 "click", parent, false);
21
22 // initialize currentNode
23 currentNode = document.getElementById("bigheading");
24 } // end function start
25
26 // call start after the window loads
27 window.addEventListener("load", start, false);
28
29 // get and highlight an element by its id attribute
30 function byId()
31 {
32
33
34
35 if (target)
36 switchTo(target);
37 } // end function byId
38
39 // insert a paragraph element before the current element
40 // using the insertBefore method
41 function insert()
42 {
43
44
45
46 switchTo(newNode);
47 } // end function insert
48
49 // append a paragraph node as the child of the current node
50 function appendNode()
51 {
52 var newNode = createNewNode(
53 document.getElementById("append").value);
54 currentNode.appendChild(newNode);
55 switchTo(newNode);
56 } // end function appendNode
57
58 // replace the currently selected node with a paragraph node
59 function replaceCurrent()
60 {

Fig. 12.5 | Script to demonstrate basic DOM functionality. (Part 2 of 3.)

var id = document.getElementById("gbi").value;
var target = document.getElementById(id);

var newNode = createNewNode(
 document.getElementById("ins").value);
currentNode.parentNode.insertBefore(newNode, currentNode);

iw3htp5_12_DOMObjColl.fm Page 434 Wednesday, November 16, 2011 11:52 AM

12.3 Traversing and Modifying a DOM Tree 435

61 var newNode = createNewNode(
62 document.getElementById("replace").value);
63 currentNode.parentNode.replaceChild(newNode, currentNode);
64 switchTo(newNode);
65 } // end function replaceCurrent
66
67 // remove the current node
68 function remove()
69 {
70 if (currentNode.parentNode == document.body)
71 alert("Can't remove a top-level element.");
72 else
73 {
74 var oldNode = currentNode;
75 switchTo(oldNode.parentNode);
76 currentNode.removeChild(oldNode);
77 }
78 } // end function remove
79
80 // get and highlight the parent of the current node
81 function parent()
82 {
83 var target = currentNode.parentNode;
84
85 if (target != document.body)
86 switchTo(target);
87 else
88 alert("No parent.");
89 } // end function parent
90
91 // helper function that returns a new paragraph node containing
92 // a unique id and the given text
93 function createNewNode(text)
94 {
95
96 nodeId = "new" + idcount;
97 ++idcount;
98
99 text = "[" + nodeId + "] " + text;
100
101 return newNode;
102 } // end function createNewNode
103
104 // helper function that switches to a new currentNode
105 function switchTo(newNode)
106 {
107
108 currentNode = newNode;
109
110
111
112 } // end function switchTo

Fig. 12.5 | Script to demonstrate basic DOM functionality. (Part 3 of 3.)

var newNode = document.createElement("p");

newNode.setAttribute("id", nodeId); // set newNode's id

newNode.appendChild(document.createTextNode(text));

currentNode.setAttribute("class", ""); // remove old highlighting

currentNode.setAttribute("class", "highlighted"); // highlight
document.getElementById("gbi").value =
 currentNode.getAttribute("id");

iw3htp5_12_DOMObjColl.fm Page 435 Wednesday, November 16, 2011 11:52 AM

436 Chapter 12 Document Object Model (DOM): Objects and Collections

Finding and Highlighting an Element Using getElementById, setAttribute and
getAttribute
The first row of the form (Fig. 12.4, lines 31–33) allows the user to enter the id of an element
into the text field and click the Get By Id button to find and highlight the element, as shown
in Fig. 12.6. The button’s click event calls function byId.

The byId function (Fig. 12.5, lines 30–37) uses getElementById to assign the contents
of the text field to variable id. Line 33 uses getElementById to find the element whose id
attribute matches variable id and assign it to variable target. If an element is found with the
given id, an object is returned; otherwise, null is returned. Line 35 checks whether target
is an object—any object used as a boolean expression is true, while null is false. If target
evaluates to true, line 36 calls the switchTo function with target as its argument.

The switchTo function (lines 105–112) is used throughout the script to highlight an
element in the page. The current element is given a yellow background using the style class
highlighted, defined in the CSS styles. This function introduces the DOM element
methods setAttribute and getAttribute, which allow you to modify an attribute value
and get an attribute value, respectively. Line 107 uses setAttribute to set the current
node’s class attribute to the empty string. This clears the class attribute to remove the
highlighted class from the currentNode before we highlight the new one.

Line 108 assigns the newNode object (passed into the function as a parameter) to vari-
able currentNode. Line 109 uses setAttribute to set the new node’s class attribute to the
CSS class highlighted.

Finally, lines 110–111 use getAttribute to get the currentNode’s id and assign it to
the input field’s value property. While this isn’t necessary when switchTo is called by byId,

Fig. 12.6 | The document of Figure 12.4 after using the Get By id button to select item1.

iw3htp5_12_DOMObjColl.fm Page 436 Wednesday, November 16, 2011 11:52 AM

12.3 Traversing and Modifying a DOM Tree 437

we’ll see shortly that other functions call switchTo. This line ensures that the text field’s
value contains the currently selected node’s id. Notice that we did not use setAttribute
to change the value of the input field. Methods setAttribute and getAttribute do not
work for user-modifiable content, such as the value displayed in an input field.

Creating and Inserting Elements Using insertBefore and appendChild
The second and third rows in the form (Fig. 12.4, lines 34–39) allow the user to create a
new element and insert it before or as a child of the current node, respectively. If the user
enters text in the second text field and clicks Insert Before, the text is placed in a new para-
graph element, which is inserted into the document before the currently selected element,
as in Fig. 12.7. The button’s click event calls function insert (Fig. 12.5, lines 41–47).

Lines 43–44 call the function createNewNode, passing it the value of the "ins" input
field as an argument. Function createNewNode, defined in lines 93–102, creates a paragraph
node containing the text passed to it. Line 95 creates a p element using the document object’s
createElement method, which creates a new DOM node, taking the tag name as an argu-
ment. Though createElement creates an element, it does not insert the element on the page.

Line 96 creates a unique id for the new element by concatenating "new" and the value
of idcount before incrementing idcount. Line 98 uses setAttribute to set the id of the
new element. Line 99 concatenates the element’s id in square brackets to the beginning of
text (the parameter containing the paragraph’s text).

Line 100 introduces two new methods. The document’s createTextNode method cre-
ates a node that contains only text. Given a string argument, createTextNode inserts the

Fig. 12.7 | The document of Figure 12.4 after selecting para3 with the Get By id button, then
using the Insert Before button to insert a new paragraph before para3.

iw3htp5_12_DOMObjColl.fm Page 437 Wednesday, November 16, 2011 11:52 AM

438 Chapter 12 Document Object Model (DOM): Objects and Collections

string into the text node. We create a new text node containing the contents of variable
text. This new node is then used as the argument to the appendChild method, which is
called on the new paragraph’s node. Method appendChild inserts a child node (passed as
an argument) after any existing children of the node on which it’s called.

After the p element is created, line 101 returns the node to the calling function
insert, where it’s assigned to newNode (line 43). Line 45 inserts the new node before the
currently selected one. Property parentNode contains the node’s parent. In line 45, we use
this property to get currentNode’s parent. Then we call the insertBefore method (line
45) on the parent with newNode and currentNode as its arguments. This inserts newNode
as a child of the parent directly before currentNode. Line 46 uses our switchTo function
to update the currentNode to the newly inserted node and highlight it in the document.

The input field and button in the third table row allow the user to append a new para-
graph node as a child of the current element (Fig. 12.8). This feature uses a procedure sim-
ilar to the insert function. Lines 52–53 in function appendNode create a new node, line
54 inserts it as a child of the current node, and line 55 uses switchTo to update current-
Node and highlight the new node.

Replacing and Removing Elements Using replaceChild and removeChild
The next two table rows (Fig. 12.4, lines 40–44) allow the user to replace the current ele-
ment with a new p element or simply remove the current element. When the user clicks
Replace Current (Fig. 12.9), function replaceCurrent (Fig. 12.5, lines 59–65) is called.

Fig. 12.8 | The document of Figure 12.4 after using the Append Child button to append a
child to the new paragraph in Figure 12.7.

iw3htp5_12_DOMObjColl.fm Page 438 Wednesday, November 16, 2011 11:52 AM

12.3 Traversing and Modifying a DOM Tree 439

In function replaceCurrent, lines 61–62 call createNewNode, in the same way as in
insert and appendNode, getting the text from the correct input field. Line 63 gets the
parent of currentNode, then calls the replaceChild method on the parent. The
replaceChild method receives as its first argument the new node to insert and as its
second argument the node to replace.

Clicking the Remove Current button (Fig. 12.10) calls the remove function
(Fig. 12.5, lines 68–77) to remove the current element entirely and highlights the parent.
If the node’s parent is the body element, line 71 displays an error message—the program
does not allow the entire body element to be selected. Otherwise, lines 74–76 remove the
current element. Line 74 stores the old currentNode in variable oldNode. We do this to
maintain a reference to the node to be removed after we’ve changed the value of current-
Node. Line 75 calls switchTo to highlight the parent node. Line 76 uses the removeChild
method to remove the oldNode (a child of the new currentNode) from its place in the
HTML5 document. In general,

looks in parent’s list of children for child and removes it.
The form’s Get Parent button selects and highlights the parent element of the cur-

rently highlighted element (Fig. 12.11) by calling the parent function (Fig. 12.5, lines
81–89). The function simply gets the parent node (line 83), makes sure it’s not the body
element and calls switchTo to highlight the parent; otherwise, we display an error if the
parent node is the body element.

Fig. 12.9 | The document of Figure 12.4 after using the Replace Current button to replace the
paragraph created in Figure 12.8.

parent.removeChild(child);

iw3htp5_12_DOMObjColl.fm Page 439 Wednesday, November 16, 2011 11:52 AM

440 Chapter 12 Document Object Model (DOM): Objects and Collections

Fig. 12.10 | The document of Figure 12.4 after using the Remove Current button to remove
the paragraph highlighted in Figure 12.9.

Fig. 12.11 | The document of Figure 12.4 after using the Get By id button to item2, then
using the Get Parent button to select item2’s parent—the unordered list.

iw3htp5_12_DOMObjColl.fm Page 440 Wednesday, November 16, 2011 11:52 AM

12.4 DOM Collections 441

12.4 DOM Collections
The Document Object Model contains several collections, which are groups of related ob-
jects on a page. DOM collections are accessed as properties of DOM objects such as the
document object or a DOM node. The document object has properties containing the

• images collection

• links collection

• forms collection

• anchors collection

These collections contain all the elements of the corresponding type on the page. The
example of Figs. 12.12–12.14 uses the links collection to extract all the links on a page
and display them at the bottom of the page.

CSS
Figure 12.12 contains the CSS for the example.

HTML5 Document
Figure 12.13 presents the example’s HTML5 document. The body contains two para-
graphs (lines 14–28) with links at various places in the text and an empty div (line 29)
with the id "links".

1 /* Fig. 12.12: style.css */
2 /* CSS for collections.html. */
3 body { font-family: arial, helvetica, sans-serif }
4 h1 { font-family: tahoma, geneva, sans-serif;
5 text-align: center }
6 p a { color: DarkRed }
7 ul { font-size: .9em; }
8 li { display: inline;
9 list-style-type: none;

10 border-right: 1px solid gray;
11 padding-left: 5px; padding-right: 5px; }
12 li:first-child { padding-left: 0px; }
13 li:last-child { border-right: none; }
14 a { text-decoration: none; }
15 a:hover { text-decoration: underline; }

Fig. 12.12 | CSS for collections.html.

1 <!DOCTYPE html>
2
3 <!-- Fig. 12.13: collections.html -->
4 <!-- Using the links collection. -->
5 <html>
6 <head>

Fig. 12.13 | Using the links collection. (Part 1 of 2.)

iw3htp5_12_DOMObjColl.fm Page 441 Wednesday, November 16, 2011 11:52 AM

442 Chapter 12 Document Object Model (DOM): Objects and Collections

JavaScript
Function processlinks (Fig. 12.14) is called when the window’s load event occurs (as spec-
ified in line 20). The function declares variable linksList (line 5) to store the document’s
links collection, which is accessed with the links property of the document object. Line 6
creates the string (contents) that will contain all the document’s links as an unordered list,
to be inserted into the "links" div later. Lines 9–14 iterate through the links collection.
The collection’s length property specifies the number of items in the collection.

Line 11 stores the current link. You access the elements of the collection using indices
in square brackets, just as we did with arrays. DOM collection objects have one property

7 <meta charset="utf-8">
8 <title>Using Links Collection</title>
9 <link rel = "stylesheet" type = "text/css" href = "style.css">

10 <script src = "collections.js"></script>
11 </head>
12 <body>
13 <h1>Deitel Resource Centers</h1>
14 <p>Deitel's website
15 contains a growing
16 list
17 of Resource Centers on a wide range of topics. Many
18 Resource centers related to topics covered in this book,
19 Internet &
20 World Wide Web How to Program, 5th Edition. We have
21 Resource Centers on
22 Web 2.0,
23 Firefox and
24 Internet Explorer 9,
25 HTML5, and
26 JavaScript.
27 Watch for related new Resource Centers.</p>
28 <p>Links in this page:</p>
29 <div id = "links"></div>
30 </body>
31 </html>

Fig. 12.13 | Using the links collection. (Part 2 of 2.)

iw3htp5_12_DOMObjColl.fm Page 442 Wednesday, November 16, 2011 11:52 AM

12.5 Dynamic Styles 443

and two methods—the length property, the item method and the namedItem method.
The item method—an alternative to the square bracketed indices—receives an an integer
argument and returns the corresponding item in the collection. The namedItem method
receives an element id as an argument and finds the element with that id in the collection.

Lines 12–13 add to the contents string an li element containing the current link.
Variable currentLink (a DOM node representing an a element) has an href property rep-
resenting the link’s href attribute. Line 17 inserts the contents into the empty div with
id "links" to show all the links on the page in one location.

Collections allow easy access to all elements of a single type in a page. This is useful
for gathering elements into one place and for applying changes to those elements across an
entire page. For example, the forms collection could be used to disable all form inputs after
a submit button has been pressed to avoid multiple submissions while the next page loads.

12.5 Dynamic Styles
An element’s style can be changed dynamically. Often such a change is made in response
to user events, which we discuss in Chapter 13. Style changes can create mouse-hover ef-
fects, interactive menus and animations. The example in Figs. 12.15–12.16 changes the
document body’s background-color style property in response to user input. The docu-
ment (Fig. 12.15) contains just a paragraph of text.

1 // Fig. 12.14: collections.js
2 // Script to demonstrate using the links collection.
3 function processLinks()
4 {
5 var linksList = ; // get the document's links
6 var contents = "";
7
8 // concatenate each link to contents
9 for (var i = 0; i < linksList.length; ++i)

10 {
11 var currentLink = linksList[i];
12 contents += "" +
13 + "";
14 } // end for
15
16 contents += "";
17 document.getElementById("links").innerHTML = contents;
18 } // end function processLinks
19
20 window.addEventListener("load", processLinks, false);

Fig. 12.14 | Script to demonstrate using the links collection.

1 <!DOCTYPE html>
2
3 <!-- Fig. 12.15: dynamicstyle.html -->
4 <!-- Dynamic styles. -->

Fig. 12.15 | Dynamic styles. (Part 1 of 2.)

document.links

currentLink.href
currentLink.innerHTML

iw3htp5_12_DOMObjColl.fm Page 443 Wednesday, November 16, 2011 11:52 AM

444 Chapter 12 Document Object Model (DOM): Objects and Collections

Function start (Fig. 12.16) is called when the window’s load event occurs (as specified
in line 11). The function prompts the user to enter a color name, then sets the body element’s
background color to that value. [Note: An error occurs if the value entered is not a valid color.
See Appendix B, HTML Colors, for a list of color names.] The document object’s body prop-
erty refers to the body element. We then use the setAttribute method to set the style attri-
bute with the user-specified color for the background-color CSS property. If you have
predefined CSS style classes defined for your document, you can also use the setAttribute
method to set the class attribute. So, if you had a class named .red you could set the class
attribute’s value to "red" to apply the style class.

5 <html>
6 <head>
7 <meta charset="utf-8">
8 <title>Dynamic Styles</title>
9 <script src = "dynamicstyle.js"></script>

10 </head>
11 <body>
12 <p>Welcome to our website!</p>
13 </body>
14 </html>

1 // Fig. 12.16: dynamicstyle.js
2 // Script to demonstrate dynamic styles.
3 function start()
4 {
5 var inputColor = prompt("Enter a color name for the " +
6 "background of this page", "");
7
8
9 } // end function start

10
11 window.addEventListener("load", start, false);

Fig. 12.16 | Script to demonstrate dynamic styles.

Fig. 12.15 | Dynamic styles. (Part 2 of 2.)

document.body.setAttribute("style",
 "background-color: " + inputColor);

iw3htp5_12_DOMObjColl.fm Page 444 Wednesday, November 16, 2011 11:52 AM

12.6 Using a Timer and Dynamic Styles to Create Animated Effects 445

12.6 Using a Timer and Dynamic Styles to Create
Animated Effects
The example of Figs. 12.17–12.19 introduces the window object’s setInterval and
clearInterval methods, combining them with dynamic styles to create animated effects.
This example is a basic image viewer that allows you to select a book cover and view it in
a larger size. When the user clicks a thumbnail image, the larger version grows from the
top-left corner of the main image area.

CSS
Figure 12.17 contains the CSS styles used in the example.

HTML5 Document
The HTML5 document (Fig. 12.18) contains two div elements, both floated left using
styles defined in Fig. 12.17 to present them side by side. The left div contains the full-size
image jhtp.jpg, which appears when the page loads. The right div contains six thumbnail
images. Each responds to its click event by calling the display function (as registered in
Fig. 12.19) and passing it the filename of the corresponding full-size image.

1 /* Fig. 12.17: style.css */
2 /* CSS for coverviewer.html. */
3 #thumbs { width: 192px;
4 height: 370px;
5 padding: 5px;
6 float: left }
7 #mainimg { width: 289px;
8 padding: 5px;
9 float: left }

10 #imgCover { height: 373px }
11 img { border: 1px solid black }

Fig. 12.17 | CSS for coverviewer.html.

1 <!DOCTYPE html>
2
3 <!-- Fig. 12.18: coverviewer.html -->
4 <!-- Dynamic styles used for animation. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Deitel Book Cover Viewer</title>
9 <link rel = "stylesheet" type = "text/css" href = "style.css">

10 <script src = "coverviewer.js"></script>
11 </head>

Fig. 12.18 | Dynamic styles used for animation. (Part 1 of 4.)

iw3htp5_12_DOMObjColl.fm Page 445 Wednesday, November 16, 2011 11:52 AM

446 Chapter 12 Document Object Model (DOM): Objects and Collections

12 <body>
13 <div id = "mainimg">
14 <img id = "imgCover" src = "fullsize/jhtp.jpg"
15 alt = "Full cover image">
16 </div>
17 <div id = "thumbs" >
18 <img src = "thumbs/jhtp.jpg" id = "jhtp"
19 alt = "Java How to Program cover">
20 <img src = "thumbs/iw3htp.jpg" id = "iw3htp"
21 alt = "Internet & World Wide Web How to Program cover">
22 <img src = "thumbs/cpphtp.jpg" id = "cpphtp"
23 alt = "C++ How to Program cover">
24 <img src = "thumbs/jhtplov.jpg" id = "jhtplov"
25 alt = "Java How to Program LOV cover">
26 <img src = "thumbs/cpphtplov.jpg" id = "cpphtplov"
27 alt = "C++ How to Program LOV cover">
28 <img src = "thumbs/vcsharphtp.jpg" id = "vcsharphtp"
29 alt = "Visual C# How to Program cover">
30 </div>
31 </body>
32 </html>

Fig. 12.18 | Dynamic styles used for animation. (Part 2 of 4.)

a) The cover viewer page loads with the cover of Java How to Program, 9/e

iw3htp5_12_DOMObjColl.fm Page 446 Wednesday, November 16, 2011 11:52 AM

12.6 Using a Timer and Dynamic Styles to Create Animated Effects 447

Fig. 12.18 | Dynamic styles used for animation. (Part 3 of 4.)

b) When the user clicks the thumbnail of Internet & World Wide Web How to Program, 5/e, the full-size image
begins growing from the top-left corner of the window

c) The cover continues to grow

iw3htp5_12_DOMObjColl.fm Page 447 Wednesday, November 16, 2011 11:52 AM

448 Chapter 12 Document Object Model (DOM): Objects and Collections

JavaScript
Figure 12.19 contains the JavaScript code that creates the animation effect. The same ef-
fects can be achieved by declaring animations and transitions in CSS3, as we demonstrated
in Sections 5.12–5.13.

1 // Fig. 12.19: coverviewer.js
2 // Script to demonstrate dynamic styles used for animation.
3 var interval = null; // keeps track of the interval
4 var speed = 6; // determines the speed of the animation
5 var count = 0; // size of the image during the animation
6
7 // called repeatedly to animate the book cover
8 function run()
9 {

10 count += speed;
11
12 // stop the animation when the image is large enough
13 if (count >= 375)
14 {
15
16
17 } // end if

Fig. 12.19 | Script to demonstrate dynamic styles used for animation. (Part 1 of 2.)

Fig. 12.18 | Dynamic styles used for animation. (Part 4 of 4.)

d) The animation finishes when the cover reaches its full size

window.clearInterval(interval);
interval = null;

iw3htp5_12_DOMObjColl.fm Page 448 Wednesday, November 16, 2011 11:52 AM

12.6 Using a Timer and Dynamic Styles to Create Animated Effects 449

The display function (lines 26–36) dynamically updates the image in the left div to
the one the user clicked. Lines 28–29 prevent the rest of the function from executing if
interval is defined (i.e., an animation is in progress.) Line 31 gets the left div by its id,
imgCover. Line 32 sets the image’s style attribute, using 0px for the width and height—
the initial size of the image before the animation begins. Next, line 33 sets the image’s src
attribute to the specified image file in the fullsize directory, and line 34 sets its required
alt attribute. Line 35 sets count, the variable that controls the animation, to 0.

Line 36 introduces the window object’s setInterval method, which creates a timer
that controls our animation. This method takes two parameters—a statement to execute
repeatedly, and an integer specifying how often to execute it, in milliseconds. We use

18
19 var bigImage = document.getElementById("imgCover");
20 bigImage.setAttribute("style", "width: " + (0.7656 * count + "px;") +
21 "height: " + (count + "px;"));
22 } // end function run
23
24 // inserts the proper image into the main image area and
25 // begins the animation
26 function display(imgfile)
27 {
28 if (interval)
29 return;
30
31 var bigImage = document.getElementById("imgCover");
32 bigImage.setAttribute("style", "width: 0px; height: 0px;");
33 bigImage.setAttribute("src", "fullsize/" + imgfile);
34 bigImage.setAttribute("alt", "Large version of " + imgfile);
35 count = 0; // start the image at size 0
36 // animate
37 } // end function display
38
39 // register event handlers
40 function start()
41 {
42 document.getElementById("jhtp").addEventListener(
43 "click", function() { display("jhtp.jpg"); }, false);
44 document.getElementById("iw3htp").addEventListener(
45 "click", function() { display("iw3htp.jpg"); }, false);
46 document.getElementById("cpphtp").addEventListener(
47 "click", function() { display("cpphtp.jpg"); }, false);
48 document.getElementById("jhtplov").addEventListener(
49 "click", function() { display("jhtplov.jpg"); }, false);
50 document.getElementById("cpphtplov").addEventListener(
51 "click", function() { display("cpphtplov.jpg"); }, false);
52 document.getElementById("vcsharphtp").addEventListener(
53 "click", function() { display("vcsharphtp.jpg"); }, false);
54 } // end function start
55
56 window.addEventListener("load", start, false);

Fig. 12.19 | Script to demonstrate dynamic styles used for animation. (Part 2 of 2.)

interval = window.setInterval("run()", 10);

iw3htp5_12_DOMObjColl.fm Page 449 Wednesday, November 16, 2011 11:52 AM

450 Chapter 12 Document Object Model (DOM): Objects and Collections

setInterval to call function run (lines 8–22) every 10 milliseconds. The setInterval
method returns a unique identifier to keep track of that particular interval timer—we
assign this identifier to the variable interval. This identifier can be used later to stop the
timer (and thus, the animation) when the image has finished growing.

The run function increases the height of the image by the value of speed and updates
its width accordingly to keep the aspect ratio consistent. The run function is called every
10 milliseconds, so the image grows dynamically. Line 10 adds the value of speed
(declared and initialized to 6 in line 4) to count, which keeps track of the animation’s
progress and determines the current size of the image. If the image has grown to its full
height (375), line 15 uses the window’s clearInterval method to terminate the timer,
which prevents function run from being called again until the user clicks another thumb-
nail image. We pass to clearInterval the interval-timer identifier (stored in interval)
that setInterval created in line 36. Since each interval timer has its own unique identi-
fier, scripts can keep track of multiple interval timers and choose which one to stop when
calling clearInterval.

Line 19 gets the imgCover element, and lines 20–21 set its width and height CSS
properties. Note that line 20 multiplies count by a scaling factor of 0.7656—this is the
aspect ratio of the width to the height for the images used in this example. Run the code
example and click on a thumbnail image to see the full animation effect.

Function start—Using Anonymous functions
Function start (lines 40–54) registers the click event handlers for the img elements in
the HTML5 document. In each case, we define an anonymous function to handle the
event. An anonymous function is defined with no name—it’s created in nearly the same
way as any other function, but with no identifier after the keyword function. This nota-
tion is useful when creating a function for the sole purpose of assigning it to an event han-
dler. It’s also useful when you must provide arguments to the function, since you cannot
provide a function call as the second argument to addEventListener—if you did, the
JavaScript interpreter would call the function, then pass the result of the function call to
addEventListener. In line 43, the code

defines an anonymous function that calls function display with the name of the image
file to display.

function() { display("jhtp.jpg"); }

Summary
Section 12.1 Introduction
• The Document Object Model (p. 428) gives you access to all the elements on a web page. Using

JavaScript, you can dynamically create, modify and remove elements in the page.

Section 12.2 Modeling a Document: DOM Nodes and Trees
• The getElementById method returns objects called DOM nodes (p. 428). Every element in an

HTML5 page is modeled in the web browser by a DOM node.

• All the nodes in a document make up the page’s DOM tree (p. 428), which describes the rela-
tionships among elements.

iw3htp5_12_DOMObjColl.fm Page 450 Wednesday, November 16, 2011 11:52 AM

 Summary 451

• Nodes are related to each other through child-parent relationships. An HTML5 element inside
another element is said to be its child (p. 428)—the containing element is known as the parent
(p. 428). A node can have multiple children but only one parent. Nodes with the same parent
node are referred to as siblings (p. 428).

• The document node in a DOM tree is called the root node (p. 429), because it has no parent.

Section 12.3 Traversing and Modifying a DOM Tree
• DOM element methods setAttribute and getAttribute (p. 436) allow you to modify an attri-

bute value and get an attribute value of an element, respectively.

• The document object’s createElement method (p. 437) creates a new DOM node, taking the tag
name as an argument. Note that while createElement creates an element, it does not insert the
element on the page.

• The document’s createTextNode method (p. 437) creates a DOM node that can contain only
text. Given a string argument, createTextNode inserts the string into the text node.

• Method appendChild (p. 438) is called on a parent node to insert a child node (passed as an ar-
gument) after any existing children.

• The parentNode property (p. 438) of any DOM node contains the node’s parent.

• The insertBefore method (p. 438) is called on a parent having a new child and an existing child
as arguments. The new child is inserted as a child of the parent directly before the existing child.

• The replaceChild method (p. 439) is called on a parent, taking a new child and an existing child
as arguments. The method inserts the new child into its list of children in place of the existing child.

• The removeChild method (p. 439) is called on a parent with a child to be removed as an argument.

Section 12.4 DOM Collections
• The DOM contains several collections (p. 441), which are groups of related objects on a page.

DOM collections are accessed as properties of DOM objects such as the document object (p. 441)
or a DOM node.

• The document object has properties containing the images collection (p. 441), links collection
(p. 441), forms collection and anchors collection (p. 441). These collections contain all the ele-
ments of the corresponding type on the page.

• To find the number of elements in the collection, use the collection’s length property (p. 442).

• To access items in a collection, use square brackets just as you would with an array, or use the
item method. The item method (p. 443) of a DOM collection is used to access specific elements
in a collection, taking an index as an argument. The namedItem method (p. 443) takes a name as
a parameter and finds the element in the collection, if any, whose id attribute or name attribute
matches it.

• The href property of a DOM link node refers to the link’s href attribute (p. 443).

Section 12.5 Dynamic Styles
• An element’s style can be changed dynamically. Often such a change is made in response to user

events. Such style changes can create many effects, including mouse-hover effects, interactive
menus, and animations.

• A document object’s body property refers to the body element (p. 444) in the HTML5 page.

• The setInterval method (p. 449) of the window object repeatedly executes a statement on a cer-
tain interval. It takes two parameters—a statement to execute repeatedly, and an integer specify-
ing how often to execute it, in milliseconds. The setInterval method returns a unique identifier
to keep track of that particular interval.

iw3htp5_12_DOMObjColl.fm Page 451 Wednesday, November 16, 2011 11:52 AM

452 Chapter 12 Document Object Model (DOM): Objects and Collections

• The window object’s clearInterval method (p. 450) stops the repetitive calls of object’s set-
Interval method. We pass to clearInterval the interval identifier that setInterval returned.

Self-Review Exercises
12.1 State whether each of the following is true or false. If false, explain why.

a) The Document Object Model does not give access to all the elements on a web page.
b) The getElementById method returns objects called DOM nodes
c) The document node in a DOM tree is called the child node
d) Nodes are related to each other through peer-to-peer relationships.
e) The removeChild method is called on the root with a child to be removed as an argument.
f) The parentNode property of any DOM node contains the node’s parent.
g) All the nodes in a document make up the page’s DOM tree, which does not describe

relationships among elements.
h) The document object’s createElement method inserts an element on the page.
i) To find the number of elements in the collection, use the collection’s width property.

12.2 Fill in the blanks for each of the following statements.
a) We pass to clearInterval the interval identifier that returned.
b) The document object’s createElement method creates a new DOM node, taking the

 as an argument.
c) Method is called on a parent node to insert a child node
d) Using JavaScript, you can create, modify and remove elements in the page.
e) Nodes are related to each other through relationships.

Answers to Self-Review Exercises
12.1 a) False. The Document Object Model gives you access to all the elements on a web page.
b) True. c) False. The document node in a DOM tree is called the root node. d) False. Nodes are
related to each other through child-parent relationships. e) False. The removeChild method is called
on a parent with a child to be removed as an argument. f) True. g) False. All the nodes in a document
make up the page’s DOM tree, which describes the relationships among elements. h) False. crea-
teElement creates an element, it does not insert the element on the page. i) False. To find the number
of elements in the collection, use the collection’s length property.

12.2 a) setInterval. b) tagname. c) appendChild. d) dynamically. e) child-parent.

Exercises
12.3 Modify Fig. 12.3 to use red as a background color to highlight all the links. Use yellow for
the text in the links, instead of displaying them in a box at the bottom.

12.4 Use a browser’s developer tools to view the DOM tree of the document in Fig. 12.4. Look
at the document tree of your favorite website. Explore the information these tools give you in the
right panel(s) about an element when you click it.

12.5 Write a script that contains a button and a counter in a div. The button should decrement
the counter each time it’s clicked with a default initial value of 100.

12.6 Create a web page in which the user is allowed to select the page’s background color and
whether the page uses serif or sans serif fonts. Then change the body element’s style attribute ac-
cordingly.

12.7 (15 Puzzle) Write a web page that enables the user to play the game of 15. There’s a 4-by-
4 board (implemented as an HTML5 table) for a total of 16 slots. One of the slots is empty. The

iw3htp5_12_DOMObjColl.fm Page 452 Wednesday, November 16, 2011 11:52 AM

 Exercises 453

other slots are occupied by 15 tiles, randomly numbered from 1 through 15. Any tile next to the
currently empty slot can be moved into the currently empty slot by clicking on the tile. Your pro-
gram should create the board with the tiles out of order. The user’s goal is to arrange the tiles in
sequential order row by row. Using the DOM and the click event, write a script that allows the
user to swap the positions of the open position and an adjacent tile. [Hint: The click event should
be specified for each table cell.]

12.8 Modify your solution to Exercise 12.7 to determine when the game is over, then prompt
the user to determine whether to play again. If so, scramble the numbers using the Math.random
method.

12.9 Modify your solution to Exercise 12.8 to use an image that’s split into 16 pieces of equal
size. Discard one of the pieces and randomly place the other 15 pieces in the HTML5 table.

iw3htp5_12_DOMObjColl.fm Page 453 Wednesday, November 16, 2011 11:52 AM

13 JavaScript Event Handling:
A Deeper Look

The wisest prophets make sure of
the event first.
—Horace Walpole

Do you think I can listen all day
to such stuff?
—Lewis Carroll

The user should feel in control of
the computer; not the other way
around. This is achieved in
applications that embody three
qualities: responsiveness,
permissiveness, and consistency.
—Inside Macintosh, Volume 1
Apple Computer, Inc., 1985

We are responsible for actions
performed in response to
circumstances for which we are
not responsible.
—Allan Massie

O b j e c t i v e s
In this chapter you’ll:

■ Learn the concepts of events,
event handlers and event
bubbling.

■ Create and register event
handlers that respond to
mouse and keyboard events.

■ Use the event object to get
information about an event.

■ Recognize and respond to
many common events.

iw3htp5_13_JSEvents.fm Page 454 Wednesday, November 16, 2011 1:06 PM

13.1 Introduction 455

13.1 Introduction
We’ve seen that HTML5 pages can be controlled via scripting, and we’ve already used sev-
eral events—load, submit and click—to trigger calls to JavaScript functions. This chap-
ter takes a deeper look into JavaScript events, which allow scripts to respond to user
interactions and modify the page accordingly. Events allow scripts to respond to a user
who is moving the mouse, entering form data, pressing keys and much more. Events and
event handling help make web applications more dynamic and interactive. We give exam-
ples of event handling several common events and list other useful events.

13.2 Reviewing the load Event
In several earlier examples, we used the window object’s load event to begin executing
scripts. This event fires when the window finishes loading successfully (i.e., all its children
are loaded and all external files referenced by the page are loaded). Actually, every DOM
element has a load event, but it’s most commonly used on the window object. The exam-
ple of Figs. 13.1–13.2 reviews the load event. The load event’s handler creates an interval
timer that updates a span with the number of seconds that have elapsed since the docu-
ment was loaded. The document’s (Fig. 13.1) paragraph contains the span (line 14).

13.1 Introduction
13.2 Reviewing the load Event
13.3 Event mousemove and the event Object
13.4 Rollovers with mouseover and mouseout
13.5 Form Processing with focus and blur

13.6 More Form Processing with
submit and reset

13.7 Event Bubbling
13.8 More Events
13.9 Web Resource

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1 <!DOCTYPE html>
2
3 <!-- Fig. 13.1: onload.html -->
4 <!-- Demonstrating the load event. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>load Event</title>
9 <link rel = "stylesheet" type = "text/css" href = "style.css">

10 <script src = "load.js"></script>
11 </head>
12 <body>
13 <p>Seconds you have spent viewing this page so far:
14 </p>
15 </body>
16 </html>

Fig. 13.1 | Demonstrating the window’s load event. (Part 1 of 2.)

0

iw3htp5_13_JSEvents.fm Page 455 Wednesday, November 16, 2011 1:06 PM

456 Chapter 13 JavaScript Event Handling: A Deeper Look

Registering an Event Handler
An event handler is a function that responds to an event. Assigning an event handler to an
event for a DOM node is called registering an event handler. The script (Fig. 13.2) reg-
isters the window’s load event handler at line 18. Method addEventListener is available
for every DOM node. The method takes three arguments:

• The first is the name of the event for which we’re registering a handler.

• The second is the function that will be called to handle the event.

• The last argument is typically false—the true value is beyond this book’s scope.

Line 19 indicates that when the load event occurs, function startTimer (lines 6–9)
should execute. This function uses method window.setInterval to specify that function
updateTime (lines 12–16) should be called every 1000 milliseconds. The updateTime func-
tion increments variable seconds and updates the counter in the span named "soFar".

Note that the load event enables us to access the elements in the HTML5 page after
they’re fully loaded. If a script loaded in the document’s head section contains statements
that appear outside any script functions, those statements execute when the script loads—
that is, before the body has loaded. If such a statement attempted to use getElementById

1 // Fig. 13.2: load.js
2 // Script to demonstrate the load event.
3 var seconds = 0;
4
5 // called when the page loads to begin the timer
6 function startTimer()
7 {
8 window.setInterval("updateTime()", 1000);
9 } // end function startTimer

10
11 // called every 1000 ms to update the timer
12 function updateTime()
13 {
14 ++seconds;
15 document.getElementById("soFar").innerHTML = seconds;
16 } // end function updateTime
17
18

Fig. 13.2 | Script that registers window’s load event handler and handles the event.

Fig. 13.1 | Demonstrating the window’s load event. (Part 2 of 2.)

window.addEventListener("load", startTimer, false);

iw3htp5_13_JSEvents.fm Page 456 Wednesday, November 16, 2011 1:06 PM

13.3 Event mousemove and the event Object 457

to get a DOM node for an HTML5 element in the body, getElementById would return
null. Another solution to this problem is to place the script as the last item in the docu-
ment’s body element—in that case, before the script executes, the body’s nested elements
will have already been created.

Registering Multiple Event Handlers
Method addEventListener can be called multiple times on a DOM node to register more
than one event-handling method for an event. For example, if you wanted to perform a
visual effect when the mouse is over a button and perform a task when that button is
pressed, you could register mouseover and click event handlers.

Removing Event Listeners
It’s also possible to remove an event listener by calling removeEventListener with the
same arguments that you passed to addEventListener to register the event handler.

A Note About Older Event-Registration Models
We use the W3C standard event-registration model, which is supported by all of the
browsers we use in this book. In legacy HTML and JavaScript code, you’ll frequently en-
counter two other event-registration models—the inline model and the traditional model.

The inline model places calls to JavaScript functions directly in HTML code. For
example, the following code indicates that JavaScript function start should be called
when the body element loads:

The onload attribute corresponds to the body element’s load event. By current web devel-
opment standards, it’s generally considered poor practice to intermix HTML and
JavaScript code in this manner.

The traditional model uses a property of an object to specify an event handler. For
example, the following JavaScript code indicates that function start should be called
when document loads:

The onload property corresponds to the document object’s load event. Though this prop-
erty is specified in JavaScript and not in the HTML5 document, there are various prob-
lems with using it. In particular, if another statement assigns a different value to
document.onload, the original value is replaced, which may not be the intended result.

For more information about these older event-registration models, visit these sites:

13.3 Event mousemove and the event Object
This section introduces the mousemove event, which occurs whenever the user moves the
mouse over the web page. We also discuss the event object, which contains information
about the event that occurred. The example in Figs. 13.3–13.5 creates a simple drawing
program that allows the user to draw inside a table element in red or blue by holding
down the Shift key or Ctrl key and moving the mouse over the box. (In the next chapter,

<body onload = "start()">

document.onload = "start()";

www.onlinetools.org/articles/unobtrusivejavascript/chapter4.html
www.quirksmode.org/js/introevents.html

iw3htp5_13_JSEvents.fm Page 457 Wednesday, November 16, 2011 1:06 PM

458 Chapter 13 JavaScript Event Handling: A Deeper Look

we’ll introduce HTML5’s new canvas element for creating graphics.) We do not show the
example’s style.css file, because the styles it contains have all been demonstrated previ-
ously.

HTML5 Document
The document’s body (Fig. 13.3, lines 12–18) has a table with a caption that provides in-
structions on how to use the program and an empty tbody. The document’s load event will
call a function named createCanvas (Fig. 13.4) to fill the table with rows and columns.

1 <!DOCTYPE html>
2
3 <!-- Fig. 13.3: draw.html -->
4 <!-- A simple drawing program. -->
5 <html>
6 <head>
7 <meta charset="utf-8">
8 <title>Simple Drawing Program</title>
9 <link rel = "stylesheet" type = "text/css" href = "style.css">

10 <script src = "draw.js"></script>
11 </head>
12 <body>
13
14 <caption>Hold Ctrl (or Control) to draw blue.
15 Hold Shift to draw red.</caption>
16 <tbody id = "tablebody"></tbody>
17 </table>
18 </body>
19 </html>

Fig. 13.3 | Simple drawing program. (Part 1 of 2.)

<table id = "canvas">

a) User holds the
Shift key and moves
the mouse to draw
in red.

iw3htp5_13_JSEvents.fm Page 458 Wednesday, November 16, 2011 1:06 PM

13.3 Event mousemove and the event Object 459

Function createCanvas in draw.js
The createCanvas function (Fig. 13.4, lines 4–25) fills in the table with a grid of cells. The
style.css file used in this example contains a CSS rule that sets the width and height of
every td element to 4px. Another CSS rule in the file sets the table to 400px wide and uses
the border-collapse CSS property to eliminate space between the table cells.

1 // Fig. 13.4: draw.js
2 // A simple drawing program.
3 // initialization function to insert cells into the table
4 function createCanvas()
5 {
6 var side = 100;
7 var tbody = document.getElementById("tablebody");
8
9 for (var i = 0; i < side; ++i)

10 {
11 var row = document.createElement("tr");
12
13 for (var j = 0; j < side; ++j)
14 {
15 var cell = document.createElement("td");
16 row.appendChild(cell);
17 } // end for
18
19 tbody.appendChild(row);
20 } // end for

Fig. 13.4 | JavaScript code for the simple drawing program. (Part 1 of 2.)

Fig. 13.3 | Simple drawing program. (Part 2 of 2.)

b) User holds the
Ctrl key and moves
the mouse to draw
in blue.

iw3htp5_13_JSEvents.fm Page 459 Wednesday, November 16, 2011 1:06 PM

460 Chapter 13 JavaScript Event Handling: A Deeper Look

Line 6 defines variable side and sets it to 100—we use this as the number of rows and
the number of columns in each row for a total of 10,000 table cells. Line 7 stores the
tbody element so that we can append rows to it as they’re generated. The outer loop creates
each table row and the inner loop creates each cell. The inner loop uses DOM method
createElement to create a td elemen and appends the cell as a child of the row.

Lines 23–24 set function processMouseMove as the table’s mousemove event handler,
which effectively specifies that function as the mousmove event handler for the table and all
of its nested elements. An element’s mousemove event fires whenever the user moves the
mouse over that element.

Function processMouseMove in draw.js
At this point, the table is set up and function processMouseMove (lines 28–44) is called
whenever the mouse moves over the table. When the browser calls an event-handling func-
tion, it passes an event object to the function. That object contains information about the
event that caused the event-handling function to be called. Figure 13.5 shows several
properties of the event object.

If an event-handling function is defined with a parameter (as in line 28), the function
can use the event object. The function parameter is commonly named e. Function pro-
cessMouseMove colors the cell the mouse moves over, depending on the key that’s pressed
when the event occurs. When the mouse moves over the table, the td element that the
mouse moved over receives the event first. If that element does not have an event handler

21
22 // register mousemove listener for the table
23
24
25 } // end function createCanvas
26
27 // processes the onmousemove event
28 function processMouseMove(e)
29 {
30 if (e.target.tagName.toLowerCase() == "td")
31 {
32 // turn the cell blue if the Ctrl key is pressed
33 if ()
34 {
35
36 } // end if
37
38 // turn the cell red if the Shift key is pressed
39 if ()
40 {
41
42 } // end if
43 } // end if
44 } // end function processMouseMove
45
46

Fig. 13.4 | JavaScript code for the simple drawing program. (Part 2 of 2.)

document.getElementById("canvas").addEventListener(
 "mousemove", processMouseMove, false);

e.ctrlKey

e.target.setAttribute("class", "blue");

e.shiftKey

e.target.setAttribute("class", "red");

window.addEventListener("load", createCanvas, false);

iw3htp5_13_JSEvents.fm Page 460 Wednesday, November 16, 2011 1:06 PM

13.4 Rollovers with mouseover and mouseout 461

for the mouseover event, the event is sent to the td element’s parent element, and so on—
this is known as event bubbling (which we discuss in more detail in Section 13.7). This
process continues until a mouseover event handler is found—in this case, the one for the
table element. The event object, however, always contains the specific element that orig-
inal received the event. This is stored in the object’s target property. Line 30 uses this
property to get the element’s tag name. If the tag name is "td", then lines 33–42 do the
actual drawing. The event object’s ctrlKey property (line 33) contains a boolean which
reflects whether the Ctrl key was pressed during the event. If ctrlKey is true, line 35
changes the color of the target table cell by setting its class attribute to the CSS class blue
(defined in style.css). Similarly, if the shiftKey property of the event object is true, the
Shift key is pressed and line 41 changes the color of the cell to red by setting its class attri-
bute to the CSS class blue. This simple function allows the user to draw inside the table
on the page in red and blue. You’ll add more functionality to this example in the exercises
at the end of this chapter.

13.4 Rollovers with mouseover and mouseout
Two more events fired by mouse movements are mouseover and mouseout. When the
mouse cursor moves into an element, a mouseover event occurs for that element. When
the cursor leaves the element, a mouseout event occurs. The example in Figs. 13.6–13.7
uses these events to achieve a rollover effect that updates text when the mouse cursor
moves over it. We also introduce a technique for creating rollover images—though you’ve
already seen that image rollover effects can be accomplished with CSS3 as well. We do not
show the example’s style.css file, because the styles it contains have all been demonstrat-
ed previously.

Property Description

altKey This value is true if the Alt key was pressed when the event fired.

cancelBubble Set to true to prevent the event from bubbling. Defaults to false.
(See Section 13.7, Event Bubbling.)

clientX and clientY The coordinates of the mouse cursor inside the client area (i.e., the
active area where the web page is displayed, excluding scrollbars,
navigation buttons, etc.).

ctrlKey This value is true if the Ctrl key was pressed when the event fired.

keyCode The ASCII code of the key pressed in a keyboard event. See
Appendix D for more information on the ASCII character set.

screenX and screenY The coordinates of the mouse cursor on the screen coordinate sys-
tem.

shiftKey This value is true if the Shift key was pressed when the event fired.

target The DOM object that received the event.

type The name of the event that fired.

Fig. 13.5 | Some event-object properties.

iw3htp5_13_JSEvents.fm Page 461 Wednesday, November 16, 2011 1:06 PM

462 Chapter 13 JavaScript Event Handling: A Deeper Look

HTML5 Document
The HTML5 document (Fig. 13.6) contains an h1 with a nested img, a paragraph and a
div with a nested unordered list. The unordered list contains the hexadecimal color codes
for 16 basic HTML colors. Each list item’s id is set to the color name for the hexadecimal
color value that’s displayed. The style.css file provides CSS rules that set the div’s width
and border and that display the unordered list’s elements in inline-block format. The
div’s width allows only four list items per line.

1 <!DOCTYPE html>
2
3 <!-- Fig 13.6: mouseoverout.html -->
4 <!-- Events mouseover and mouseout. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Events mouseover and mouseout</title>
9 <link rel = "stylesheet" type = "text/css" href = "style.css">

10 <script src = "mouseoverout.js"></script>
11 </head>
12 <body>
13
14
15 <p>Can you tell a color from its hexadecimal RGB code
16 value? Look at the hex code, guess its color. To see
17 what color it corresponds to, move the mouse over the
18 hex code. Moving the mouse out of the hex code's table
19 cell will display the color name.</p>
20 <div>
21
22
23 <li id = "Blue">#0000FF
24 <li id = "Magenta">#FF00FF
25 <li id = "Gray">#808080
26 <li id = "Green">#008000
27 <li id = "Lime">#00FF00
28 <li id = "Maroon">#800000
29 <li id = "Navy">#000080
30 <li id = "Olive">#808000
31 <li id = "Purple">#800080
32 <li id = "Red">#FF0000
33 <li id = "Silver">#C0C0C0
34 <li id = "Cyan">#00FFFF
35 <li id = "Teal">#008080
36 <li id = "Yellow">#FFFF00
37 <li id = "White">#FFFFFF
38
39 </div>
40 </body>
41 </html>

Fig. 13.6 | HTML5 document to demonstrate mouseover and mouseout. (Part 1 of 3.)

<h1><img src = "heading1.png" id = "heading"
 alt = "Heading Image"></h1>

<li id = "Black">#000000

iw3htp5_13_JSEvents.fm Page 462 Wednesday, November 16, 2011 1:06 PM

13.4 Rollovers with mouseover and mouseout 463

Fig. 13.6 | HTML5 document to demonstrate mouseover and mouseout. (Part 2 of 3.)

a) The page loads with the blue heading image and all the hex codes in black.

Blue image

b) The heading image switches to an image with green text when the mouse rolls over it.

Green image

c) When mouse rolls over a hex code, the text color changes to the color represented by the hex
code. Notice that the heading image has become blue again because the mouse is no longer over it.

Text now
displayed in

blue

iw3htp5_13_JSEvents.fm Page 463 Wednesday, November 16, 2011 1:06 PM

464 Chapter 13 JavaScript Event Handling: A Deeper Look

Script-Level Variables in mouseoverout.js
Figure 13.7 presents the JavaScript code for this example. To create a rollover effect for the
image in the heading, lines 3–6 create two new JavaScript Image objects—image1 and
image2. Image image2 displays when the mouse hovers over the image. Image image1 dis-
plays when the mouse is outside the image. The script sets the src properties of each Image
in lines 4 and 6, respectively. Creating Image objects preloads the images, so the browser
does not need to download the rollover image the first time the script displays the image.
If the image is large or the connection is slow, downloading would cause a noticeable delay
in the image update.

Performance Tip 13.1
Preloading images used in rollover effects prevents a delay the first time an image is displayed.

1 // Fig 13.7: mouseoverout.js
2 // Events mouseover and mouseout.
3
4
5
6
7
8 function mouseOver(e)
9 {

10 // swap the image when the mouse moves over it
11 if (e.target.getAttribute("id") == "heading")
12 {
13 e.target.setAttribute("src", image2.getAttribute("src"));
14 } // end if
15

Fig. 13.7 | Processing the mouseover and mouseout events. (Part 1 of 2.)

Fig. 13.6 | HTML5 document to demonstrate mouseover and mouseout. (Part 3 of 3.)

d) When the mouse leaves the hex code’s table cell, the text changes to the name of the color.

image1 = new Image();
image1.src = "heading1.png";
image2 = new Image();
image2.src = "heading2.png";

iw3htp5_13_JSEvents.fm Page 464 Wednesday, November 16, 2011 1:06 PM

13.5 Form Processing with focus and blur 465

Function mouseOver and mouseOut
Lines 41–42 register functions mouseOver and mouseOut to handle the mouseover and
mouseout events, respectively.

Lines 11–14 in the mouseOver function handle the mouseover event for the heading
image. We use the event object’s target property (line 11) to get the id of the DOM
object that received the event. If the event target’s id attribute is the string "heading", line
13 sets the img element’s src attribute to the src attribute of the appropriate Image object
(image2). The same task occurs with image1 in the mouseOut function (lines 28–31).

The script handles the mouseover event for the list items in lines 18–22. This code
tests whether the event’s target is an li element. If so, the code sets the element’s style
attribute, using the color name stored in the id as the value of the style’s color property.
Lines 35–38 handle the mouseout event by changing the innerHTML in the list item (i.e.,
the target) to the color name specified in the target’s id.

13.5 Form Processing with focus and blur
The focus and blur events can be useful when dealing with form elements that allow user
input. The focus event fires when an element gains the focus (i.e., when the user clicks a
form field or uses the Tab key to move between form elements), and blur fires when an
element loses the focus, which occurs when another control gains the focus. The example
in Figs. 13.8–13.9 demonstrates these events.

16 // if the element is an li, assign its id to its color
17 // to change the hex code's text to the corresponding color
18 if (e.target.tagName.toLowerCase() == "li")
19 {
20 e.target.setAttribute("style",
21 "color: " + e.target.getAttribute("id"));
22 } // end if
23 } // end function mouseOver
24
25 function mouseOut(e)
26 {
27 // put the original image back when the mouse moves away
28 if (e.target.getAttribute("id") == "heading")
29 {
30 e.target.setAttribute("src", image1.getAttribute("src"));
31 } // end if
32
33 // if the element is an li, assign its id to innerHTML
34 // to display the color name
35 if (e.target.tagName.toLowerCase() == "li")
36 {
37 e.target.innerHTML = e.target.getAttribute("id");
38 } // end if
39 } // end function mouseOut
40
41
42

Fig. 13.7 | Processing the mouseover and mouseout events. (Part 2 of 2.)

document.addEventListener("mouseover", mouseOver, false);
document.addEventListener("mouseout", mouseOut, false);

iw3htp5_13_JSEvents.fm Page 465 Wednesday, November 16, 2011 1:06 PM

466 Chapter 13 JavaScript Event Handling: A Deeper Look

HTML5 Document
The HTML5 document in Fig. 13.8 contains a form followed by a paragraph in which
we’ll display help text for the input element that currently has the focus.

1 <!DOCTYPE html>
2
3 <!-- Fig. 13.8: focusblur.html -->
4 <!-- Demonstrating the focus and blur events. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>A Form Using focus and blur</title>
9 <link rel = "stylesheet" type = "text/css" href = "style.css">

10 <script src = "focusblur.js"></script>
11 </head>
12 <body>
13 <form id = "myForm" action = "">
14 <p><label class = "fixed" for = "name">Name:</label>
15 <input type = "text" id = "name"
16 placeholder = "Enter name"></p>
17 <p><label class = "fixed" for = "email">E-mail:</label>
18 <input type = "email" id = "email"
19 placeholder = "Enter e-mail address"></p>
20 <p><label>Click here if you like this site
21 <input type = "checkbox" id = "like"></label></p>
22 <p><label for = "comments">Any comments?</p>
23 <textarea id = "comments"
24 placeholder = "Enter comments here"></textarea>
25 <p><input id = "submit" type = "submit">
26 <input id = "reset" type = "reset"></p>
27 </form>
28 <p id = "helpText"></p>
29 </body>
30 </html>

Fig. 13.8 | Demonstrating the focus and blur events. (Part 1 of 2.)

a) The blue message
at the bottom of the
page instructs the
user to enter a name
when the Name:
field has the focus.

help text in blue

iw3htp5_13_JSEvents.fm Page 466 Wednesday, November 16, 2011 1:06 PM

13.5 Form Processing with focus and blur 467

JavaScript for the focus and blur Events
The script in Fig. 13.9 registers the event handlers for the window’s load event (line 35)
and for the form elements’ focus and blur events.

1 // Fig. 13.9: focusblur.js
2 // Demonstrating the focus and blur events.
3 var helpArray = ["Enter your name in this input box.",
4 "Enter your e-mail address in the format user@domain.",
5 "Check this box if you liked our site.",
6 "Enter any comments here that you'd like us to read.",
7 "This button submits the form to the server-side script.",
8 "This button clears the form.", ""];
9 var helpText;

10
11 // initialize helpTextDiv and register event handlers
12 function init()
13 {
14 helpText = document.getElementById("helpText");
15
16 // register listeners
17 registerListeners(document.getElementById("name"), 0);
18 registerListeners(document.getElementById("email"), 1);
19 registerListeners(document.getElementById("like"), 2);
20 registerListeners(document.getElementById("comments"), 3);
21 registerListeners(document.getElementById("submit"), 4);
22 registerListeners(document.getElementById("reset"), 5);
23 } // end function init
24
25 // utility function to help register events
26 function registerListeners(object, messageNumber)
27 {

Fig. 13.9 | Demonstrating the focus and blur events. (Part 1 of 2.)

Fig. 13.8 | Demonstrating the focus and blur events. (Part 2 of 2.)

b) The message
changes depending
on which field has
focus—this window
shows the help text
for the comments
textarea.

iw3htp5_13_JSEvents.fm Page 467 Wednesday, November 16, 2011 1:06 PM

468 Chapter 13 JavaScript Event Handling: A Deeper Look

Script-Level Variables
The helpArray (lines 3–8) contains the messages that are displayed when each input ele-
ment receives the focus. Variable helpText (line 9) will refer to the paragraph in which the
help text will be displayed.

Function init
When the window’s load event occurs, function init (lines 12–23) executes. Line 14 gets
the helpText paragraph element from the document. Then, lines 17–22 call the function
registerListeners (lines 26–33) once for each element in the form. The first argument
in each call is the element for which we’ll register the focus and blur events, and the sec-
ond argument a helpArray index that indicates which message to display for the element.

Function registerListeners—Using Anonymous functions
Function registerListeners registers the focus and blur events for the object it re-
ceives as its first argument. In each case, we define an anonymous function to handle the
event. An anonymous function is defined with no name—it’s created in nearly the same
way as any other function, but with no identifier after the keyword function. This nota-
tion is useful when creating a function for the sole purpose of assigning it to an event han-
dler. We never call the function ourselves, so we don’t need to give it a name, and it’s more
concise to create the function and register it as an event handler at the same time. For ex-
ample, line 29

defines an anonymous function that sets the helpText paragraph’s innerHTML property to
the string in helpArray at index messageNumber. For the blur event handler, line 32 de-
fines an anonymous function that sets the helpText paragraph’s innerHTML property to
the empty string in helpArray[6].

13.6 More Form Processing with submit and reset
Two more events for processing forms are submit (which you’ve seen in earlier chapters)
and reset. These events fire when a form is submitted or reset, respectively (Fig. 13.10).
This example enhances the one in Fig. 13.8. The HTML5 document is identical, so we
don’t show it here. The new JavaScript code for this example is in lines 24–36, which reg-
ister event handlers for the form’s submit and reset events.

Line 24 gets the form element ("myForm"), then lines 25–30 register an anonymous
function for its submit event. The anonymous function executes in response to the user’s

28
29
30
31
32
33 } // end function registerListener
34
35

function() { helpText.innerHTML = helpArray[messageNumber]; }

Fig. 13.9 | Demonstrating the focus and blur events. (Part 2 of 2.)

object.addEventListener("focus",
 function() { helpText.innerHTML = helpArray[messageNumber]; },
 false);
object.addEventListener("blur",
 function() { helpText.innerHTML = helpArray[6]; }, false);

window.addEventListener("load", init, false);

iw3htp5_13_JSEvents.fm Page 468 Wednesday, November 16, 2011 1:06 PM

13.6 More Form Processing with submit and reset 469

submitting the form by clicking the Submit button or pressing the Enter key. Line 28
introduces the window object’s confirm method. As with alert and prompt, we do not
need to prefix the call with window and a dot (.). The confirm dialog asks the users a ques-
tion, presenting them with an OK button and a Cancel button. If the user clicks OK, con-
firm returns true; otherwise, confirm returns false.

1 // Fig. 13.8: focusblur.js
2 // Demonstrating the focus and blur events.
3 var helpArray = ["Enter your name in this input box.",
4 "Enter your e-mail address in the format user@domain.",
5 "Check this box if you liked our site.",
6 "Enter any comments here that you'd like us to read.",
7 "This button submits the form to the server-side script.",
8 "This button clears the form.", ""];
9 var helpText;

10
11 // initialize helpTextDiv and register event handlers
12 function init()
13 {
14 helpText = document.getElementById("helpText");
15
16 // register listeners
17 registerListeners(document.getElementById("name"), 0);
18 registerListeners(document.getElementById("email"), 1);
19 registerListeners(document.getElementById("like"), 2);
20 registerListeners(document.getElementById("comments"), 3);
21 registerListeners(document.getElementById("submit"), 4);
22 registerListeners(document.getElementById("reset"), 5);
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 } // end function init
38
39 // utility function to help register events
40 function registerListeners(object, messageNumber)
41 {
42 object.addEventListener("focus",
43 function() { helpText.innerHTML = helpArray[messageNumber]; },
44 false);

Fig. 13.10 | Demonstrating the focus and blur events. (Part 1 of 2.)

var myForm = document.getElementById("myForm");
myForm.addEventListener("submit",
 function()
 {
 return confirm("Are you sure you want to submit?");
 }, // end anonymous function
 false);
myForm.addEventListener("reset",
 function()
 {
 return confirm("Are you sure you want to reset?");
 }, // end anonymous function
 false);

iw3htp5_13_JSEvents.fm Page 469 Wednesday, November 16, 2011 1:06 PM

470 Chapter 13 JavaScript Event Handling: A Deeper Look

Our event handlers for the form’s submit and reset events simply return the value of
the confirm dialog, which asks the users if they’re sure they want to submit or reset (lines
28 and 34, respectively). By returning either true or false, the event handlers dictate
whether the default action for the event—in this case submitting or resetting the form—is
taken. Other default actions, such as following a hyperlink, can be prevented by returning
false from a click event handler on the link. If an event handler returns true or does not
return a value, the default action is taken once the event handler finishes executing.

13.7 Event Bubbling
Event bubbling is the process by which events fired on child elements “bubble” up to their
parent elements. When an event is fired on an element, it’s first delivered to the element’s
event handler (if any), then to the parent element’s event handler (if any). This might result
in event handling that was not intended. If you intend to handle an event in a child element
alone, you should cancel the bubbling of the event in the child element’s event-handling code by
using the cancelBubble property of the event object, as shown in Figs. 13.11–13.12.

45 object.addEventListener("blur",
46 function() { helpText.innerHTML = helpArray[6]; }, false);
47 } // end function registerListener
48
49 window.addEventListener("load", init, false);

1 <!DOCTYPE html>
2
3 <!-- Fig. 13.11: bubbling.html -->
4 <!-- Canceling event bubbling. -->
5 <html>

Fig. 13.11 | Canceling event bubbling. (Part 1 of 2.)

Fig. 13.10 | Demonstrating the focus and blur events. (Part 2 of 2.)

iw3htp5_13_JSEvents.fm Page 470 Wednesday, November 16, 2011 1:06 PM

13.7 Event Bubbling 471

Clicking the first p element triggers a call to bubble (Fig. 13.12, lines 8–12). Then,
because line 22 registers the document’s click event, documentClick is also called. This

6 <head>
7 <meta charset="utf-8">
8 <title>Event Bubbling</title>
9 <script src = "bubbling.js">

10 </head>
11 <body>
12 <p id = "bubble">Bubbling enabled.</p>
13 <p id = "noBubble">Bubbling disabled.</p>
14 </body>
15 </html>

Fig. 13.11 | Canceling event bubbling. (Part 2 of 2.)

a) User clicks the first
paragraph, for which
bubbling is enabled.

b) Paragraph’s event
handler causes an

alert.

c) Document’s event
handler causes

another alert,
because the event
bubbles up to the

document.

d) User clicks the
second paragraph,

for which bubbling is
disabled.

e) Paragraph’s event
handler causes an

alert. The
document’s event

handler is not called.

iw3htp5_13_JSEvents.fm Page 471 Wednesday, November 16, 2011 1:06 PM

472 Chapter 13 JavaScript Event Handling: A Deeper Look

occurs because the click event bubbles up to the document. This is probably not the desired
result. Clicking the second p element calls noBubble (lines 14–18), which disables the event
bubbling for this event by setting the cancelBubble property of the event object to true.
The default value of cancelBubble is false, so the statement in line 11 is unnecessary.

13.8 More Events
The events we covered in this chapter are among the most commonly used. Figure 13.13
lists some common events and their descriptions. The actual DOM event names begin
with "on", but we show the names you use with addEventListener here.

13.9 Web Resource
www.quirksmode.org/js/introevents.html

An introduction and reference site for JavaScript events. Includes comprehensive information on
history of events, the different event models, and making events work across multiple browsers.

Common Programming Error 13.1
Forgetting to cancel event bubbling when necessary may cause unexpected results in your
scripts.

1 // Fig. 13.12: bubbling.js
2 // Canceling event bubbling.
3 function documentClick()
4 {
5 alert("You clicked in the document.");
6 } // end function documentClick
7
8 function bubble(e)
9 {

10 alert("This will bubble.");
11
12 } // end function bubble
13
14 function noBubble(e)
15 {
16 alert("This will not bubble.");
17
18 } // end function noBubble
19
20 function registerEvents()
21 {
22 document.addEventListener("click", documentClick, false);
23 document.getElementById("bubble").addEventListener(
24 "click", bubble, false);
25 document.getElementById("noBubble").addEventListener(
26 "click", noBubble, false);
27 } // end function registerEvents
28
29 window.addEventListener("load", registerEvents, false);

Fig. 13.12 | Canceling event bubbling.

e.cancelBubble = false;

e.cancelBubble = true;

iw3htp5_13_JSEvents.fm Page 472 Wednesday, November 16, 2011 1:06 PM

13.9 Web Resource 473

Event Description

abort Fires when image transfer has been interrupted by user.

change Fires when a new choice is made in a select element, or when a
text input is changed and the element loses focus.

click Fires when the user clicks the mouse.

dblclick Fires when the user double clicks the mouse.

focus Fires when a form element gets the focus.

keydown Fires when the user pushes down a key.

keypress Fires when the user presses then releases a key.

keyup Fires when the user releases a key.

load Fires when an element and all its children have loaded.

mousedown Fires when a mouse button is pressed.

mousemove Fires when the mouse moves.

mouseout Fires when the mouse leaves an element.

mouseover Fires when the mouse enters an element.

mouseup Fires when a mouse button is released.

reset Fires when a form resets (i.e., the user clicks a reset button).

resize Fires when the size of an object changes (i.e., the user resizes a
window or frame).

select Fires when a text selection begins (applies to input or
textarea).

submit Fires when a form is submitted.

unload Fires when a page is about to unload.

Fig. 13.13 | Common events.

Summary
Section 13.1 Introduction
• JavaScript events (p. 455) allow scripts to respond to user interactions and modify the page ac-

cordingly.

• Events and event handling help make web applications more responsive, dynamic and interactive.

Section 13.2 Reviewing the load Event
• Functions that handle events are called event handlers (p. 456). Assigning an event handler to an

event on a DOM node is called registering an event handler (p. 456).

• The load event fires whenever an element finishes loading successfully.

• If a script in the head attempts to get a DOM node for an HTML5 element in the body, getEle-
mentById returns null because the body has not yet loaded.

• Method addEventListener can be called multiple times on a DOM node to register more than
one event-handling method for an event.

iw3htp5_13_JSEvents.fm Page 473 Wednesday, November 16, 2011 1:06 PM

474 Chapter 13 JavaScript Event Handling: A Deeper Look

• You can remove an event listener by calling removeEventListener (p. 457) with the same argu-
ments that you passed to addEventListener to register the event handler.

• The inline model of event registration places calls to JavaScript functions directly in HTML code.

• The traditional model of event registration uses a property of an object to specify an event handler.

Section 13.3 Event mousemove and the event Object
• The mousemove event (p. 457) fires whenever the user moves the mouse.

• The event object (p. 460) stores information about the event that called the event-handling func-
tion.

• The event object’s ctrlKey property (p. 461) contains a boolean which reflects whether the Ctrl
key was pressed during the event.

• The event object’s shiftKey property (p. 461) reflects whether the Shift key was pressed during
the event.

• In an event-handling function, this refers to the DOM object on which the event occurred.

• The event object stores in its target property the node on which the action occurred.

Section 13.4 Rollovers with mouseover and mouseout
• When the mouse cursor enters an element, a mouseover event (p. 461) occurs for that element.

When the mouse cursor leaves the element, a mouseout event (p. 461) occurs for that element.

• Creating an Image object and setting its src property preloads the image.

Section 13.5 Form Processing with focus and blur
• The focus event (p. 465) fires when an element gains focus (i.e., when the user clicks a form field

or uses the Tab key to move between form elements).

• blur (p. 465) fires when an element loses focus, which occurs when another control gains the focus.

Section 13.6 More Form Processing with submit and reset
• The submit and reset events (p. 468) fire when a form is submitted or reset, respectively.

• An anonymous function (p. 468) is a function that’s defined with no name—it’s created in nearly
the same way as any other function, but with no identifier after the keyword function.

• Anonymous functions are useful when creating a function for the sole purpose of assigning it to
an event handler.

• The confirm method (p. 469) asks the users a question, presenting them with an OK button and
a Cancel button. If the user clicks OK, confirm returns true; otherwise, confirm returns false.

• By returning either true or false, event handlers dictate whether the default action for the event
is taken.

• If an event handler returns true or does not return a value, the default action is taken once the
event handler finishes executing.

Section 13.7 Event Bubbling
• Event bubbling (p. 470) is the process whereby events fired in child elements “bubble” up to

their parent elements. When an event is fired on an element, it’s first delivered to the element’s
event handler (if any), then to the parent element’s event handler (if any).

• If you intend to handle an event in a child element alone, you should cancel the bubbling of the
event in the child element’s event-handling code by using the cancelBubble property (p. 470) of
the event object.

iw3htp5_13_JSEvents.fm Page 474 Wednesday, November 16, 2011 1:06 PM

 Self-Review Exercises 475

Self-Review Exercises
13.1 Fill in the blanks in each of the following statements:

a) If a script in the head attempts to get a DOM node for an HTML5 element in the body,
 returns because the body has not yet loaded.

b) Method can be called multiple times on a DOM node to register more than
one event-handling method for an event.

c) The keyword allows us to use one event handler to apply a change to one of
many DOM elements, depending on which one received the event.

d) The confirm method asks the users a question, presenting them with an OK button and
a(n) button. If the user clicks OK, confirm returns .

e) When an event is fired on an element, it’s first delivered to the event handler,
then to the element’s event handler.

13.2 State whether each of the following is true or false. If the statement is false, explain why.
a) An anonymous function has a special identifier after the keyword function.
b) In an event-handling function, this refers to the DOM object on which the event

occurred.
c) The focus event fires when an element gains focus.
d) If an event handler returns true or does not return a value, the default action is taken

once the event handler finishes executing.
e) The event object stores in its source property the node on which the action occurred.

Answers to Self-Review Exercises
13.1 a) getElementById, null. b) addEventListener. c) this. d) Cancel, true. e) element’s, parent.

13.2 a) False. An anonymous function has no identifier after the keyword function. b) True. c)
True. d) True. e) False. The event object stores in its target property the node on which the action
occurred.

Exercises
13.3 Add an erase feature to the drawing program in Fig. 13.3. Try setting the background color
of the table cell over which the mouse moved to white when the Alt key is pressed.

13.4 Add a button to your program from Exercise 13.3 to erase the entire drawing window.

13.5 You have a server-side script that cannot handle any ampersands (&) in the form data. Write
a function that converts all ampersands in a form field to " and " when the field loses focus (blur).

13.6 Write a function that responds to a click anywhere on the page by displaying an alert di-
alog. Display the event name if the user held Shift during the mouse click. Display the element name
that triggered the event if the user held Ctrl during the mouse click.

13.7 Use CSS absolute positioning, mousedown, mousemove, mouseup and the clientX/clientY
properties of the event object to create a program that allows you to drag and drop an image. When
the user clicks the image, it should follow the cursor until the mouse button is released.

13.8 Modify Exercise 13.7 to allow multiple images to be dragged and dropped in the same page.

iw3htp5_13_JSEvents.fm Page 475 Wednesday, November 16, 2011 1:06 PM

14 HTML5: Introduction to
canvas

With every experience, you
alone are painting your own
canvas, thought by thought,
choice by choice.
—Oprah Winfrey

Observe Everything.
Communicate Well.
Draw, Draw, Draw.
—Frank Thomas

Do not go where the path may
lead, go instead where there is
no path and leave a trail.
— Ralph Waldo Emerson

O b j e c t i v e s
In this chapter you’ll:

■ Draw lines, rectangles, arcs,
circles, ellipses and text.

■ Draw gradients and shadows.

■ Draw images, create patterns
and convert a color image to
black and white.

■ Draw Bezier and quadratic
curves.

■ Rotate, scale and transform.

■ Dynamically resize a canvas
to fill the window.

■ Use alpha transparency and
compositing techniques.

■ Create an HTML5 canvas-
based game app with sound
and collision detection that’s
easy to code and fun to play.

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 476 Wednesday, November 16, 2011 1:06 PM

14.1 Introduction 477

14.1 Introduction1

It’s taken us a while to get here, working hard to present many of the great new features
of HTML5 and CSS3, and scripting in JavaScript. Now it’s time to exercise your creativity
and have some fun.

Most people enjoy drawing. The canvas element, which you’ll learn to use in this
chapter, provides a JavaScript application programming interface (API) with methods for
drawing two-dimensional bitmapped graphics and animations, manipulating fonts and
images, and inserting images and videos.

The canvas element is supported by all of the browsers we’ve used to test the book’s
examples. To get a sense of the wide range of its capabilities, review the chapter objectives
and outline. A key benefit of canvas is that it’s built into the browser, eliminating the need
for plug-ins like Flash and Silverlight, thereby improving performance and convenience
and reducing costs. At the end of the chapter we’ll build a fun Cannon Game, which in
previous editions of this book was built in Flash.

14.2 canvas Coordinate System
To begin drawing, we first must understand canvas’s coordinate system (Fig. 14.1), a
scheme for identifying every point on a canvas. By default, the upper-left corner of a can-

14.1 Introduction
14.2 canvas Coordinate System
14.3 Rectangles
14.4 Using Paths to Draw Lines
14.5 Drawing Arcs and Circles
14.6 Shadows
14.7 Quadratic Curves
14.8 Bezier Curves
14.9 Linear Gradients

14.10 Radial Gradients
14.11 Images
14.12 Image Manipulation: Processing the

Individual Pixels of a canvas
14.13 Patterns
14.14 Transformations

14.14.1 scale and translate Methods:
Drawing Ellipses

14.14.2 rotate Method: Creating an
Animation

14.14.3 transform Method: Drawing
Skewed Rectangles

14.15 Text
14.16 Resizing the canvas to Fill the

Browser Window
14.17 Alpha Transparency
14.18 Compositing
14.19 Cannon Game

14.19.1 HTML5 Document
14.19.2 Instance Variables and Constants
14.19.3 Function setupGame
14.19.4 Functions startTimer and

stopTimer
14.19.5 Function resetElements
14.19.6 Function newGame
14.19.7 Function updatePositions:

Manual Frame-by-Frame Animation
and Simple Collision Detection

14.19.8 Function fireCannonball
14.19.9 Function alignCannon

14.19.10 Function draw
14.19.11 Function showGameOverDialog

14.20 save and restore Methods
14.21 A Note on SVG
14.22 A Note on canvas 3D

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1. Due to the large number of examples in this chapter, most of the examples use embedded JavaScripts.

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 477 Wednesday, November 16, 2011 1:06 PM

478 Chapter 14 HTML5: Introduction to canvas

vas has the coordinates (0, 0). A coordinate pair has both an x-coordinate (the horizontal
coordinate) and a y-coordinate (the vertical coordinate). The x-coordinate is the horizon-
tal distance to the right from the left border of a canvas. The y-coordinate is the vertical
distance downward from the top border of a canvas. The x-axis defines every horizontal
coordinate, and the y-axis defines every vertical coordinate. You position text and shapes
on a canvas by specifying their x and y-coordinates. Coordinate space units are measured
in pixels (“picture elements”), which are the smallest units of resolution on a screen.

14.3 Rectangles
Now we’re ready to create a canvas and start drawing. Figure 14.2 demonstrates how to
draw a rectangle with a border on a canvas.

Portability Tip 14.1
Different screens vary in resolution and thus in density of pixels so graphics may vary in
appearance on different screens.

Fig. 14.1 | canvas coordinate system. Units are measured in pixels.

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.2: drawrectangle.html -->
4 <!-- Drawing a rectangle on a canvas. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Drawing a Rectangle</title>
9 </head>

10 <body>
11 <canvas id = "drawRectangle" width = "300" height = "100"
12 style = "border: 1px solid black;">
13 Your browser does not support Canvas.
14 </canvas>
15 <script type>
16 var canvas = document.getElementById("drawRectangle");
17 var context = canvas.getContext("2d")

Fig. 14.2 | Drawing a rectangle with a border on a canvas. (Part 1 of 2.)

(0, 0)

(x, y)+y

+x

y-axis

x-axis

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 478 Wednesday, November 16, 2011 1:06 PM

14.3 Rectangles 479

Creating a Canvas
The canvas element has two attributes—width and height. The default width is 300 and
the default height 150. In lines 11–12, we create a canvas starting with a canvasID—in
this case, "drawRectangle". Many people use "myCanvas" or something similar. Assigning
a unique ID to a canvas allows you to access it like any other element, and to use more
than one canvas on a page. Next, we specify the canvas’s width (300) and height (100),
and a border of 1px solid black. You do not need to include a visible border. In line 13
we include the fallback text Your browser does not support canvas. This will appear if
the user runs the application in a browser that does not support canvas. To save space, we
have not included it in the subsequent examples.

Graphics Contexts and Graphics Objects
Now we’re ready to write our JavaScript (lines 15–23). First, we use the getElementById
method to get the canvas element using the ID (line 16). Next we get the context object.
A context represents a 2D rendering surface that provides methods for drawing on a can-
vas. The context contains attributes and methods for drawing, font manipulation, color
manipulation and other graphics-related actions.

Drawing the Rectangle
To draw the rectangle, we specify its color by setting the fillStyle attribute to yellow
(line 18). The fillRect method then draws the rectangle using the arguments x, y, width
and height, where x and y are the coordinates for the top-left corner of the rectangle (line
19). In this example, we used the values 5, 10, 200 and 75, respectively.

Next, we add a border, or stroke, to the rectangle. The strokeStyle attribute (line
20) specifies the stroke color or style (in this case, royalblue). The lineWidth attribute
specifies the stroke width in coordinate space units (line 21). Finally, the strokeRect
method specifies the coordinates of the stroke using the arguments x, y, width and height.
We used values that are one coordinate off in each direction from the outer edges of the

18
19
20
21
22
23 </script>
24 </body>
25 </html>

Fig. 14.2 | Drawing a rectangle with a border on a canvas. (Part 2 of 2.)

context.fillStyle = "yellow";
context.fillRect(5, 10, 200, 75);
context.strokeStyle = "royalblue";
context.lineWidth = 6;
context.strokeRect(4, 9, 201, 76);

yellow rectangle

royal blue stroke

canvas border

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 479 Wednesday, November 16, 2011 1:06 PM

480 Chapter 14 HTML5: Introduction to canvas

rectangle—4, 9, 201 and 76. If the width and height are 0, no stroke will appear. If only
one of the width or height values is 0, the result will be a line, not a rectangle.

14.4 Using Paths to Draw Lines
To draw lines and complex shapes in canvas, we use paths. A path can have zero or more
subpaths, each having one or more points connected by lines or curves. If a subpath has
fewer than two points, no path is drawn.

Figure 14.3 uses paths to draw lines on a canvas. The beginPath method starts the
line’s path (line 19). The moveTo method sets the x- and y-coordinates of the path’s origin
(line 20). From the point of origin, we use the lineTo method to specify the destinations
for the path (lines 21–23). The lineWidth attribute is used to change the thickness of the
line (line 24). The default lineWidth is 1 pixel. We then use the lineJoin attribute to
specify the style of the corners where two lines meet—in this case, bevel (line 25). The
lineJoin attribute has three possible values—bevel, round, and miter. The value bevel
gives the path sloping corners. We’ll discuss the other two lineJoin values shortly.

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.3: lines.html -->
4 <!-- Drawing lines on a canvas. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Drawing Lines</title>
9 </head>

10 <body>
11 <canvas id = "drawLines" width = "400" height = "200"
12 style = "border: 1px solid black;">
13 </canvas>
14 <script>
15 var canvas = document.getElementById("drawLines");
16 var context = canvas.getContext("2d")
17
18 // red lines without a closed path
19 context.beginPath(); // begin a new path
20
21
22
23
24
25
26
27
28
29
30 // orange lines without a closed path
31 context.beginPath(); //begin a new path
32 context.moveTo(40, 75); // path origin
33 context.lineTo(40, 55);

Fig. 14.3 | Drawing lines on a canvas. (Part 1 of 2.)

context.moveTo(10, 10); // path origin
context.lineTo(390, 10);
context.lineTo(390, 30);
context.lineTo(10, 30);
context.lineWidth = 10; // line width
context.lineJoin = "bevel" // line join style
context.lineCap = "butt"; // line cap style
context.strokeStyle = "red" // line color
context.stroke(); //draw path

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 480 Wednesday, November 16, 2011 1:06 PM

14.4 Using Paths to Draw Lines 481

The lineCap attribute specifies the style of the end of the lines. There are three pos-
sible values—butt, round, and square. A butt lineCap (line 26) specifies that the line
ends have edges perpendicular to the direction of the line and no additional cap. We’ll
demonstrate the other lineCap styles shortly.

34 context.lineTo(360, 55);
35 context.lineTo(360, 75);
36
37
38
39 context.strokeStyle = "orange" //line color
40 context.stroke(); // draw path
41
42 // green lines with a closed path
43 context.beginPath(); // begin a new path
44 context.moveTo(10, 100); // path origin
45 context.lineTo(390, 100);
46 context.lineTo(390, 130);
47
48
49
50 context.strokeStyle = "green" // line color
51 context.stroke(); // draw path
52
53 // blue lines without a closed path
54 context.beginPath(); // begin a new path
55 context.moveTo(40, 140); // path origin
56 context.lineTo(360, 190);
57 context.lineTo(360, 140);
58 context.lineTo(40, 190);
59
60
61 context.strokeStyle = "blue" // line color
62 context.stroke(); // draw path
63 </script>
64 </body>
65 </html>

Fig. 14.3 | Drawing lines on a canvas. (Part 2 of 2.)

context.lineWidth = 20; // line width
context.lineJoin = "round" // line join style
context.lineCap = "round"; // line cap style

context.closePath() // close path
context.lineWidth = 10; // line width
context.lineJoin = "miter" // line join style

context.lineWidth = 5; // line width
context.lineCap = "butt"; // line cap style

red line with bevel
lineJoin

orange line with
round lineJoin

green line with
miter lineJoin

blue line with miter
lineJoin

butt linecap

round linecap

square
linecap

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 481 Wednesday, November 16, 2011 1:06 PM

482 Chapter 14 HTML5: Introduction to canvas

Next, the strokeStyle attribute specifies the line color—in this case, red (line 27).
Finally, the stroke method draws the line on the canvas (line 28). The default stroke
color is black.

To demonstrate the different lineJoin and lineCap styles, we draw additional lines.
First we draw orange lines (lines 31–40) with a lineWidth of 20 (line 36). The round
lineJoin creates rounded corners (line 37). Then, the round lineCap adds a semicircular
cap to the ends of the path (line 38)—the cap’s diameter is equal to the width of the line.

Next, we draw green lines (lines 43–51) with a lineWidth of 10 (line 48). After we
specify the destinations of the path, we use the closePath method (line 47) which closes
the path by drawing a straight line from the last specified destination (line 46) back to the
point of the path’s origin (line 44). The miter lineJoin (line 49) bevels the lines at an
angle where they meet. For example, the lines that meet at a 90-degree angle have edges
beveled at 45-degree angles where they meet. Since the path is closed, we do not specify a
lineCap style for the green line. If we did not close the path (line 47), the previous lineCap
style that we specified for the orange line above in line 36 would be applied to the green
line. Such settings are said to be sticky—they continue to apply until they’re changed.

Finally, we draw blue lines (lines 54–62) with a lineWidth of 5. The butt lineCap
adds a rectangular cap to the line ends (line 60). The length of the cap is equal to the line
width, and the width of the cap is equal to half the line width. The edge of the square
lineCap is perpendicular to the direction of the line.

14.5 Drawing Arcs and Circles
Arcs are portions of the circumference of a circle. To draw an arc, you specify the arc’s
starting angle and ending angle measured in radians—the ratio of the arc’s length to its
radius. The arc is said to sweep from its starting angle to its ending angle. Figure 14.4 de-
picts two arcs. The arc at the left of the figure sweeps counterclockwise from zero radians to
π/2 radians, resulting in an arc that sweeps three quarters of the circumference a circle. The
arc at the right of the figure sweeps clockwise from zero radians to π/2 radians.

Figure 14.5 shows how to draw arcs and circles using the arc method. We start by
drawing a filled mediumslateblue circle (lines 18–21). The beginPath method starts the
path (line 18). Next, the arc method draws the circle using five arguments (line 20). The

Fig. 14.4 | Positive and negative arc angles.

3π/2 radians

π/2 radians

Counterclockwise argument is true

π radians 0 radians

3π/2 radians

π/2 radians

Counterclockwise argument is false or omitted

π radians 0 radians

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 482 Wednesday, November 16, 2011 1:06 PM

14.5 Drawing Arcs and Circles 483

first two arguments represent the x- and y-coordinates of the center of the circle—in this
case, 35, 50. The third argument is the radius of the circle. The fourth and fifth arguments
are the arc’s starting and ending angles in radians. In this case, the ending angle is
Math.PI*2. The constant Math.PI is the JavaScript representation of the mathematical
constant π, the ratio of a circle’s circumference to its diameter. 2π radians represents a 360-
degree arc, π radians is 180 degrees and π/2 radians is 90 degrees. There’s an optional sixth
argument of the arc method which we’ll discuss shortly. To draw the circle to the canvas,
we specify a fillStyle of mediumslateblue (line 20), then draw the circle using the fill
method.

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.5: drawingarcs.html -->
4 <!-- Drawing arcs and a circle on a canvas. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Arcs and Circles</title>
9 </head>

10 <body>
11 <canvas id = "drawArcs" width = "225" height = "100">
12 </canvas>
13 <script>
14 var canvas = document.getElementById("drawArcs");
15 var context = canvas.getContext("2d")
16
17 // draw a circle
18 context.beginPath();
19
20 context.fillStyle = "mediumslateblue";
21 context.fill();
22
23 // draw an arc counterclockwise
24 context.beginPath();
25
26 context.stroke();
27
28 // draw a half-circle clockwise
29 context.beginPath();
30
31 context.fillStyle = "red";
32 context.fill();
33
34 // draw an arc counterclockwise
35 context.beginPath();
36
37 context.strokeStyle = "darkorange";
38 context.stroke();
39 </script>
40 </body>
41 </html>

Fig. 14.5 | Drawing arcs and circles on a canvas. (Part 1 of 2.)

context.arc(35, 50, 30, 0, Math.PI * 2);

context.arc(110, 50, 30, 0, Math.PI, false);

context.arc(185, 50, 30, 0, Math.PI, true);

context.arc(260, 50, 30, 0, 3 * Math.PI / 2);

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 483 Wednesday, November 16, 2011 1:06 PM

484 Chapter 14 HTML5: Introduction to canvas

In lines 24–26 we draw a black arc that sweeps clockwise. Using the arc method, we
draw an arc with a center at 110, 50, a radius of 30, a starting angle of 0 and an ending
angle of Math.PI (180 degrees). The sixth argument is optional and specifies the direction
in which the arc’s path is drawn. By default, the sixth argument is false, indicating that
the arc is drawn clockwise. If the argument is true, the arc is drawn counterclockwise (or
anticlockwise). We draw the arc using the stroke method (line 26).

Next, we draw a filled red semicircle counterclockwise so that it sweeps upward (lines
29–32). In this case, arguments of the arc method include a center of 185, 50, a radius of
30, a starting angle of 0 and an ending angle of Math.PI (180 degrees). To draw the arc
counterclockwise, we use the sixth argument, true. We specify a fillStyle of red (line
31), then draw the semicircle using the fill method (line 32).

Finally, we draw a darkorange 270-degree clockwise arc (lines 35–38). Using the arc
method (line 36), we draw an arc with a center at 260, 50, a radius of 30, a starting angle of
0 and an ending angle of 3*Math.PI/2 (270 degrees). Since we do not include the optional
sixth argument, it defaults to false, drawing the arc clockwise. Then we specify a stroke-
Style of darkorange (line 37) and draw the arc using the stroke method (line 38).

14.6 Shadows
In the next example, we add shadows to two filled rectangles (Fig. 14.6). We create a shadow
that drops below and to the right of the first rectangle (lines 19–22). We start by specifying
the shadowBlur attribute, setting its value to 10 (line 19). By default, the blur is 0 (no blur).
The higher the value, the more blurred the edges of the shadow will appear. Next, we set the
shadowOffsetX attribute to 15, which moves the shadow to the right of the rectangle (line
20). We then set the shadowOffsetY attribute to 15, which moves the shadow down from
the rectangle (line 21). Finally, we specify the shadowColor attribute as blue (line 22).

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.6: shadows.html -->
4 <!-- Creating shadows on a canvas. -->
5 <html>

Fig. 14.6 | Creating shadows on a canvas. (Part 1 of 2.)

Fig. 14.5 | Drawing arcs and circles on a canvas. (Part 2 of 2.)

medium slate blue
circle

black arc drawn
clockwise

red semicircle drawn
counterclockwise

dark orange arc
drawn clockwise

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 484 Wednesday, November 16, 2011 1:06 PM

14.6 Shadows 485

For the second rectangle, we create a shadow that shifts above and to the left of the
rectangle (lines 28–29). Notice that the shadowBlur is 20 (line 27). The effect is a shadow
on which the edges appear more blurred than on the shadow of the first rectangle. Next,

6 <head>
7 <meta charset = "utf-8">
8 <title>Shadows</title>
9 </head>

10 <body>
11 <canvas id = "shadow" width = "525" height = "250"
12 style = "border: 1px solid black;">
13 </canvas>
14 <script>
15
16 // shadow effect with positive offsets
17 var canvas = document.getElementById("shadow");
18 var context = canvas.getContext("2d")
19
20
21
22
23 context.fillStyle = "cyan";
24 context.fillRect(25, 25, 200, 200);
25
26 // shadow effect with negative offsets
27
28
29
30
31 context.fillStyle = "magenta";
32 context.fillRect(300, 25, 200, 200);
33 </script>
34 </body>
35 </html>

Fig. 14.6 | Creating shadows on a canvas. (Part 2 of 2.)

context.shadowBlur = 10;
context.shadowOffsetX = 15;
context.shadowOffsetY = 15;
context.shadowColor = "blue";

context.shadowBlur = 20;
context.shadowOffsetX = -20;
context.shadowOffsetY = -20;
context.shadowColor = "gray";

cyan
rectangle

with sharp
blue shadow
down and to

the right

magenta
rectangle
with a more
blurry gray
shadow up
and to the
left

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 485 Wednesday, November 16, 2011 1:06 PM

486 Chapter 14 HTML5: Introduction to canvas

we specify the shadowOffsetX, setting its value to -20. Using a negative shadowOffsetX
moves the shadow to the left of the rectangle (line 28). We then specify the shadowOffsetY
attribute, setting its value to -20 (line 29). Using a negative shadowOffsetY moves the
shadow up from the rectangle. Finally, we specify the shadowColor as gray (line 30). The
default values for the shadowOffsetX and shadowOffsetY are 0 (no shadow).

14.7 Quadratic Curves
Figure 14.7 demonstrates how to draw a rounded rectangle using lines to draw the straight
sides and quadratic curves to draw the rounded corners. Quadratic curves have a starting
point, an ending point and a single point of inflection.

The quadraticCurveTo method uses four arguments. The first two, cpx and cpy, are
the coordinates of the control point—the point of the curve’s inflection. The third and
fourth arguments, x and y, are the coordinates of the ending point. The starting point is the
last subpath destination, specified using the moveTo or lineTo methods. For example, if
we write

the curve starts at (5, 100), curves at (25, 5) and ends at (95, 50).
Unlike in CSS3, rounded rectangles are not built into canvas. To create a rounded

rectangle, we use the lineTo method to draw the straight sides of the rectangle and the
quadraticCurveTo to draw the rounded corners.

context.moveTo(5, 100);
context.quadraticCurveTo(25, 5, 95, 50);

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.7: roundedrectangle.html -->
4 <!-- Drawing a rounded rectangle on a canvas. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Quadratic Curves</title>
9 </head>

10 <body>
11 <canvas id = "drawRoundedRect" width = "130" height = "130"
12 style = "border: 1px solid black;">
13 </canvas>
14 <script>
15 var canvas = document.getElementById("drawRoundedRect");
16 var context = canvas.getContext("2d")
17 context.beginPath();
18
19
20
21
22
23
24
25

Fig. 14.7 | Drawing a rounded rectangle on a canvas. (Part 1 of 2.)

context.moveTo(15, 5);
context.lineTo(95, 5);
context.quadraticCurveTo(105, 5, 105, 15);
context.lineTo(105, 95);
context.quadraticCurveTo(105, 105, 95, 105);
context.lineTo(15, 105);
context.quadraticCurveTo(5, 105, 5, 95);
context.lineTo(5, 15);

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 486 Wednesday, November 16, 2011 1:06 PM

14.7 Quadratic Curves 487

The rounded rectangle in this example has a width of 100, a height of 100 and a
radius of 10 with which we calculate the points in the quadratic curves used to draw the
rounded corners. The x- and y-coordinates for the rounded rectangle are both 5. We’ll use
these values to calculate the coordinates for each of the points in the path of our drawing.

As in the previous example, we start the path with the beginPath method (line 17).
We start the drawing in the top left, then move clockwise using the moveTo method (line
18). We use the formula x + radius to calculate the first argument (15) and use our original
y-coordinate (5) as the second argument.

We then use the lineTo method to draw a line from the starting point to the top-right
side of the drawing (line 19). For the first argument, we use the formula x + width – radius
to calculate the x-coordinate (in this case, 95). The second argument is simply the original
y-coordinate (5).

To draw the top-right rounded corner, we use the quadraticCurveTo method with the
arguments cpx, cpy, x, y (line 20). We calculate the value of the first argument, cpx, using
the formula x + width, which is 105. The second argument, cpy, is the same as our original
y-coordinate (5). We calculate the value of the third argument using the formula x + width,
which is 105. To calculate the value of the fourth argument, we use the formula y + radius,
which is 15.

We use the lineTo method to draw the right side of the rounded rectangle (line 21).
The first argument is equal to x + width, in this case, 105. To calculate the second argu-
ment, we use the formula y + height - radius, which is 95.

Next, we draw the bottom-right corner using the quadraticCurveTo method (line 22).
We use the formula x + width to calculate the first argument (105), and the formula y +
height to calculate the second argument (105). We use the formula x + width – radius to

26
27 context.closePath();
28 context.fillStyle = "yellow";
29 context.fill(); //fill with the fillStyle color
30 context.strokeStyle = "royalblue";
31 context.lineWidth = 6;
32 context.stroke(); //draw 6-pixel royalblue border
33 </script>
34 </body>
35 </html>

Fig. 14.7 | Drawing a rounded rectangle on a canvas. (Part 2 of 2.)

context.quadraticCurveTo(5, 5, 15, 5);

Each corner is a
quadratic curve with

a radius of 10

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 487 Wednesday, November 16, 2011 1:06 PM

488 Chapter 14 HTML5: Introduction to canvas

determine the third argument (95). Then we use the formula y + height to determine the
fourth argument (105).

We then draw the bottom edge of the rectangle with the lineTo method (line 23). The
formula x + radius is used to calculate the first argument (15) and the formula y + height
to calculate the second argument (105).

Next, we draw the bottom-left corner using the quadraticCurveTo method (line 24).
The first argument is simply our original x-coordinate (5). We use the formula y + height
to calculate the second argument (105). The third argument is the same as our original x-
coordinate (5). The formula y + height – radius is then used to calculate the fourth argu-
ment (95).

We draw the left side of the rounded rectangle using the lineTo method (line 25).
Again, the first argument is the original x-coordinate (5). The formula y + radius is then
used to calculate the second argument (15).

We draw the top-left corner of the rounded rectangle using the quadraticCurveTo
method (line 26). The first and second arguments are the original x- and y-coordinates
(both 5). To calculate the third argument (15), we use the formula x + radius. The fourth
argument is simply the original y-coordinate (5). Finally, the closePath method closes the
path for the rounded rectangle by drawing a line back to the path’s origin (line 27).

We specify a fillStyle of yellow, then use the fill method to draw the rounded
rectangle to the canvas (lines 28–29). Finally, we place a border around the rounded rect-
angle by specifying a strokeStyle of royalblue (line 30) and a lineWidth of 6 (line 31),
and then use the stroke method to draw the border (line 32).

14.8 Bezier Curves
Bezier curves have a starting point, an ending point and two control points through which
the curve passes. These can be used to draw curves with one or two points of inflection,
depending on the coordinates of the four points. For example, you might use a Bezier
curve to draw complex shapes with s-shaped curves. The bezierCurveTo method uses six
arguments. The first two arguments, cp1x and cp1y, are the coordinates of the first control
point. The third and fourth arguments, cp2x and cp2y, are the coordinates for the second
control point. Finally, the fifth and sixth arguments, x and y, are the coordinates of the
ending point. The starting point is the last subpath destination, specified using either the
moveTo or lineTo method. Figure 14.8 demonstrates how to draw an s-shaped Bezier
curve using the bezierCurveTo method.

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.8: beziercurves.html -->
4 <!-- Drawing a Bezier curve on a canvas. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Bezier Curves</title>
9 </head>

10 <body>

Fig. 14.8 | Drawing a Bezier curve on a canvas. (Part 1 of 2.)

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 488 Wednesday, November 16, 2011 1:06 PM

14.9 Linear Gradients 489

The beginPath method starts the path of the Bezier curve (line 17), then the moveTo
method specifies the path’s starting point (line 18). Next, the bezierCurveTo method
specifies the three points in the Bezier curve (line 19). The first and second arguments (12
and 37) are the first control point. The third and fourth arguments (176 and 77) are the
second control point. The fifth and sixth arguments (32 and 133) are the ending point.

The lineWidth attribute specifies the thickness of the line (line 20). The strokeStyle
attribute specifies a stroke color of red. Finally, the stroke method draws the Bezier curve.

14.9 Linear Gradients
Figure 14.9 fills three separate canvases with linear gradients—vertical, horizontal and di-
agonal. On the first canvas (lines 13–25), we draw a vertical gradient. In line 19, we use
the createLinearGradient method—the first two arguments are the x- and y-coordinates
of the gradient’s start, and the last two are the x- and y-coordinates of the end. In this ex-
ample, we use (0, 0) for the start of the gradient and (0, 200) for the end. The start and
end have the same x-coordinates but different y-coordinates, so the start of the gradient is
a point at the top of the canvas directly above the point at the end of the gradient at the
bottom. This creates a vertical linear gradient that starts at the top and changes as the gra-
dient moves to the bottom of the canvas. We’ll show how to create horizontal and diag-
onal gradients by altering these values.

11 <canvas id = "drawBezier" width = "150" height = "150"
12 style = "border: 1px solid black;">
13 </canvas>
14 <script>
15 var canvas = document.getElementById("drawBezier");
16 var context = canvas.getContext("2d")
17 context.beginPath();
18
19
20 context.lineWidth = 10;
21 context.strokeStyle = "red";
22 context.stroke();
23 </script>
24 </body>
25 </html>

Fig. 14.8 | Drawing a Bezier curve on a canvas. (Part 2 of 2.)

context.moveTo(115, 20);
context.bezierCurveTo(12, 37, 176, 77, 32, 133);

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 489 Wednesday, November 16, 2011 1:06 PM

490 Chapter 14 HTML5: Introduction to canvas

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.9: lineargradient.html -->
4 <!-- Drawing linear gradients on a canvas. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Linear Gradients</title>
9 </head>

10 <body>
11
12 <!-- vertical linear gradient -->
13 <canvas id = "linearGradient" width = "200" height = "200"
14 style = "border: 1px solid black;">
15 </canvas>
16 <script>
17 var canvas = document.getElementById("linearGradient");
18 var context = canvas.getContext("2d");
19
20
21
22
23
24
25 </script>
26
27 <!-- horizontal linear gradient -->
28 <canvas id = "linearGradient2" width = "200" height = "200"
29 style = "border: 2px solid orange;">
30 </canvas>
31 <script>
32 var canvas = document.getElementById("linearGradient2");
33 var context = canvas.getContext("2d");
34
35 gradient.addColorStop(0, "white");
36 gradient.addColorStop(0.5, "yellow");
37 gradient.addColorStop(1, "orange");
38 context.fillStyle = gradient;
39 context.fillRect(0, 0, 200, 200);
40 </script>
41
42 <!-- diagonal linear gradient -->
43 <canvas id = "linearGradient3" width = "200" height = "200"
44 style = "border: 2px solid purple;">
45 </canvas>
46 <script>
47 var canvas = document.getElementById("linearGradient3");
48 var context = canvas.getContext("2d");
49
50 gradient.addColorStop(0, "white");
51 gradient.addColorStop(0.5, "plum");
52 gradient.addColorStop(1, "purple");
53 context.fillStyle = gradient;

Fig. 14.9 | Drawing linear gradients on a canvas. (Part 1 of 2.)

var gradient = context.createLinearGradient(0, 0, 0, 200);
gradient.addColorStop(0, "white");
gradient.addColorStop(0.5, "lightsteelblue");
gradient.addColorStop(1, "navy");
context.fillStyle = gradient;
context.fillRect(0, 0, 200, 200);

var gradient = context.createLinearGradient(0, 0, 200, 0);

var gradient = context.createLinearGradient(0, 0, 45, 200);

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 490 Wednesday, November 16, 2011 1:06 PM

14.10 Radial Gradients 491

Next, we use the addColorStop method to add three color stops (lines 20–22). (For a
definition of color stops, see Section 5.6.) Each color stop has a positive value between 0
(the start of the gradient) and 1 (the end of the gradient). For each color stop, we specify
a color (white, lightsteelblue and navy). The fillStyle method specifies a gradient
(line 23) and then the fillRect method draws the gradient on the canvas (line 24).

On the second canvas (lines 28–40), we draw a horizontal gradient. In line 34, we use
the createLinearGradient method where the first two arguments are (0, 0) for the start
of the gradient and (200, 0) for the end. Note that in this case, the start and end have
different x-coordinates but the same y-coordinates, horizontally aligning the start and end.
This creates a horizontal linear gradient that starts at the left and changes as the gradient
moves to the right edge of the canvas.

On the third canvas (lines 43–55), we draw a diagonal gradient. In line 49, we use
the createLinearGradient method again. The first two arguments are (0, 0)—the coor-
dinates of the starting position of the gradient in the top left of the canvas. The last two
arguments are (135, 200)—the ending position of the gradient. This creates a diagonal
linear gradient that starts at the top left and changes at an angle as the gradient moves to
the right edge of the canvas.

14.10 Radial Gradients
Next, we show how to create two different radial gradients on a canvas (Fig. 14.10). A
radial gradient is comprised of two circles—an inner circle where the gradient starts and an
outer circle where it ends. In lines 18–19, we use the createRadialGradient method

54 context.fillRect(0, 0, 200, 200);
55 </script>
56 </body>
57 </html>

Fig. 14.9 | Drawing linear gradients on a canvas. (Part 2 of 2.)

Gradient changes vertically
from white to light steel blue

to navy

Gradient changes
horizontally from white to

yellow to orange

Gradient changes diagonally
from white to plum to purple

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 491 Wednesday, November 16, 2011 1:06 PM

492 Chapter 14 HTML5: Introduction to canvas

whose first three arguments are the x- and y-coordinates and the radius of the gradient’s
start circle, respectively, and whose last three arguments are the x- and y-coordinates and
the radius of the end circle. In this example, we use (100, 100, 10) for the start circle and
(100, 100, 125) for the end circle. Note that these are concentric circles—they have the
same x- and y-coordinates but each has a different radius. This creates a radial gradient that
starts in a common center and changes as it moves outward to the end circle.

Next, the gradient.addColorStop method is used to add four color stops (lines 20–
23). Each color stop has a positive value between 0 (the start circle of the gradient) and 1
(the end circle of the gradient). For each color stop, we specify a color (in this case, white,
yellow, orange and red). Then, the fillStyle attribute is used to specify a gradient (line
24). The fillRect method draws the gradient on the canvas (line 25).

On the second canvas (lines 29–43), the start and end circles have different x- and
y-coordinates, altering the effect. In lines 35–36, the createRadialGradient method
uses the arguments (20, 150, 10) for the start circle and (100, 100, 125) for the end
circle. These are not concentric circles. The start circle of the gradient is near the bottom
left of the canvas and the end circle is centered on the canvas. This creates a radial gra-
dient that starts near the bottom left of the canvas and changes as it moves to the right.

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.10: radialgradient.html -->
4 <!-- Drawing radial gradients on a canvas. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Radial Gradients</title>
9 </head>

10 <body>
11 <!-- radial gradient with concentric circles -->
12 <canvas id = "radialGradient" width = "200" height = "200"
13 style = "border: 1px solid black;">
14 </canvas>
15 <script>
16 var canvas = document.getElementById("radialGradient");
17 var context = canvas.getContext("2d")
18
19
20
21
22
23
24
25
26 </script>
27
28 <!-- radial gradient with nonconcentric circles -->
29 <canvas id = "radialGradient2" width = "200" height = "200"
30 style = "border: 1px solid black;">
31 </canvas>

Fig. 14.10 | Drawing radial gradients on a canvas. (Part 1 of 2.)

var gradient = context.createRadialGradient(
 100, 100, 10, 100, 100, 125);
gradient.addColorStop(0, "white");
gradient.addColorStop(0.5, "yellow");
gradient.addColorStop(0.75, "orange");
gradient.addColorStop(1, "red");
context.fillStyle = gradient;
context.fillRect(0, 0, 200, 200);

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 492 Wednesday, November 16, 2011 1:06 PM

14.11 Images 493

14.11 Images
Figure 14.11 uses the drawImage method to draw an image to a canvas. In line 10, we
create a new Image object and store it in the variable image. Line 11 locates the image
source, "yellowflowers.png". Our function draw (lines 13–18) is called to draw the im-
age after the document and all of its resources load. The drawImage method (line 17)
draws the image to the canvas using five arguments. The first argument can be an image,
canvas or video element. The second and third arguments are the destination x- and des-
tination y-coordinates—these indicate the position of the top-left corner of the image on
the canvas. The fourth and fifth arguments are the destination width and destination
height. If the values do not match the size of the image, it will be stretched to fit.

32 <script>
33 var canvas = document.getElementById("radialGradient2");
34 var context = canvas.getContext("2d")
35
36
37 gradient.addColorStop(0, "red");
38 gradient.addColorStop(0.5, "orange");
39 gradient.addColorStop(0.75, "yellow");
40 gradient.addColorStop(1, "white");
41 context.fillStyle = gradient;
42 context.fillRect(0, 0, 200, 200);
43 </script>
44 </body>
45 </html>

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.11: image.html -->
4 <!-- Drawing an image to a canvas. -->
5 <html>

Fig. 14.11 | Drawing an image to a canvas. (Part 1 of 2.)

Fig. 14.10 | Drawing radial gradients on a canvas. (Part 2 of 2.)

var gradient = context.createRadialGradient(
 20, 150, 10, 100, 100, 125);

Radial gradient that
changes in

concentric circles
from white to

yellow, to orange to
red

Radial gradient
that changes in
non-concentric
circles from red to
orange, to yellow
to white

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 493 Wednesday, November 16, 2011 1:06 PM

494 Chapter 14 HTML5: Introduction to canvas

Note that you can call drawImage in three ways. In its simplest form, you can use

where dx and dy represent the position of the top-left corner of the image on the destina-
tion canvas. The default width and height are the source image’s width and height. Or,
as we did in this example, you can use

where dw is the specified width of the image on the destination canvas and dh is the spec-
ified height of the image on the destination canvas. Finally, you can use

6 <head>
7 <meta charset = "utf-8">
8 <title>Images</title>
9 <script>

10 var image = new Image();
11 image.src = "yellowflowers.png";
12
13 function draw()
14 {
15 var canvas = document.getElementById("myimage");
16 var context = canvas.getContext("2d")
17
18 } // end function draw
19
20 window.addEventListener("load", draw, false);
21 </script>
22 </head>
23 <body>
24 <canvas id = "myimage" width = "200" height = "200"
25 style = "border: 1px solid Black;">
26 </canvas>
27 </body>
28 </html>

context.drawImage(image, dx, dy)

context.drawImage(image, dx, dy, dw, dh)

context.drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh)

Fig. 14.11 | Drawing an image to a canvas. (Part 2 of 2.)

context.drawImage(image, 0, 0, 175, 175);

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 494 Wednesday, November 16, 2011 1:06 PM

14.12 Image Manipulation: Processing the Individual Pixels of a canvas 495

where sx and sy are the coordinates of the top-left corner of the source image, sw is the
source image’s width and sh its height.

14.12 Image Manipulation: Processing the Individual
Pixels of a canvas
Figure 14.12 shows how to obtain a canvas’s pixels and manipulate their red, green, blue
and alpha (RGBA) values. For security reasons, some browsers allow a script to get an im-
age’s pixels only if the document is requested from a web server, not if the file is loaded
from the local computer’s file system. For this reason, you can test this example at

The HTML5 document’s body (lines 123–135) defines a 750-by-250 pixel canvas
element on which we’ll draw an original image, a version of the image showing any
changes you make to the RGBA values, and a version of the image converted to grayscale.
You can change the RGBA values with the input elements of type range defined in the
body. You can adjust the amount of red, green or blue from 0 to 500% of its original
value—on a pixel-by-pixel basis, we calculate the new amount of red, green or blue accord-
ingly. For the alpha, you can adjust the value from 0 (completely transparent) to 255
(completely opaque). The script begins when the window’s load event (registered in line
120) calls function start.

http://test.deitel.com/iw3htp5/ch14/fig14_12/imagemanipulation.html

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.12: imagemanipulation.html -->
4 <!-- Manipulating an image’s pixels to change colors and transparency. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Manipulating an Image</title>
9 <style>

10 label { display: inline-block; width: 3em; }
11 canvas { border: 1px solid black; }
12 input[type="range"] { width: 600px; }
13 </style>
14 <script>
15 var context; // context for drawing on canvas
16 var redRange; // % of original red pixel value
17 var greenRange; // % of original green pixel value
18 var blueRange; // % of original blue pixel value
19 var alphaRange; // alpha amount value
20
21 var image = new Image(); // image object to store loaded image
22 image.src = "redflowers.png"; // set the image source
23
24 function start()
25 {
26 var canvas = document.getElementById("thecanvas");

Fig. 14.12 | Manipulating an image’s pixels to change colors and transparency. (Part 1 of 4.)

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 495 Wednesday, November 16, 2011 1:06 PM

496 Chapter 14 HTML5: Introduction to canvas

27 context = canvas.getContext("2d")
28 context.drawImage(image, 0, 0); // original image
29 context.drawImage(image, 250, 0); // image for user change
30 processGrayscale(); // display grayscale of original image
31
32 // configure GUI events
33 redRange = document.getElementById("redRange");
34 redRange.addEventListener("change",
35 function() { processImage(this.value, greenRange.value,
36 blueRange.value); }, false);
37 greenRange = document.getElementById("greenRange");
38 greenRange.addEventListener("change",
39 function() { processImage(redRange.value, this.value,
40 blueRange.value); }, false)
41 blueRange = document.getElementById("blueRange");
42 blueRange.addEventListener("change",
43 function() { processImage(redRange.value,
44 greenRange.value, this.value); }, false)
45 alphaRange = document.getElementById("alphaRange");
46 alphaRange.addEventListener("change",
47 function() { processAlpha(this.value); }, false)
48 document.getElementById("resetButton").addEventListener(
49 "click", resetImage, false);
50 } // end function start
51
52 // sets the alpha value for every pixel
53 function processAlpha(newValue)
54 {
55 // get the ImageData object representing canvas's content
56
57
58
59 // convert every pixel to grayscale
60
61 {
62
63 } // end for
64
65
66 } // end function processImage
67
68 // sets the RGB values for every pixel
69 function processImage(redPercent, greenPercent, bluePercent)
70 {
71 // get the ImageData object representing canvas's content
72 context.drawImage(image, 250, 0);
73
74
75
76 //set percentages of red, green and blue in each pixel
77
78 {
79

Fig. 14.12 | Manipulating an image’s pixels to change colors and transparency. (Part 2 of 4.)

var imageData = context.getImageData(0, 0, 250, 250);
var pixels = imageData.data; // pixel info from ImageData

for (var i = 3; i < pixels.length; i += 4)

pixels[i] = newValue;

context.putImageData(imageData, 250, 0); // show grayscale

var imageData = context.getImageData(0, 0, 250, 250);
var pixels = imageData.data; // pixel info from ImageData

for (var i = 0; i < pixels.length; i += 4)

pixels[i] *= redPercent / 100;

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 496 Wednesday, November 16, 2011 1:06 PM

14.12 Image Manipulation: Processing the Individual Pixels of a canvas 497

80
81
82 } // end for
83
84
85 } // end function processImage
86
87 // creates grayscale version of original image
88 function processGrayscale()
89 {
90 // get the ImageData object representing canvas's content
91 context.drawImage(image, 500, 0);
92
93
94
95 // convert every pixel to grayscale
96 for (var i = 0; i < pixels.length; i += 4)
97 {
98
99
100
101
102
103
104
105 } // end for
106
107
108 } // end function processGrayscale
109
110 // resets the user manipulated image and the sliders
111 function resetImage()
112 {
113 context.drawImage(image, 250, 0);
114 redRange.value = 100;
115 greenRange.value = 100;
116 blueRange.value = 100;
117 alphaRange.value = 255;
118 } // end function resetImage
119
120 window.addEventListener("load", start, false);
121 </script>
122 </head>
123 <body>
124 <canvas id = "thecanvas" width = "750" height = "250" ></canvas>
125 <p><label>Red:</label> 0 <input id = "redRange"
126 type = "range" max = "500" value = "100"> 500%</p>
127 <p><label>Green:</label> 0 <input id = "greenRange"
128 type = "range" max = "500" value = "100"> 500%</p>
129 <p><label>Blue:</label> 0 <input id = "blueRange"
130 type = "range" max = "500" value = "100"> 500%</p>
131 <p><label>Alpha:</label> 0 <input id = "alphaRange"
132 type = "range" max = "255" value = "255"> 255</p>

Fig. 14.12 | Manipulating an image’s pixels to change colors and transparency. (Part 3 of 4.)

pixels[i + 1] *= greenPercent / 100;
pixels[i + 2] *= bluePercent / 100;

context.putImageData(imageData, 250, 0); // show grayscale

var imageData = context.getImageData(0, 0, 250, 250);
var pixels = imageData.data; // pixel info from ImageData

var average =
 (pixels[i] * 0.30 + pixels[i + 1] * 0.59 +
 pixels[i + 2] * 0.11).toFixed(0);

pixels[i] = average;
pixels[i + 1] = average;
pixels[i + 2] = average;

context.putImageData(imageData, 500, 0); // show grayscale

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 497 Wednesday, November 16, 2011 1:06 PM

498 Chapter 14 HTML5: Introduction to canvas

Script-Level Variables and Loading the Original Image
Lines 15–21 declare the script-level variables. Variables redRange, greenRange, blueRange
and alphaRange will refer to the four range inputs so that we can easily access their values
in the script’s other functions. Variable image represents the original image to draw. Line
21 creates an Image object and line 22 uses it to load the image redflower.png, which is
provided with the example.

Function start
Lines 28–29 draw the original image twice—once in the upper-left corner of the canvas
and once 250 pixels to the right. Line 30 calls function processGrayscale to create the
grayscale version of the image which will appear at x-coordinate 500. Lines 33–49 get the
range input elements and register their event handlers. For the redRange, greenRange
and blueRange elements, we register for the change event and call processImage with the
values of these three range inputs. For the alphRange elements we register for the change
event and call processAlpha with the value of that range input.

Function processAlpha
Function processAlpha (lines 53–66) applies the new alpha value to every pixel in the im-
age. Line 56 calls canvas method getImageData to obtain an object that contains the pix-
els we wish to manipulate. The method receives a bounding rectangle representing the

133 <p><input id = "resetButton" type = "button"
134 value = "Reset Image">
135 </body>
136 </html>

Fig. 14.12 | Manipulating an image’s pixels to change colors and transparency. (Part 4 of 4.)

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 498 Wednesday, November 16, 2011 1:06 PM

14.13 Patterns 499

portion of the canvas to get—in this case, a 250-pixel square from the upper-left corner.
The returned object contains an array named data (line 57) which stores every pixel in the
selected rectangular area as four elements in the array. Each pixel’s data is stored in the or-
der red value, green value, blue value, alpha value. So, the first four elements in the array
represent the RGBA values of the pixel in row 0 and column 0, the next four elements rep-
resent the pixel in row 0 and column 1, etc.

Lines 60–63 iterate through the array processing every fourth element, which repre-
sents the alpha value in each pixel, and assigning it the new alpha value. Line 65 uses
canvas method putImageData to place the updated pixels on the canvas with the upper-
left corner of the processed image at location 250, 0.

Function processImage
Function processImage (lines 69–85) is similar to function processAlpha except that its
loop (lines 77–82) processes the first three of every four elements—that is, the ones that
represent a pixel’s RGB values.

Function processGrayscale
Function processGrayscale (lines 88–108) is similar to function processImage except
that its loop (lines 96–105) performs a weighted-average calculation to determine the new
value assigned to the red, green and blue components of a given pixel. We used the for-
mula for converting from RGB to grayscale provided at http://en.wikipedia.org/
wiki/Grayscale.

Function resetImage
Function resetImage (lines 111–118) resets the on-screen images and the range input
elements to their original values.

14.13 Patterns
Figure 14.13 demonstrates how to draw a pattern on a canvas. Lines 10–11 create and
load the image we’ll use for our pattern. Function start (lines 13–21) is called in response
to the window’s load event. Line 17 uses the createPattern method to create the pattern.
This method takes two arguments. The first is the image we’re using for the pattern, which
can be an image element, a canvas element or a video element. The second specifies how
the image will repeat to create the pattern and can be one of four values—repeat (repeats
horizontally and vertically), repeat-x (repeats horizontally), repeat-y (repeats vertically)
or no-repeat. In line 18, we specify the coordinates for the pattern on the canvas. The
first image in the pattern is drawn so that its top left is at the origin of the coordinate space.
We then specify the fillStyle attribute (pattern) and use the fill method to draw the
pattern to the canvas.

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.13: pattern.html -->
4 <!-- Creating a pattern using an image on a canvas. -->
5 <html>

Fig. 14.13 | Creating a pattern using an image on a canvas. (Part 1 of 2.)

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 499 Wednesday, November 16, 2011 1:06 PM

500 Chapter 14 HTML5: Introduction to canvas

14.14 Transformations
The next several examples show you how to use canvas transformation methods including
translate, scale, rotate and transform.

14.14.1 scale and translate Methods: Drawing Ellipses
Figure 14.14 demonstrates how to draw ellipses. In line 18, we change the transformation
matrix (the coordinates) on the canvas using the translate method so that the center of

6 <head>
7 <meta charset = "utf-8">
8 <title>Patterns</title>
9 <script>

10 var image = new Image();
11 image.src = "yellowflowers.png";
12
13 function start()
14 {
15 var canvas = document.getElementById("pattern");
16 var context = canvas.getContext("2d");
17
18
19
20
21 } // end function start
22
23 window.addEventListener("load", start, false);
24 </script>
25 </head>
26 <body>
27 <canvas id = "pattern" width = "400" height = "200"
28 style = "border: 1px solid black;">
29 </canvas>
30 </body>
31 </html>

Fig. 14.13 | Creating a pattern using an image on a canvas. (Part 2 of 2.)

var pattern = context.createPattern(image, "repeat");
context.rect(5, 5, 385, 200);
context.fillStyle = pattern;
context.fill();

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 500 Wednesday, November 16, 2011 1:06 PM

14.14 Transformations 501

the canvas becomes the origin (0, 0). To do this, we use half the canvas width as the x-
coordinate and half the canvas height as the y-coordinate (line 18). This will enable us to
center the ellipse on the canvas. We then use the scale method to stretch a circle to create
an ellipse (line 19). The x value represents the horizontal scale factor; the y value represents
the vertical scale factor—in this case, our scale factor indicates that the ratio of the width
to the height is 1:3, which will create a tall, thin ellipse. Next, we draw the circle that we
want to stretch using the beginPath method to start the path, then the arc method to
draw the circle (lines 20–21). Notice that the x- and y-coordinates for the center of the
circle are (0, 0), which is now the center of the canvas (not the top-left corner). We then
specify a fillStyle of orange (line 22) and draw the ellipse to the canvas using the fill
method (line 23).

Next, we create a horizontal purple ellipse on a separate canvas (lines 26–39). We
use a scale of 3, 2 (line 34), indicating that the ratio of the width to the height is 3:2. This
results in an ellipse that is shorter and wider.

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.14: ellipse.html -->
4 <!-- Drawing an ellipse on a canvas. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Ellipse</title>
9 </head>

10 <body>
11 <!-- vertical ellipse -->
12 <canvas id = "drawEllipse" width = "200" height = "200"
13 style = "border: 1px solid black;">
14 </canvas>
15 <script>
16 var canvas = document.getElementById("drawEllipse");
17 var context = canvas.getContext("2d")
18
19
20
21
22 context.fillStyle = "orange";
23 context.fill();
24 </script>
25
26 <!-- horizontal ellipse -->
27 <canvas id = "drawEllipse2" width = "200" height = "200"
28 style = "border: 1px solid black;">
29 </canvas>
30 <script>
31 var canvas = document.getElementById("drawEllipse2");
32 var context = canvas.getContext("2d")
33 context.translate(canvas.width / 2, canvas.height / 2);
34
35 context.beginPath();

Fig. 14.14 | Drawing an ellipse on a canvas. (Part 1 of 2.)

context.translate(canvas.width / 2, canvas.height / 2);
context.scale(1, 3);
context.beginPath();
context.arc(0, 0, 30, 0, 2 * Math.PI, true);

context.scale(3, 2);

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 501 Wednesday, November 16, 2011 1:06 PM

502 Chapter 14 HTML5: Introduction to canvas

14.14.2 rotate Method: Creating an Animation
Figure 14.15 uses the rotate method to create an animation of a rotating rectangle on a
canvas. First, we create the JavaScript function startRotating (lines 18–22). Just as we
did in the previous example, we change the transformation matrix on the canvas using the
translate method, making the center of the canvas the origin with the x, y values (0, 0)
(line 20). This allows us to rotate the rectangle (which is centered on the canvas) around
its center.

36 context.arc(0, 0, 30, 0, 2 * Math.PI, true);
37 context.fillStyle = "indigo";
38 context.fill();
39 </script>
40 </body>
41 </html>

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.15: rotate.html -->
4 <!-- Using the rotate method to rotate a rectangle on a canvas. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Rotate</title>
9 </head>

10 <body>
11 <canvas id = "rotateRectangle" width = "200" height = "200"
12 style = "border: 1px solid black;">
13 </canvas>
14 <script>
15 var canvas = document.getElementById("rotateRectangle");
16 var context = canvas.getContext("2d")
17

Fig. 14.15 | Using the rotate method to rotate a rectangle on a canvas. (Part 1 of 2.)

Fig. 14.14 | Drawing an ellipse on a canvas. (Part 2 of 2.)

Orange ellipse
where the scale

of the width to the
height is 1, 3

Indigo ellipse where
the scale of the
width to the height
is 3, 2

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 502 Wednesday, November 16, 2011 1:06 PM

14.14 Transformations 503

In line 21, we use the setInterval method of the window object. The first argument
is the name of the function to call (rotate) and the second is the number of milliseconds
between calls.

Next, we create the JavaScript function rotate (lines 24–30). We use the clearRect
method to clear the rectangle’s pixels from the canvas, converting them back to trans-
parent as the rectangle rotates (line 26). This method takes four arguments—x, y, width
and height. Since the center of the canvas has the x- and y-coordinates (0, 0), the top-left
corner of the canvas is now (-100, -100). The width and height of the canvas remain
the same (200, 200). If you were to remove the clearRect method, the pixels would
remain on the canvas, and after one full rotation of the rectangle, you would see a circle.

Next, the rotate method takes one argument—the angle of the clockwise rotation,
expressed in radians (line 27). We then specify the rectangle’s fillStyle (lime) and draw
the rectangle using the fillRect method. Notice that its x- and y-coordinates are the
translated coordinates, (-50, -50) (line 29).

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 window.addEventListener("load", startRotating, false);
33 </script>
34 </body>
35 </html>

Fig. 14.15 | Using the rotate method to rotate a rectangle on a canvas. (Part 2 of 2.)

function startRotating()
{
 context.translate(canvas.width / 2, canvas.height / 2);
 setInterval(rotate, 10);
}

function rotate()
{
 context.clearRect(-100, -100, 200, 200);
 context.rotate(Math.PI / 360);
 context.fillStyle = "lime";
 context.fillRect(-50, -50, 100, 100);
}

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 503 Wednesday, November 16, 2011 1:06 PM

504 Chapter 14 HTML5: Introduction to canvas

14.14.3 transform Method: Drawing Skewed Rectangles
The transform method allows you to skew, scale, rotate and translate elements without
using the separate transformation methods discussed earlier in this section. The transform
method takes six arguments in the format (a, b, c, d, e, f). The first argument, a, is the
x-scale—the factor by which to scale the element horizontally. For example, a value of 2
would double the element’s width. The second argument, b, is the y-skew. The third ar-
gument, c, is the x-skew. The greater the value of the x- and y-skew, the more the element
will be skewed horizontally and vertically, respectively. The fourth argument, d, is the y-
scale—the factor by which to scale the element vertically. The fifth argument, e, is the x-
translation and the sixth argument, f, is the y-translation. The default x- and y-scale values
are 1. The default values of the x- and y-skew and the x- and y-translation are 0, meaning
there is no skew or translation.

Figure 14.16 uses the transform method to skew, scale and translate two rectangles.
On the first canvas (lines 12–32), we declare the variable rectangleWidth and assign it
the value 120, and declare the variable rectangleHeight and assign it the value 60 (lines
18–19).

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.16: skew.html -->
4 <!-- Using the translate and transform methods to skew rectangles. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Skew</title>
9 </head>

10 <body>
11 <!-- skew left -->
12 <canvas id = "transform" width = "320" height = "150"
13 style = "border: 1px solid Black;">
14 </canvas>
15 <script>
16 var canvas = document.getElementById("transform");
17 var context = canvas.getContext("2d");
18 var rectangleWidth = 120;
19 var rectangleHeight = 60;
20 var scaleX = 2;
21 var skewY = 0;
22 var skewX = 1;
23 var scaleY = 1;
24 var translationX = -10;
25 var translationY = 30;
26 context.translate(canvas.width / 2, canvas.height / 2);
27
28
29 context.fillStyle = "red";
30 context.fillRect(-rectangleWidth / 2, -rectangleHeight / 2,
31 rectangleWidth, rectangleHeight);
32 </script>

Fig. 14.16 | Using the translate and transform methods to skew rectangles. (Part 1 of 2.)

context.transform(scaleX, skewY, skewX, scaleY,
 translationX, translationY);

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 504 Wednesday, November 16, 2011 1:06 PM

14.14 Transformations 505

In lines 20–25, we declare variables for each of the arguments that will be used in the
transform method and assign each a value. scaleX is assigned the value 2 to double the
width of the rectangle. skewY is assigned the value 0 (the default value) so there’s no vertical
skew. skewX is assigned the value 1 to skew the rectangle horizontally to the left. Increasing
this value would increase the angle of the skew. scaleY is assigned the value 1 (the default
value) so the rectangle is not scaled vertically (line 20). translationX is assigned the value
-10 to shift the position of the rectangle left of the point of origin. Finally, translationY
is assigned the value 30 to shift the rectangle down from the point of origin.

33
34 <!-- skew right -->
35 <canvas id = "transform2" width = "220" height = "150"
36 style = "border: 1px solid Black;">
37 <script>
38 var canvas = document.getElementById("transform2");
39 var context = canvas.getContext("2d");
40 var rectangleWidth = 120;
41 var rectangleHeight = 60;
42 var scaleX = 1;
43 var skewY = 0;
44 var skewX = -1.5;
45 var scaleY = 2;
46 var translationX = 0;
47 var translationY = 0;
48 context.translate(canvas.width / 2, canvas.height / 2);
49
50
51 context.fillStyle = "blue";
52 context.fillRect(-rectangleWidth / 2, -rectangleHeight / 2,
53 rectangleWidth, rectangleHeight);
54 </script>
55 </body>
56 </html>

Fig. 14.16 | Using the translate and transform methods to skew rectangles. (Part 2 of 2.)

context.transform(scaleX, skewY, skewX, scaleY,
 translationX, translationY);

Red rectangle skewed left, scaled
horizontally and translated to the left and
down from the canvas’s point of origin

Blue rectangle skewed right
and scaled vertically

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 505 Wednesday, November 16, 2011 1:06 PM

506 Chapter 14 HTML5: Introduction to canvas

In line 26, the translate method centers the point of origin (0, 0) on the canvas.
Next, the transform method scales and skews the rectangle horizontally, then shifts its
center left and down from the point of origin.

In lines 35–54 we create a second canvas to demonstrate how different values can be
used to transform a rectangle. In this case, the value of scaleX is 1 (the default), so there
is no horizontal scale. The value of skewY is 0. In line 44, skewX is assigned -1.5. The neg-
ative value causes the rectangle to skew right. Next, the variable scaleY is assigned 2 to
double the height of the rectangle. Finally, the variables translationX and translationY
are each assigned 0 (the default) so that the rectangle remains centered on the canvas’s
point of origin.

14.15 Text
Figure 14.17 shows you how to draw text on a canvas. We draw two lines of text. For the
first line, we color the text using a fillStyle of red (line 19). We use the font attribute
to specify the style, size and font of the text—in this case, italic 24px serif (line 20).

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.17: text.html -->
4 <!-- Drawing text on a canvas. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Text</title>
9 </head>

10 <body>
11 <canvas id = "text" width = "230" height = "100"
12 style = "border: 1px solid black;">
13 </canvas>
14 <script>
15 var canvas = document.getElementById("text");
16 var context = canvas.getContext("2d")
17
18 // draw the first line of text
19
20
21
22
23
24 // draw the second line of text
25
26
27
28
29
30 </script>
31 </body>
32 </html>

Fig. 14.17 | Drawing text on a canvas. (Part 1 of 2.)

context.fillStyle = "red";
context.font = "italic 24px serif";
context.textBaseline = "top";
context.fillText ("HTML5 Canvas", 0, 0);

context.font = "bold 30px sans-serif";
context.textAlign = "center";
context.lineWidth = 2;
context.strokeStyle = "navy";
context.strokeText("HTML5 Canvas", 115, 50);

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 506 Wednesday, November 16, 2011 1:06 PM

14.15 Text 507

Next, we use textBaseline attribute to specify the alignment points of the text (line
21). There are six different textBaseline attribute values (Fig. 14.18). To see how each
value aligns the font, see the graphic in the HTML5 canvas specification at

Now we use the fillText method to draw the text to the canvas (line 22). This
method takes three arguments. The first is the text being drawn to the canvas. The second
and third arguments are the x- and y-coordinates. You may include the optional fourth
argument, maxWidth, to limit the width of the text.

Lines 25–29 draw the second line of text to the canvas. In this case, the font attribute
specifies a bold, 30px, sans-serif font (line 25). We center the text on the canvas using the
textAlign attribute which specifies the horizontal alignment of the text relative to the x-
coordinate of the text (line 26). Figure 14.19 describes the five textAlign attribute values.

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-
canvas-element.html#text-0

Value Description

top Top of the em square

hanging Hanging baseline

middle Middle of the em square

alphabetic Alphabetic baseline (the default value)

ideographic Ideographic baseline

bottom Bottom of the em square

Fig. 14.18 | textBaseline values.

Value Description

left Text is left aligned.

right Text is right aligned.

Fig. 14.19 | textAlign attribute values. (Part 1 of 2.)

Fig. 14.17 | Drawing text on a canvas. (Part 2 of 2.)

Italic, serif, red text with
a textBaseline

attribute of top

Bold, serif text with a
textAlign attribute of

center

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 507 Wednesday, November 16, 2011 1:06 PM

508 Chapter 14 HTML5: Introduction to canvas

We use the lineWidth attribute to specify the thickness of the stroke used to draw the
text—in this case, 2 (line 27). Next, we specify the strokeStyle to specify the color of the
text (line 28). Finally, we use strokeText to specify the text being drawn to the canvas
and its x- and y-coordinates (line 29). By using strokeText instead of fillText, we draw
outlined text instead of filled text. Keep in mind that once text is on a canvas it’s just
bits—it can no longer be manipulated as text.

14.16 Resizing the canvas to Fill the Browser Window
Figure 14.20 demonstrates how to dynamically resize a canvas to fill the window. To do
this, we draw a yellow rectangle so you can see how it fills the canvas.

center Text is centered.

start (the default value) Text is left aligned if the start of the line is
left-to-right; text is right aligned if the start of
the text is right-to-left.

end Text is right aligned if the end of the line is
left-to-right; text is left aligned if the end of
the text is right-to-left.

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.20: fillingwindow.html -->
4 <!-- Resizing a canvas to fill the window. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Filling the Window</title>
9 <style type = "text/css">

10
11
12 </style>
13 </head>
14 <body>
15 <canvas id = "resize"></canvas>
16 <script>
17
18
19
20
21
22
23
24

Fig. 14.20 | Dynamically resizing a canvas to fill the window. (Part 1 of 2.)

Value Description

Fig. 14.19 | textAlign attribute values. (Part 2 of 2.)

canvas { position: absolute; left: 0px; top: 0px;
 width: 100%; height: 100%; }

function draw()
{
 var canvas = document.getElementById("resize");
 var context = canvas.getContext("2d");
 context.fillStyle = "yellow";
 context.fillRect(
 0, 0, context.canvas.width, context.canvas.height);
} // end function draw

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 508 Wednesday, November 16, 2011 1:06 PM

14.17 Alpha Transparency 509

First we use a CSS style sheet to set the position of the canvas to absolute and set
both its width and height to 100%, rather than using fixed coordinates (lines 10–11). This
places the canvas at the top left of the screen and allows the canvas width and height to
be resized to 100% of those of the window. Do not include a border on the canvas.

We use JavaScript function draw to draw the canvas when the application is rendered
(lines 17 and 26). Line 21 specifies the color of the rectangle by setting the fillStyle to
yellow. We use fillRect to draw the color to the canvas. Recall that in previous exam-
ples, the four coordinates we used for method fillRect were x, y, x1, y1, where x1 and
y1 represent the coordinates of the bottom-right corner of the rectangle. In this example,
the x- and y-coordinates are (0, 0)—the top left of the canvas The the x1 value is con-
text.canvas.width and the y1 value is context.value.height, so no matter the size of
the window, the x1 value will always be the width of the canvas and the y1 value will
always be the height of the canvas.

14.17 Alpha Transparency
In Figure 14.21, we use the globalAlpha attribute to demonstrate three different alpha
transparencies. To do this, we create three canvases, each with a fully opaque rectangle
and an overlapping circle and varying transparencies. The globalAlpha value can be any
number between 0 (fully transparent) and 1 (the default value, which is fully opaque).

On the first canvas we specify a globalAlpha attribute value of 0.9 to create a circle
that’s mostly opaque (line 23). On the second canvas we specify a globalAlpha attribute
value of 0.5 to create a circle that’s semitransparent (line 41). Notice in the output that in
the area where the circle overlaps the rectangle, the rectangle is visible. On the third canvas
we specify a globalAlpha attribute value of 0.15 to create a circle that’s almost entirely
transparent (line 59). In the area where the circle overlaps the rectangle, the rectangle is
even more visible.

25
26 window.addEventListener("load", draw, false);
27 </script>
28 </body>
29 </html>

Fig. 14.20 | Dynamically resizing a canvas to fill the window. (Part 2 of 2.)

The yellow
canvas fills the
browser window

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 509 Wednesday, November 16, 2011 1:06 PM

510 Chapter 14 HTML5: Introduction to canvas

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.21: alpha.html -->
4 <!-- Using the globalAlpha attribute on a canvas. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Alpha Transparency</title>
9 </head>

10 <body>
11
12 <!-- 0.75 alpha value -->
13 <canvas id = "alpha" width = "200" height = "200"
14 style = "border: 1px solid black;">
15 </canvas>
16 <script>
17 var canvas = document.getElementById("alpha");
18 var context = canvas.getContext("2d")
19 context.beginPath();
20 context.rect(10, 10, 120, 120);
21 context.fillStyle = "purple";
22 context.fill();
23
24 context.beginPath();
25 context.arc(120, 120, 65, 0, 2 * Math.PI, false);
26 context.fillStyle = "lime";
27 context.fill();
28 </script>
29
30 <!-- 0.5 alpha value -->
31 <canvas id = "alpha2" width = "200" height = "200"
32 style = "border: 1px solid black;">
33 </canvas>
34 <script>
35 var canvas = document.getElementById("alpha2");
36 var context = canvas.getContext("2d")
37 context.beginPath();
38 context.rect(10, 10, 120, 120);
39 context.fillStyle = "purple";
40 context.fill();
41
42 context.beginPath();
43 context.arc(120, 120, 65, 0, 2 * Math.PI, false);
44 context.fillStyle = "lime";
45 context.fill();
46 </script>
47
48 <!-- 0.15 alpha value -->
49 <canvas id = "alpha3" width = "200" height = "200"
50 style = "border: 1px solid black;">
51 </canvas>
52 <script>
53 var canvas = document.getElementById("alpha3");

Fig. 14.21 | Using the globalAlpha attribute on a canvas. (Part 1 of 2.)

context.globalAlpha = 0.9;

context.globalAlpha = 0.5;

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 510 Wednesday, November 16, 2011 1:06 PM

14.18 Compositing 511

14.18 Compositing
Compositing allows you to control the layering of shapes and images on a canvas using
two attributes—the globalAlpha attribute described in the previous example, and the
globalCompositeOperation attribute. There are 11 globalCompositeOperation attri-
bute values (Fig. 14.22). The source is the image being drawn to a canvas. The destination
is the current bitmap on a canvas.

54 var context = canvas.getContext("2d")
55 context.beginPath();
56 context.rect(10, 10, 120, 120);
57 context.fillStyle = "purple";
58 context.fill();
59
60 context.beginPath();
61 context.arc(120, 120, 65, 0, 2 * Math.PI, false);
62 context.fillStyle = "lime";
63 context.fill();
64 </script>
65 </body>
66 </html>

Value Description

source-atop The source is placed on top of the destination image. If both
images are opaque, the source is displayed where the images over-
lap. If the source is transparent but the destination image is opaque,
the destination image is displayed where the images overlap. The
destination image is transparent where there is no overlap.

Fig. 14.22 | globalCompositeOperation values. (Part 1 of 2.)

Fig. 14.21 | Using the globalAlpha attribute on a canvas. (Part 2 of 2.)

context.globalAlpha = 0.15;

a) globalAlpha value of
0.9 makes the circle only
slightly transparent

b) globalAlpha value of
0.5 makes the circle semi-
transparent

c) globalAlpha value of
0.15 makes the circle almost
entirely transparent

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 511 Wednesday, November 16, 2011 1:06 PM

512 Chapter 14 HTML5: Introduction to canvas

In Fig. 14.23, we demonstrate six of the compositing effects (lines 21–49). In this
example, the destination image is a large red rectangle (lines 18–19) and the source images
are six lime rectangles.

source-in The source image is displayed where the images overlap and both
are opaque. Both images are transparent where there is no overlap.

source-out If the source image is opaque and the destination image is transpar-
ent, the source image is displayed where the images overlap. Both
images are transparent where there is no overlap.

source-over

(default)

The source image is placed over the destination image. The source
image is displayed where it’s opaque and the images overlap. The
destination image is displayed where there is no overlap.

destination-atop The destination image is placed on top of the source image. If both
images are opaque, the destination image is displayed where the
images overlap. If the destination image is transparent but the
source image is opaque, the source image is displayed where the
images overlap. The source image is transparent where there is no
overlap.

destination-in The destination image is displayed where the images overlap and
both are opaque. Both images are transparent where there is no
overlap.

destination-out If the destination image is opaque and the source image is transpar-
ent, the destination image is displayed where the images overlap.
Both images are transparent where there is no overlap.

destination-over The destination image is placed over the source image. The destina-
tion image is displayed where it’s opaque and the images overlap.
The source image is displayed where there is no overlap.

lighter Displays the sum of the source-image color and destination-image
color—up to the maximum RGB color value (255)—where the
images overlap. Both images are normal elsewhere.

copy If the images overlap, only the source image is displayed (the desti-
nation is ignored).

xor Source-image xor (exclusive-or) destination. The images are trans-
parent where they overlap and normal elsewhere.

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.23: image.html -->
4 <!-- Compositing on a canvas. -->

Fig. 14.23 | Demonstrating compositing on a canvas. (Part 1 of 3.)

Value Description

Fig. 14.22 | globalCompositeOperation values. (Part 2 of 2.)

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 512 Wednesday, November 16, 2011 1:06 PM

14.18 Compositing 513

5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Compositing</title>
9 </head>

10 <body>
11 <canvas id = "composite" width = "220" height = "200">
12 </canvas>
13 <script>
14 function draw()
15 {
16 var canvas = document.getElementById("composite");
17 var context = canvas.getContext("2d")
18 context.fillStyle = "red";
19 context.fillRect(5, 50, 210, 100);
20
21 // source-atop
22 context.globalCompositeOperation = "source-atop";
23 context.fillStyle = "lime";
24 context.fillRect(10, 20, 60, 60);
25
26 // source-over
27 context.globalCompositeOperation = "source-over";
28 context.fillStyle = "lime";
29 context.fillRect(10, 120, 60, 60);
30
31 // destination-over
32 context.globalCompositeOperation = "destination-over";
33 context.fillStyle = "lime";
34 context.fillRect(80, 20, 60, 60);
35
36 // destination-out
37 context.globalCompositeOperation = "destination-out";
38 context.fillStyle = "lime";
39 context.fillRect(80, 120, 60, 60);
40
41 // lighter
42 context.globalCompositeOperation = "lighter";
43 context.fillStyle = "lime";
44 context.fillRect(150, 20, 60, 60);
45
46 // xor
47 context.globalCompositeOperation = "xor";
48 context.fillStyle = "lime";
49 context.fillRect(150, 120, 60, 60);
50 } // end function draw
51
52 window.addEventListener("load", draw, false);
53 </script>
54 </body>
55 </html>

Fig. 14.23 | Demonstrating compositing on a canvas. (Part 2 of 3.)

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 513 Wednesday, November 16, 2011 1:06 PM

514 Chapter 14 HTML5: Introduction to canvas

14.19 Cannon Game
Now let’s have some fun! The Cannon Game app challenges you to destroy a seven-piece
moving target before a ten-second time limit expires (Fig. 14.24).2 The game consists of
four visual components—a cannon that you control, a cannonball fired by the cannon, the
seven-piece target and a moving blocker that defends the target to make the game more chal-
lenging. You aim the cannon by clicking the screen—the cannon then aims where you
clicked and fires a cannonball. You can fire a cannonball only if there is not another one
on the screen.

The game begins with a 10-second time limit. Each time you hit a target section, you
are rewarded with three seconds being added to the time limit; each time you hit the
blocker, you are penalized with two seconds being subtracted from the time limit. You win
by destroying all seven target sections before time runs out. If the timer reaches zero, you
lose. When the game ends, it displays an alert dialog indicating whether you won or lost,
and shows the number of shots fired and the elapsed time (Fig. 14.25).

When the cannon fires, the game plays a firing sound. The target consists of seven
pieces. When a cannonball hits a piece of the target, a glass-breaking sound plays and that
piece disappears from the screen. When the cannonball hits the blocker, a hit sound plays

2. The Cannon Game currently works in Chrome, Internet Explorer 9 and Safari. It does not work
properly in Opera, Firefox, iPhone and Android.

Fig. 14.23 | Demonstrating compositing on a canvas. (Part 3 of 3.)

source-atop shows the
lime source where the

shapes overlap and
transparency elsewhere.

source-over shows the
lime source where the

shapes overlap and where
there’s no overlap.

destination-out
shows transparency
where the shapes
overlap and where
there’s no overlap.

destination-over
shows the red destination
where the images overlap,

and the lime source
where there’s no overlap.

lighter displays the
overlapping area in yellow
(the sum of the red and

lime values). Both images
are normal elsewhere.

xor displays
transparency where
the images overlap.

Both images are
normal elsewhere.

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 514 Wednesday, November 16, 2011 1:06 PM

14.19 Cannon Game 515

and the cannonball bounces back. The blocker cannot be destroyed. The target and
blocker move vertically at different speeds, changing direction when they hit the top or
bottom of the screen. At any time, the blocker and the target can be moving in the same
or different directions.

Fig. 14.24 | Completed Cannon Game app.

Fig. 14.25 | Cannon Game app alerts showing a win and a loss.

Gap from previously
hit target section

Time remaining

Blue target
piece

Cannonball in
flight toward

the target

Blocker

Target

Yellow target
piece

a) alert dialog displayed after user
destroys all seven target sections

b) alert dialog displayed when game
ends before user destroys all seven targets

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 515 Wednesday, November 16, 2011 1:06 PM

516 Chapter 14 HTML5: Introduction to canvas

14.19.1 HTML5 Document
Figure 14.26 shows the HTML5 document for the Cannon Game. Lines 15–20 use
HTML5 audio elements to load the game’s sounds, which are located in the same folder
as the HTML5 document. Recall from Chapter 9 that the HTML5 audio element may
contain multiple source elements for the audio file in several formats, so that you can sup-
port cross-browser playback of the sounds. For this app, we’ve included only MP3 files.
We set the audio element’s preload attribute to auto to indicate that the sounds should
be loaded immediately when the page loads. Line 22 creates a Start Game button which the
user will click to launch the game. After a game is over, this button remains on the screen
so that the user can click it to play again.

14.19.2 Instance Variables and Constants
Figure 14.27 lists the Cannon Game’s numerous constants and instance variables. Most are
self-explanatory, but we’ll explain each as we encounter it in the discussion.

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.26: cannon.html -->
4 <!-- Cannon Game HTML5 document. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Cannon Game</title>
9 <style type = "text/css">

10 canvas { border: 1px solid black; }
11 </style>
12 <script src = "cannon.js"></script>
13 </head>
14 <body>
15 <audio id = "blockerSound" preload = "auto">
16 <source src = "blocker_hit.mp3" type = "audio/mpeg"></audio>
17 <audio id = "targetSound" preload = "auto">
18 <source src = "target_hit.mp3" type = "audio/mpeg"></audio>
19 <audio id = "cannonSound" preload = "auto">
20 <source src = "cannon_fire.mp3" type = "audio/mpeg"></audio>
21 <canvas id = "theCanvas" width = "480" height = "600"></canvas>
22 <p><input id = "startButton" type = "button" value = "Start Game">
23 </p>
24 </body>
25 </html>

Fig. 14.26 | Cannon Game HTML5 document.

1 // Fig. 14.27 cannon.js
2 // Logic of the Cannon Game
3 var canvas; // the canvas
4 var context; // used for drawing on the canvas

Fig. 14.27 | Cannon Game variable declarations. (Part 1 of 2.)

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 516 Wednesday, November 16, 2011 1:06 PM

14.19 Cannon Game 517

5
6 // constants for game play
7 var TARGET_PIECES = 7; // sections in the target
8 var MISS_PENALTY = 2; // seconds deducted on a miss
9 var HIT_REWARD = 3; // seconds added on a hit

10 var TIME_INTERVAL = 25; // screen refresh interval in milliseconds
11
12 // variables for the game loop and tracking statistics
13 var intervalTimer; // holds interval timer
14 var timerCount; // times the timer fired since the last second
15 var timeLeft; // the amount of time left in seconds
16 var shotsFired; // the number of shots the user has fired
17 var timeElapsed; // the number of seconds elapsed
18
19 // variables for the blocker and target
20 var blocker; // start and end points of the blocker
21 var blockerDistance; // blocker distance from left
22 var blockerBeginning; // blocker distance from top
23 var blockerEnd; // blocker bottom edge distance from top
24 var initialBlockerVelocity; // initial blocker speed multiplier
25 var blockerVelocity; // blocker speed multiplier during game
26
27 var target; // start and end points of the target
28 var targetDistance; // target distance from left
29 var targetBeginning; // target distance from top
30 var targetEnd; // target bottom's distance from top
31 var pieceLength; // length of a target piece
32 var initialTargetVelocity; // initial target speed multiplier
33 var targetVelocity; // target speed multiplier during game
34
35 var lineWidth; // width of the target and blocker
36 var hitStates; // is each target piece hit?
37 var targetPiecesHit; // number of target pieces hit (out of 7)
38
39 // variables for the cannon and cannonball
40 var cannonball; // cannonball image's upper-left corner
41 var cannonballVelocity; // cannonball's velocity
42 var cannonballOnScreen; // is the cannonball on the screen
43 var cannonballRadius; // cannonball radius
44 var cannonballSpeed; // cannonball speed
45 var cannonBaseRadius; // cannon base radius
46 var cannonLength; // cannon barrel length
47 var barrelEnd; // the end point of the cannon's barrel
48 var canvasWidth; // width of the canvas
49 var canvasHeight; // height of the canvas
50
51 // variables for sounds
52 var targetSound;
53 var cannonSound;
54 var blockerSound;
55

Fig. 14.27 | Cannon Game variable declarations. (Part 2 of 2.)

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 517 Wednesday, November 16, 2011 1:06 PM

518 Chapter 14 HTML5: Introduction to canvas

14.19.3 Function setupGame
Figure 14.28 shows function setupGame. Later in the script, line 408 registers the window
object’s load event handler so that function setupGame is called when the cannon.html
page loads.

Lines 71–78 create the blocker, target, cannonball and barrelEnd as JavaScript
Objects. You can create your own properties on such Objects simply by assigning a value
to a property name. For example, lines 72–73 create start and end properties to represent
the start and end points, respectively, of the blocker. Each is initialized as an Object so
that it, in turn, can contain x and y properties representing the coordinates of the point.
Function resetElements (Fig. 14.30) sets the initial values of the x and y properties for
the start and end of the blocker and target.

We create boolean array hitStates (line 81) to keep track of which of the target’s
seven pieces have been hit (and thus should not be drawn). Lines 84–86 get references to
the audio elements that represent the game’s sounds—we use these to call play on each
audio at the appropriate time.

56 // called when the app first launches
57 function setupGame()
58 {
59 // stop timer if document unload event occurs
60 document.addEventListener("unload", stopTimer, false);
61
62 // get the canvas, its context and setup its click event handler
63 canvas = document.getElementById("theCanvas");
64 context = canvas.getContext("2d");
65
66 // start a new game when user clicks Start Game button
67 document.getElementById("startButton").addEventListener(
68 "click", newGame, false);
69
70 // JavaScript Object representing game items
71 blocker = new Object(); // object representing blocker line
72 blocker.start = new Object(); // will hold x-y coords of line start
73 blocker.end = new Object(); // will hold x-y coords of line end
74 target = new Object(); // object representing target line
75 target.start = new Object(); // will hold x-y coords of line start
76 target.end = new Object(); // will hold x-y coords of line end
77 cannonball = new Object(); // object representing cannonball point
78 barrelEnd = new Object(); // object representing end of cannon barrel
79
80 // initialize hitStates as an array
81 hitStates = new Array(TARGET_PIECES);
82
83 // get sounds
84 targetSound = document.getElementById("targetSound");
85 cannonSound = document.getElementById("cannonSound");
86 blockerSound = document.getElementById("blockerSound");
87 } // end function setupGame
88

Fig. 14.28 | Cannon Game function setupGame.

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 518 Wednesday, November 16, 2011 1:06 PM

14.19 Cannon Game 519

14.19.4 Functions startTimer and stopTimer
Figure 14.29 presents functions startTimer and stopTimer which manage the click
event handler and the interval timer. As you know, users interact with this app by clicking
the mouse on the device’s screen. A click aligns the cannon to face the point of the click
and fires the cannon. Line 92 in function startTimer registers function fireCannonball
as the canvas’s click event handler. Once the game is over, we don’t want the user to be
able to click the canvas anymore, so line 99 in function stopTimer removes the canvas’s
click event handler.

Line 93 in function startTimer creates an interval timer that calls updatePositions to
update the game every TIME_INTERVAL (Fig. 14.27, line 10) milliseconds. TIME_INTERVAL
can be adjusted to increase or decrease the CannonView’s refresh rate. Based on the value of
the TIME_INTERVAL constant (25), updatePositions is called approximately 40 times per
second. When the game is over, stopTimer is called and line 100 terminates the interval
timer so that updatePositions is not called again until the user starts a new game.

14.19.5 Function resetElements
Function resetElements (Fig. 14.30) is called by function newGame to position and scale
the size of the game elements relative to the size of the canvas. The calculations performed
here scale the game’s on-screen elements based on the canvas’s pixel width and height—
we arrived at our scaling factors via trial and error until the game surface looked good.
Lines 141–142 set the end point of the cannon’s barrel to point horizontally and to the
right from the midpoint of the left border of the canvas.

89 // set up interval timer to update game
90 function startTimer()
91 {
92 canvas.addEventListener("click", fireCannonball, false);
93 intervalTimer = window.setInterval(updatePositions, TIME_INTERVAL);
94 } // end function startTimer
95
96 // terminate interval timer
97 function stopTimer()
98 {
99 canvas.removeEventListener("click", fireCannonball, false);
100 window.clearInterval(intervalTimer);
101 } // end function stopTimer
102

Fig. 14.29 | Cannon Game functions startTimer and stopTimer.

103 // called by function newGame to scale the size of the game elements
104 // relative to the size of the canvas before the game begins
105 function resetElements()
106 {

Fig. 14.30 | Cannon Game function resetElements. (Part 1 of 2.)

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 519 Wednesday, November 16, 2011 1:06 PM

520 Chapter 14 HTML5: Introduction to canvas

14.19.6 Function newGame
Function newGame (Fig. 14.31) is called when the user clicks the Start Game button; the
function initializes the game’s instance variables. Lines 152–153 initialize all the elements
of the hitStates array to false to indicate that none of the targets have been destroyed.
Lines 155–162 initialize key variables in preparation for launching a fresh game. In par-
ticular, line 160 indicates that no cannonball is on the screen—this enables the cannon to
fire a cannonball when the user next clicks the screen. Line 164 invokes function start-
Timer to start the game loop for the new game.

107 var w = canvas.width;
108 var h = canvas.height;
109 canvasWidth = w; // store the width
110 canvasHeight = h; // store the height
111 cannonBaseRadius = h / 18; // cannon base radius 1/18 canvas height
112 cannonLength = w / 8; // cannon length 1/8 canvas width
113
114 cannonballRadius = w / 36; // cannonball radius 1/36 canvas width
115 cannonballSpeed = w * 3 / 2; // cannonball speed multiplier
116
117 lineWidth = w / 24; // target and blocker 1/24 canvas width
118
119 // configure instance variables related to the blocker
120 blockerDistance = w * 5 / 8; // blocker 5/8 canvas width from left
121 blockerBeginning = h / 8; // distance from top 1/8 canvas height
122 blockerEnd = h * 3 / 8; // distance from top 3/8 canvas height
123 initialBlockerVelocity = h / 2; // initial blocker speed multiplier
124 blocker.start.x = blockerDistance;
125 blocker.start.y = blockerBeginning;
126 blocker.end.x = blockerDistance;
127 blocker.end.y = blockerEnd;
128
129 // configure instance variables related to the target
130 targetDistance = w * 7 / 8; // target 7/8 canvas width from left
131 targetBeginning = h / 8; // distance from top 1/8 canvas height
132 targetEnd = h * 7 / 8; // distance from top 7/8 canvas height
133 pieceLength = (targetEnd - targetBeginning) / TARGET_PIECES;
134 initialTargetVelocity = -h / 4; // initial target speed multiplier
135 target.start.x = targetDistance;
136 target.start.y = targetBeginning;
137 target.end.x = targetDistance;
138 target.end.y = targetEnd;
139
140 // end point of the cannon's barrel initially points horizontally
141 barrelEnd.x = cannonLength;
142 barrelEnd.y = h / 2;
143 } // end function resetElements
144

Fig. 14.30 | Cannon Game function resetElements. (Part 2 of 2.)

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 520 Wednesday, November 16, 2011 1:06 PM

14.19 Cannon Game 521

14.19.7 Function updatePositions: Manual Frame-by-Frame
Animation and Simple Collision Detection
This app performs its animations manually by updating the positions of all the game ele-
ments at fixed time intervals. Line 93 (Fig. 14.29) in function startTimer created an in-
terval timer that calls function updatePositions (Fig. 14.32) to update the game every 25
milliseconds (i.e., 40 times per second). This function also performs simple collision detec-
tion to determine whether the cannonball has collided with any of the canvas’s edges, with
the blocker or with a section of the target. Game-development frameworks generally pro-
vide more sophisticated, built-in collision-detection capabilities.

145 // reset all the screen elements and start a new game
146 function newGame()
147 {
148 resetElements(); // reinitialize all the game elements
149 stopTimer(); // terminate previous interval timer
150
151 // set every element of hitStates to false--restores target pieces
152 for (var i = 0; i < TARGET_PIECES; ++i)
153 hitStates[i] = false; // target piece not destroyed
154
155 targetPiecesHit = 0; // no target pieces have been hit
156 blockerVelocity = initialBlockerVelocity; // set initial velocity
157 targetVelocity = initialTargetVelocity; // set initial velocity
158 timeLeft = 10; // start the countdown at 10 seconds
159 timerCount = 0; // the timer has fired 0 times so far
160 cannonballOnScreen = false; // the cannonball is not on the screen
161 shotsFired = 0; // set the initial number of shots fired
162 timeElapsed = 0; // set the time elapsed to zero
163
164 startTimer(); // starts the game loop
165 } // end function newGame
166

Fig. 14.31 | Cannon Game function newGame.

167 // called every TIME_INTERVAL milliseconds
168 function updatePositions()
169 {
170 // update the blocker's position
171 var blockerUpdate = TIME_INTERVAL / 1000.0 * blockerVelocity;
172 blocker.start.y += blockerUpdate;
173 blocker.end.y += blockerUpdate;
174
175 // update the target's position
176 var targetUpdate = TIME_INTERVAL / 1000.0 * targetVelocity;
177 target.start.y += targetUpdate;
178 target.end.y += targetUpdate;
179

Fig. 14.32 | Cannon Game function updatePositions. (Part 1 of 3.)

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 521 Wednesday, November 16, 2011 1:06 PM

522 Chapter 14 HTML5: Introduction to canvas

180 // if the blocker hit the top or bottom, reverse direction
181 if (blocker.start.y < 0 || blocker.end.y > canvasHeight)
182 blockerVelocity *= -1;
183
184 // if the target hit the top or bottom, reverse direction
185 if (target.start.y < 0 || target.end.y > canvasHeight)
186 targetVelocity *= -1;
187
188 if (cannonballOnScreen) // if there is currently a shot fired
189 {
190 // update cannonball position
191 var interval = TIME_INTERVAL / 1000.0;
192
193 cannonball.x += interval * cannonballVelocityX;
194 cannonball.y += interval * cannonballVelocityY;
195
196 // check for collision with blocker
197 if (cannonballVelocityX > 0 &&
198 cannonball.x + cannonballRadius >= blockerDistance &&
199 cannonball.x + cannonballRadius <= blockerDistance + lineWidth &&
200 cannonball.y - cannonballRadius > blocker.start.y &&
201 cannonball.y + cannonballRadius < blocker.end.y)
202 {
203 blockerSound.play(); // play blocker hit sound
204 cannonballVelocityX *= -1; // reverse cannonball's direction
205 timeLeft -= MISS_PENALTY; // penalize the user
206 } // end if
207
208 // check for collisions with left and right walls
209 else if (cannonball.x + cannonballRadius > canvasWidth ||
210 cannonball.x - cannonballRadius < 0)
211 {
212 cannonballOnScreen = false; // remove cannonball from screen
213 } // end else if
214
215 // check for collisions with top and bottom walls
216 else if (cannonball.y + cannonballRadius > canvasHeight ||
217 cannonball.y - cannonballRadius < 0)
218 {
219 cannonballOnScreen = false; // make the cannonball disappear
220 } // end else if
221
222 // check for cannonball collision with target
223 else if (cannonballVelocityX > 0 &&
224 cannonball.x + cannonballRadius >= targetDistance &&
225 cannonball.x + cannonballRadius <= targetDistance + lineWidth &&
226 cannonball.y - cannonballRadius > target.start.y &&
227 cannonball.y + cannonballRadius < target.end.y)
228 {
229 // determine target section number (0 is the top)
230 var section =
231 Math.floor((cannonball.y - target.start.y) / pieceLength);
232

Fig. 14.32 | Cannon Game function updatePositions. (Part 2 of 3.)

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 522 Wednesday, November 16, 2011 1:06 PM

14.19 Cannon Game 523

The function begins by updating the positions of the blocker and the target. Lines
171–173 change the blocker’s position by multiplying blockerVelocity by the amount
of time that has passed since the last update and adding that value to the current x- and y-
coordinates. Lines 176–178 do the same for the target. If the blocker has collided with
the top or bottom wall, its direction is reversed by multiplying its velocity by -1 (lines 181–
182). Lines 185–186 perform the same check and adjustment for the full length of the
target, including any sections that have already been hit.

Line 188 checks whether the cannonball is on the screen. If it is, we update its position
by adding the distance it should have traveled since the last timer event. This is calculated
by multiplying its velocity by the amount of time that passed (lines 193–194).

233 // check whether the piece hasn't been hit yet
234 if ((section >= 0 && section < TARGET_PIECES) &&
235 !hitStates[section])
236 {
237 targetSound.play(); // play target hit sound
238 hitStates[section] = true; // section was hit
239 cannonballOnScreen = false; // remove cannonball
240 timeLeft += HIT_REWARD; // add reward to remaining time
241
242 // if all pieces have been hit
243 if (++targetPiecesHit == TARGET_PIECES)
244 {
245 stopTimer(); // game over so stop the interval timer
246 draw(); // draw the game pieces one final time
247 showGameOverDialog("You won!"); // show winning dialog
248 } // end if
249 } // end if
250 } // end else if
251 } // end if
252
253 ++timerCount; // increment the timer event counter
254
255 // if one second has passed
256 if (TIME_INTERVAL * timerCount >= 1000)
257 {
258 --timeLeft; // decrement the timer
259 ++timeElapsed; // increment the time elapsed
260 timerCount = 0; // reset the count
261 } // end if
262
263 draw(); // draw all elements at updated positions
264
265 // if the timer reached zero
266 if (timeLeft <= 0)
267 {
268 stopTimer();
269 showGameOverDialog("You lost"); // show the losing dialog
270 } // end if
271 } // end function updatePositions
272

Fig. 14.32 | Cannon Game function updatePositions. (Part 3 of 3.)

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 523 Wednesday, November 16, 2011 1:06 PM

524 Chapter 14 HTML5: Introduction to canvas

Lines 198–201 check whether the cannonball has collided with the blocker. We per-
form simple collision detection, based on the rectangular boundary of the cannonball. Four
conditions must be met if the cannonball is in contact with the blocker:

• The cannonball has reached the blocker’s distance from the left edge of the
screen.

• The cannonball has not yet passed the blocker.

• Part of the cannonball must be lower than the top of the blocker.

• Part of the cannonball must be higher than the bottom of the blocker.

If all these conditions are met, we play blocker hit sound (line 203), reverse the cannon-
ball’s direction on the screen (line 204) and penalize the user by subtracting MISS_PENALTY
from timeLeft.

We remove the cannonball if it reaches any of the screen’s edges. Lines 209–212 test
whether the cannonball has collided with the left or right wall and, if it has, remove the
cannonball from the screen. Lines 216–219 remove the cannonball if it collides with the
top or bottom of the screen.

We then check whether the cannonball has hit the target (lines 223–227). These
conditions are similar to those used to determine whether the cannonball collided with the
blocker. If the cannonball hit the target, we determine which section of the target was
hit. Lines 230–231 accomplish this—dividing the distance between the cannonball and
the bottom of the target by the length of a piece. This expression evaluates to 0 for the
topmost section and 6 for the bottommost. We check whether that section was previously
hit, using the hitStates array (lines 234–235). If it wasn’t, we play the target hit sound,
set the corresponding hitStates element to true and remove the cannonball from the
screen. We then add HIT_REWARD to timeLeft, increasing the game’s time remaining. We
increment targetPiecesHit, then determine whether it’s equal to TARGET_PIECES (line
243). If so, the game is over, so we call function stopTimer to stop the interval timer and
function draw to perform the final update of the game elements on the screen. Then we
call showGameOverDialog with the string "You won!".

We increment the timerCount, keeping track of the number of times we’ve updated
the on-screen elements’ positions (line 253). If the product of TIME_INTERVAL and timer-
Count is >= 1000 (i.e., one second has passed since timeLeft was last updated), we decre-
ment timeLeft, increment timeElapsed and reset timerCount to zero (lines 256–260).
Then we draw all the elements at their updated positions (line 263). If the timer has
reached zero, the game is over—we call function stopTimer and call function showGame-
OverDialog with the string "You Lost" (lines 266–269).

14.19.8 Function fireCannonball
When the user clicks the mouse on the canvas, the click event handler calls function fire-
Cannonball (Fig. 14.33) to fire a cannonball. If there’s already a cannonball on the screen,
another cannot be fired, so the function returns immediately; otherwise, it fires the can-
non. Line 279 calls alignCannon to aim the cannon at the click point and get the cannon’s
angle. Lines 282–283 “load” the cannon (that is, position the cannonball inside the can-
non). Then, lines 286 and 289 calculate the horizontal and vertical components of the
cannonball’s velocity. Next, we set cannonballOnScreen to true so that the cannonball

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 524 Wednesday, November 16, 2011 1:06 PM

14.19 Cannon Game 525

will be drawn by function draw (Fig. 14.35) and increment shotsFired. Finally, we play
the cannon’s firing sound (cannonSound).

14.19.9 Function alignCannon
Function alignCannon (Fig. 14.34) aims the cannon at the point where the user clicked
the mouse on the screen. Lines 302–303 get the x- and y-coordinates of the click from the
event argument. We compute the vertical distance of the mouse click from the center of
the screen. If this is not zero, we calculate the cannon barrel’s angle from the horizontal
(line 313). If the click is on the lower half of the screen we adjust the angle by Math.PI
(line 317). We then use the cannonLength and the angle to determine the x- and y-coor-
dinates for the end point of the cannon’s barrel (lines 320–322)—this is used in function
draw (Fig. 14.35) to draw a line from the cannon base’s center at the left edge of the screen
to the cannon barrel’s end point.

273 // fires a cannonball
274 function fireCannonball(event)
275 {
276 if (cannonballOnScreen) // if a cannonball is already on the screen
277 return; // do nothing
278
279 var angle = alignCannon(event); // get the cannon barrel's angle
280
281 // move the cannonball to be inside the cannon
282 cannonball.x = cannonballRadius; // align x-coordinate with cannon
283 cannonball.y = canvasHeight / 2; // centers ball vertically
284
285 // get the x component of the total velocity
286 cannonballVelocityX = (cannonballSpeed * Math.sin(angle)).toFixed(0);
287
288 // get the y component of the total velocity
289 cannonballVelocityY = (-cannonballSpeed * Math.cos(angle)).toFixed(0);
290 cannonballOnScreen = true; // the cannonball is on the screen
291 ++shotsFired; // increment shotsFired
292
293 // play cannon fired sound
294 cannonSound.play();
295 } // end function fireCannonball
296

Fig. 14.33 | Cannon Game function fireCannonball.

297 // aligns the cannon in response to a mouse click
298 function alignCannon(event)
299 {
300 // get the location of the click
301 var clickPoint = new Object();
302 clickPoint.x = event.x;
303 clickPoint.y = event.y;

Fig. 14.34 | Cannon Game function alignCannon. (Part 1 of 2.)

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 525 Wednesday, November 16, 2011 1:06 PM

526 Chapter 14 HTML5: Introduction to canvas

14.19.10 Function draw
When the screen needs to be redrawn, the draw function (Fig. 14.35) renders the game’s
on-screen elements—the cannon, the cannonball, the blocker and the seven-piece target.
We use various canvas properties to specify drawing characteristics, including color, line
thickness, font size and more, and various canvas functions to draw text, lines and circles.

Lines 333–336 display the time remaining in the game. If the cannonball is on the
screen, lines 341–346 draw the cannonball in its current position.

We display the cannon barrel (lines 350–355), the cannon base (lines 358–362), the
blocker (lines 365–369) and the target pieces (lines 372–398).

Lines 377–398 iterate through the target’s sections, drawing each in the correct
color—blue for the odd-numbered pieces and yellow for the others. Only those sections
that haven’t been hit are displayed.

304
305 // compute the click's distance from center of the screen
306 // on the y-axis
307 var centerMinusY = (canvasHeight / 2 - clickPoint.y);
308
309 var angle = 0; // initialize angle to 0
310
311 // calculate the angle the barrel makes with the horizontal
312 if (centerMinusY !== 0) // prevent division by 0
313 angle = Math.atan(clickPoint.x / centerMinusY);
314
315 // if the click is on the lower half of the screen
316 if (clickPoint.y > canvasHeight / 2)
317 angle += Math.PI; // adjust the angle
318
319 // calculate the end point of the cannon’s barrel
320 barrelEnd.x = (cannonLength * Math.sin(angle)).toFixed(0);
321 barrelEnd.y =
322 (-cannonLength * Math.cos(angle) + canvasHeight / 2).toFixed(0);
323
324 return angle; // return the computed angle
325 } // end function alignCannon
326

327 // draws the game elements to the given Canvas
328 function draw()
329 {
330 canvas.width = canvas.width; // clears the canvas (from W3C docs)
331
332 // display time remaining
333 context.fillStyle = "black";
334 context.font = "bold 24px serif";
335 context.textBaseline = "top";
336 context.fillText("Time remaining: " + timeLeft, 5, 5);

Fig. 14.35 | Cannon Game function draw. (Part 1 of 3.)

Fig. 14.34 | Cannon Game function alignCannon. (Part 2 of 2.)

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 526 Wednesday, November 16, 2011 1:06 PM

14.19 Cannon Game 527

337
338 // if a cannonball is currently on the screen, draw it
339 if (cannonballOnScreen)
340 {
341 context.fillStyle = "gray";
342 context.beginPath();
343 context.arc(cannonball.x, cannonball.y, cannonballRadius,
344 0, Math.PI * 2);
345 context.closePath();
346 context.fill();
347 } // end if
348
349 // draw the cannon barrel
350 context.beginPath(); // begin a new path
351 context.strokeStyle = "black";
352 context.moveTo(0, canvasHeight / 2); // path origin
353 context.lineTo(barrelEnd.x, barrelEnd.y);
354 context.lineWidth = lineWidth; // line width
355 context.stroke(); // draw path
356
357 // draw the cannon base
358 context.beginPath();
359 context.fillStyle = "gray";
360 context.arc(0, canvasHeight / 2, cannonBaseRadius, 0, Math.PI*2);
361 context.closePath();
362 context.fill();
363
364 // draw the blocker
365 context.beginPath(); // begin a new path
366 context.moveTo(blocker.start.x, blocker.start.y); // path origin
367 context.lineTo(blocker.end.x, blocker.end.y);
368 context.lineWidth = lineWidth; // line width
369 context.stroke(); //draw path
370
371 // initialize currentPoint to the starting point of the target
372 var currentPoint = new Object();
373 currentPoint.x = target.start.x;
374 currentPoint.y = target.start.y;
375
376 // draw the target
377 for (var i = 0; i < TARGET_PIECES; ++i)
378 {
379 // if this target piece is not hit, draw it
380 if (!hitStates[i])
381 {
382 context.beginPath(); // begin a new path for target
383
384 // alternate coloring the pieces yellow and blue
385 if (i % 2 === 0)
386 context.strokeStyle = "yellow";
387 else
388 context.strokeStyle = "blue";
389

Fig. 14.35 | Cannon Game function draw. (Part 2 of 3.)

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 527 Wednesday, November 16, 2011 1:06 PM

528 Chapter 14 HTML5: Introduction to canvas

14.19.11 Function showGameOverDialog
When the game ends, the showGameOverDialog function (Fig. 14.36) displays an alert
indicating whether the player won or lost, the number of shots fired and the total time
elapsed. Line 408 registers the window object’s load event handler so that function set-
upGame is called when the cannon.html page loads.

14.20 save and restore Methods
The canvas’s state includes its current style and transformations, which are maintained in
a stack. The save method is used to save the context’s current state. The restore method
restores the context to its previous state. Figure 14.37 demonstrates using the save meth-
od to change a rectangle’s fillStyle and the restore method to restore the fillStyle
to the previous settings in the stack.

390 context.moveTo(currentPoint.x, currentPoint.y); // path origin
391 context.lineTo(currentPoint.x, currentPoint.y + pieceLength);
392 context.lineWidth = lineWidth; // line width
393 context.stroke(); // draw path
394 } // end if
395
396 // move currentPoint to the start of the next piece
397 currentPoint.y += pieceLength;
398 } // end for
399 } // end function draw
400

401 // display an alert when the game ends
402 function showGameOverDialog(message)
403 {
404 alert(message + "\nShots fired: " + shotsFired +
405 "\nTotal time: " + timeElapsed + " seconds ");
406 } // end function showGameOverDialog
407
408 window.addEventListener("load", setupGame, false);

Fig. 14.36 | Cannon Game function showGameOverDialog.

1 <!DOCTYPE html>
2
3 <!-- Fig. 14.37: saveandrestore.html -->
4 <!-- Saving the current state and restoring the previous state. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Save and Restore</title>
9 </head>

Fig. 14.37 | Saving the current state and restoring the previous state. (Part 1 of 2.)

Fig. 14.35 | Cannon Game function draw. (Part 3 of 3.)

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 528 Wednesday, November 16, 2011 1:06 PM

14.20 save and restore Methods 529

10 <body>
11 <canvas id = "save" width = "400" height = "200">
12 </canvas>
13 <script>
14 function draw()
15 {
16 var canvas = document.getElementById("save");
17 var context = canvas.getContext("2d")
18
19 // draw rectangle and save the settings
20 context.fillStyle = "red"
21 context.fillRect(0, 0, 400, 200);
22
23
24 // change the settings and save again
25 context.fillStyle = "orange"
26 context.fillRect(0, 40, 400, 160);
27
28
29 // change the settings again
30 context.fillStyle = "yellow"
31 context.fillRect(0, 80, 400, 120);
32
33 // restore to previous settings and draw new rectangle
34
35 context.fillRect(0, 120, 400, 80);
36
37 // restore to original settings and draw new rectangle
38
39 context.fillRect(0, 160, 400, 40);
40 }
41 window.addEventListener("load", draw, false);
42 </script>
43 </body>
44 </html>

Fig. 14.37 | Saving the current state and restoring the previous state. (Part 2 of 2.)

context.save();

context.save();

context.restore();

context.restore();

First rectangle is red

Second rectangle is orange

Fourth rectangle is restored to orange

Fifth rectangle is restored to red

Third rectangle is yellow

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 529 Wednesday, November 16, 2011 1:06 PM

530 Chapter 14 HTML5: Introduction to canvas

We begin by drawing a red rectangle (lines 20–21), then using the save method to
save its style (line 22). Next, we draw an orange rectangle and save its style (lines 25–27).
Then we draw a yellow rectangle (lines 30–31) without saving its style.

Now we draw two rectangles, restoring the previous styles in reverse order of the
stack—last in, first out. Line 34 uses the restore method to revert to the last-saved style
in the stack. Then we draw a new rectangle (line 35). The result is an orange rectangle.

We use the restore method again to revert back to the first-saved style (line 38), then
draw a fifth rectangle (line 39). The result is a red rectangle.

14.21 A Note on SVG
We’ve devoted this chapter to the new HTML5 canvas. Most current browsers also sup-
port SVG (Scalable Vector Graphics), which offers a different approach to developing 2D
graphics. Although we do not present SVG, we’ll compare it briefly to HTML5 canvas so
you can determine which might be more appropriate for particular applications.

SVG has been around since the early 2000s and is a mature technology with well-
established standards. canvas is part of the HTML5 initiative and is an emerging tech-
nology with evolving standards.

canvas graphics are bitmapped—they’re made of pixels. Vector graphics are made of
scalable geometric primitives such as line segments and arcs.

Drawing is convenient in each of these technologies, but the mechanisms are dif-
ferent. SVG is XML-based, so it uses a declarative approach—you say what you want and
SVG builds it for you. HTML5 canvas is JavaScript-based, so it uses an imperative
approach—you say how to build your graphics by programming in JavaScript.

Anything you draw on a canvas ultimately becomes nothing more than bits. With
SVG, each separate part of your graphic becomes an object that can be manipulated
through the DOM. So, for example, it’s easy to attach event handlers to items in SVG
graphics. This makes SVG graphics more appropriate for interactive applications.

canvas is a low-level capability that offers higher performance than SVG; this makes
canvas more appropriate for applications with intense performance demands, such as
game programming. The DOM manipulation in SVG can degrade performance, particu-
larly for more complex graphics.

SVG graphics easily and accurately scale to larger or smaller drawing surfaces. canvas
graphics can be scaled, but the results may not be as eye pleasing.

SVG is more appropriate for accessibility applications for people with disabilities. It’s
easier, for example, for people with low vision or vision impairments to work with the
XML text in an SVG document than with the pixels in a canvas.

canvas is more appropriate for pixel-manipulation applications (such as color-to-
black-and-white image conversion; Section 14.12) and game-playing applications (such as
the Cannon Game in Section 14.19). SVG has better animation capabilities, so game devel-
opers often use a mix of both the canvas and SVG approaches.

SVG has better text-rendering capabilities. And the text is still an object after it’s on
the screen, so you can easily edit it and change its attributes. Text on a canvas is “lost” in
the bits, so it’s difficult to modify.

SVG is more convenient for cross-platform graphics, which is becoming especially
important with the proliferation of “form factors,” such as desktops, notebooks, smart-
phones, tablets and various special-purpose devices such as car navigation systems.

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 530 Wednesday, November 16, 2011 1:06 PM

14.22 A Note on canvas 3D 531

An additional problem for canvas-based applications is that some web users disable
JavaScript in their browsers. You should consider mastering both technologies.

14.22 A Note on canvas 3D
At the time of this writing, 3D functionality was not yet supported in canvas, though var-
ious tools and plug-ins enable you to create 3D effects. It’s widely expected that a future
version of the HTML5 canvas specification will support 3D capabilities. Figure 14.38
lists several websites with fun and interesting 3D examples.

URL Description

http://www.kevs3d.co.uk/dev/html5logo/ Spinning 3D HTML5 logo.

http://sebleedelisle.com/demos/

GravityParticles/ParticlesForces3D2.html

A basic 3D particle distribution sys-
tem.

http://www.kevs3d.co.uk/dev/canvask3d/

k3d_test.html

Includes several 3D shapes that rotate
when clicked.

http://alteredqualia.com/canvasmol/#DNA Spinning 3D molecules.

http://deanm.github.com/pre3d/monster.html A cube that morphs into other 3D
shapes.

http://html5canvastutorials.com/demos/

webgl/html5_canvas_webgl_3d_world/

Click and drag the mouse to smoothly
change perspective in a 3D room.

http://onepixelahead.com/2010/09/24/10-

awesome-html5-canvas-3d-examples/

Ten HTML5 canvas 3D examples
including games and animations.

http://sixrevisions.com/web-development/

how-to-create-an-html5-3d-engine/

The tutorial, “How to Create an
HTML5 3D Engine.”

http://sebleedelisle.com/2011/02/html5-

canvas-3d-particles-uniform-distribution/

The short tutorial, “HTML5 Canvas
3D Particles Uniform Distribution.”

http://www.script-tutorials.com/

how-to-create-3d-canvas-object-in-html5/

The tutorial, “How to Create Ani-
mated 3D Canvas Objects in
HTML5.”

http://blogs.msdn.com/b/davrous/archive/

2011/05/27/how-to-add-the-3d-animated-

html5-logo-into-your-webpages-thanks-to-

lt-canvas-gt.aspx

The tutorial, “How to Add the 3D
Animated HTML5 Logo to Your
Webpages.”

http://www.bitstorm.it/blog/en/2011/05/

3d-sphere-html5-canvas/

The tutorial, “Draw Old School 3D
Sphere with HTML5.”

Fig. 14.38 | HTML5 canvas 3D demos and tutorials.

Summary
Section 14.2 canvas Coordinate System
• The canvas coordinate system (p. 477) is a scheme for identifying every point on a canvas.

• By default, the upper-left corner of a canvas has the coordinates (0, 0).

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 531 Wednesday, November 16, 2011 1:06 PM

532 Chapter 14 HTML5: Introduction to canvas

• A coordinate pair has both an x-coordinate (the horizontal coordinate; p. 478) and a y-coordi-
nate (the vertical coordinate; p. 478).

• The x-coordinate (p. 478) is the horizontal distance to the right from the left border of a canvas.
The y-coordinate (p. 478) is the vertical distance downward from the top border of a canvas.

• The x-axis (p. 478) defines every horizontal coordinate, and the y-axis (p. 478) defines every ver-
tical coordinate.

• You position text and shapes on a canvas by specifying their x- y-coordinates.

• Coordinate space units are measured in pixels (“picture elements”), which are the smallest units
of resolution on a screen.

Section 14.3 Rectangles
• A canvas is a rectangular area in which you can draw.

• The canvas element (p. 479) has two attributes—width and height. The default width is 300,
and the default height is 150.

• The fillStyle (p. 479) specifies the color of the rectangle.

• To specify the coordinates of the rectangle, we use fillRect (p. 479) in the format (x, y, w,
h), where x and y are the coordinates for the top-left corner of the rectangle, w is the width of the
rectangle and h is the height.

• The strokeStyle (p. 479) specifies the stroke color and lineWidth (p. 479) specifies the line width.

• The strokeRect method (p. 479) specifies the path of the stroke in the format (x, y, w, h).

• If the width and height are 0, no stroke will appear. If either the width or the height is 0, the
result will be a line, not a rectangle.

Section 14.4 Using Paths to Draw Lines
• The beginPath method (p. 480) starts the path.

• The moveTo method (p. 480) sets the x- and y-coordinates of the path’s origin.

• From the point of origin, we use the lineTo method (p. 480) specify the destinations for the
path.

• The lineWidth attribute (p. 480) is used to change the thickness of the line. The default lin-
eWidth is 1.0.

• The lineJoin attribute (p. 480) specifies the style of the corners where two lines meet. It has
three possible values—bevel, round, and miter.

• The bevel lineJoin gives the path sloping corners.

• The lineCap attribute (p. 481) defines the style of the line ends. There are three possible
values—butt, round, and square.

• A butt lineCap specifies that the line ends have edges perpendicular to the direction of the line
and no additional cap.

• The strokeStyle attribute (p. 482) specifies the line color.

• The stroke method (p. 482) draws lines on a canvas. The default stroke color is black.

• The round lineJoin creates rounded corners. Then, the round lineCap adds a semicircular cap
to the ends of the path. The diameter of the added cap is equal to the width of the line.

• The closePath method (p. 482) closes the path by drawing a line from the last specified desti-
nation back to the point of the path’s origin.

• The miter lineJoin bevels the lines at an angle where they meet. For example, the lines that meet
at a 90-degree angle have edges bevelled at 45-degree angles where they meet.

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 532 Wednesday, November 16, 2011 1:06 PM

 Summary 533

• A square lineCap adds a rectangular cap to the line ends. The length of the cap is equal to the
line width, and the width of the cap is equal to half of the line width. The edge of the square
lineCap is perpendicular to the direction of the line.

Section 14.5 Drawing Arcs and Circles
• Arcs are portions of the circumference of a circle. To draw an arc, you specify the arc’s starting

angle and ending angle (p. 482) measured in radians—the ratio of the arc’s length to its radius.

• The arc method (p. 482) draws the circle using five arguments. The first two arguments repre-
sent the x- and y-coordinates of the center of the circle. The third argument is the radius of the
circle. The fourth and fifth arguments are the arc’s starting and ending angles in radians.

• The sixth argument is optional and specifies the direction in which the arc’s path is drawn. By
default, the sixth argument is false, indicating that the arc is drawn clockwise. If the argument
is true, the arc is drawn counterclockwise (or anticlockwise).

• The constant Math.PI is the JavaScript representation of the mathematical constant π, the ratio
of a circle’s circumference to its diameter. 2π radians represents a 360-degree arc, π radians is
180 degrees and π/2 radians is 90 degrees.

Section 14.6 Shadows
• The shadowBlur attribute (p. 484) specifies the blur and color or a shadow. By default, the blur

is 0 (no blur). The higher the value, the more blurred the edges of the shadow will appear.

• A positive shadowOffsetX attribute (p. 484) moves the shadow to the right of the rectangle.

• A positive shadowOffsetY attribute (p. 484) moves the shadow down from the rectangle

• The shadowColor attribute (p. 484) specifies the color of the shadow.

• Using a negative shadowOffsetX moves the shadow to the left of the rectangle.

• Using a negative shadowOffsetY moves the shadow up from the rectangle.

• The default value for the shadowOffsetX and shadowOffsetY is 0 (no shadow).

Section 14.7 Quadratic Curves
• Quadratic curves (p. 486) have a starting point, an ending point and a single point of inflection.

• The quadraticCurveTo method (p. 486) uses four arguments. The first two, cpx and cpy, are the
are the coordinates of the control point—the point of the curve’s inflection. The third and fourth
arguments, x and y, are the coordinates of the ending point. The starting point is the last subpath
destination, specified using the moveTo or lineTo methods.

Section 14.8 Bezier Curves
• Bezier curves (p. 488) have a starting point, an ending point and two control points through

which the curve passes. These can be used to draw curves with one or two points of inflection,
depending on the coordinates of the four points.

• The bezierCurveTo method (p. 488) uses six arguments. The first two arguments, cp1x and cp1y,
are the coordinates of the first control point. The third and fourth arguments, cp2x and cp2y, are
the coordinates for the second control point. Finally, the fifth and sixth arguments, x and y, are
the coordinates of the ending point. The starting point is the last subpath destination, specified
using either the moveTo or lineTo method.

Section 14.9 Linear Gradients
• The createLinearGradient method (p. 489) has four arguments that represent x0, y0, x1, y1,

where the first two arguments are the x- and y-coordinates of the gradient’s start and the last two
are the x- and y-coordinates of the end.

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 533 Wednesday, November 16, 2011 1:06 PM

534 Chapter 14 HTML5: Introduction to canvas

• The start and end have the same x-coordinates but different y-coordinates, so the start of the gra-
dient is a point at the top of the canvas directly above the point at the end of the gradient at the
bottom. This creates a vertical linear gradient that starts at the top and changes as it moves to the
bottom of the canvas.

• The addColorStop method (p. 491) adds color stops to the gradient. Note that each color stop
has a positive value between 0 (the start of the gradient) and 1 (the end of the gradient). For each
color stop, specify a color.

• The fillStyle method specifies a gradient, then the fillRect method draws the gradient on
the canvas.

• To draw a horizontal gradient, use the createLinearGradient method where the start and end
have different x-coordinates but the same y-coordinates.

Section 14.10 Radial Gradients
• A radial gradient is comprised of two circles—an inner circle where the gradient starts and an

outer circle where the gradient ends.

• The createRadialGradient method (p. 491) has six arguments that represent x0, y0, r0, x1,
y1, r1, where the first three arguments are the x- and y-coordinates and the radius of the gradi-
ent’s start circle, and the last three arguments are the x- and y-coordinates and the radius of the
end circle.

• Drawing concentric circles with the same x- and y-coordinates but different radiuses creates a ra-
dial gradient that starts in a common center and changes as it moves outward to the end circle.

• If the start and end circles are not concentric circles, the effect is altered.

Section 14.11 Images
• The drawImage method (p. 493) draws an image to a canvas using five arguments. The first ar-

gument can be an image, canvas or video element. The second and third arguments are the des-
tination x- and destination y-coordinates—these indicate the position of the top-left corner of
the image on the canvas. The fourth and fifth arguments are the destination width and destina-
tion height.

Section 14.12 Image Manipulation: Processing the Individual Pixels of a canvas
• You can obtain a canvas’s pixels and manipulate their red, green, blue and alpha (RGBA) values.

• You can change the RGBA values with the input elements of type range defined in the body.

• The method getImageData (p. 498) obtains an object that contains the pixels to manipulate. The
method receives a bounding rectangle representing the portion of the canvas to get.

• The returned object contains an array named data which stores every pixel in the selected rect-
angular area as four elements in the array. Each pixel’s data is stored in the order red, green, blue,
alpha. So, the first four elements in the array represent the RGBA values of the pixel in row 0
and column 0, the next four elements represent the pixel in row 0 and column 1, etc.

Section 14.13 Patterns
• The createPattern method (p. 499) takes two arguments. The first argument is the image for

the pattern, which can be an image element, a canvas element or a video element. The second
argument specifies how the image will be repeated to create the pattern and can be one of four
values—repeat (repeats horizontally and vertically), repeat-x (repeats horizontally), repeat-y
(repeats vertically) or no-repeat.

• Use the fillStyle attribute pattern and use the fill method to draw the pattern to the canvas.

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 534 Wednesday, November 16, 2011 1:06 PM

 Summary 535

Section 14.14 Transformations
• You can change the transformation matrix (the coordinates) on the canvas using method trans-

late (p. 500) so that the center of the canvas becomes the point of origin with the x, y values 0, 0.

• The scale method (p. 501) can stretch a circle to create an ellipse. The x value represents the
horizontal scale factor, the y value the vertical scale factor.

• The rotate method (p. 502) allows you to create animated rotations on a canvas.

• To rotate an image around its center, change the transformation matrix on the canvas using the
translate method. The rotate method takes one argument—the angle of the clockwise rota-
tion, expressed in radians.

• The setInterval method (p. 503) of the window object takes two arguments. The first is the
name of the function to call (rotate) and the second is the number of milliseconds between calls.

• The clearRect method (p. 503) clears the rectangle’s pixels from the canvas, converting them
back to transparent. This method takes four arguments—x, y, width and height.

• The transform method (p. 504) allows you to skew, scale, rotate and translate elements without
using separate transformation methods.

• The transform method takes six arguments in the format (a, b, c, d, e, f) based on a transforma-
tion matrix. The first argument, a, is the x-scale—the factor by which to scale an element hori-
zontally. The second argument, b, is the y-skew. The third argument, c, is the x-skew. The fourth
argument, d, is the y-scale—the factor by which to scale an element vertically. The fifth argu-
ment, e, is the x-translation and the sixth argument, f, is the y-translation.

Section 14.15 Text
• The font attribute (p. 506) specifies the style, size and font of the text.

• The textBaseline attribute (p. 507) specifies the alignment points of the text. There are six dif-
ferent attribute values—top, hanging, middle, alphabetic, ideographic and bottom.

• Method fillText (p. 507) draws the text to the canvas. This method takes three arguments. The
first is the text being drawn to the canvas. The second and third arguments are the x- and y-coor-
dinates. You may include the optional fourth argument, maxWidth, to limit the width of the text.

• The textAlign attribute (p. 507) specifies the horizontal alignment of the text relative to the x-
coordinate of the text. There are five possible textAlign attribute values—left, right, center,
start (the default value) and end.

• The lineWidth attribute specifies the thickness of the stroke used to draw the text.

• The strokeStyle specifies the color of the text.

• Using strokeText instead of fillText draws outlined text instead of filled text.

Section 14.16 Resizing the canvas to Fill the Browser Window
• Use a CSS style sheet to set the position of the canvas to absolute and set both its width and

height to 100%, rather than using fixed coordinates.

• Use JavaScript function draw to draw the canvas when the application is rendered.

• Use the fillRect method to draw the color to the canvas. The x- and y-coordinates are 0, 0—
the top left of the canvas. The the x1 value is context.canvas.width and the y1 value is con-
text.value.height, so no matter the size of the window, the x1 value will always be the width
of the canvas and the y1 value the height of the canvas.

Section 14.17 Alpha Transparency
• The globalAlpha attribute (p. 509) value can be any number between 0 (fully transparent) and

1 (the default value, which is fully opaque).

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 535 Wednesday, November 16, 2011 1:06 PM

536 Chapter 14 HTML5: Introduction to canvas

Section 14.18 Compositing
• Compositing (p. 511) allows you to control the layering of shapes and images on a canvas using

two attributes—the globalAlpha attribute and the globalCompositeOperation attribute (p. 511).

• There are 11 globalCompositeOperation attribute values. The source is the image being drawn
to the canvas. The destination is the current bitmap on the canvas.

• If you use source-in, the source image is displayed where the images overlap and both are
opaque. Both images are transparent where there is no overlap.

• Using source-out, if the source image is opaque and the destination is transparent, the source im-
age is displayed where the images overlap. Both images are transparent where there is no overlap.

• source-over (the default value) places the source image over the destination. The source image
is displayed where it's opaque and the images overlap. The destination is displayed where there
is no overlap.

• destination-atop places the destination on top of the source image. If both images are opaque,
the destination is displayed where the images overlap. If the destination is transparent but the
source image is opaque, the source image is displayed where the images overlap. The source im-
age is transparent where there is no overlap.

• destination-in displays the destination image where the images overlap and both are opaque.
Both images are transparent where there is no overlap.

• Using destination-out, if the destination image is opaque and the source image is transparent,
the destination is displayed where the images overlap. Both images are transparent where there
is no overlap.

• destination-over places the destination image over the source image. The destination image is
displayed where it's opaque and the images overlap. The source image is displayed where there’s
no overlap.

• lighter displays the sum of the source-image color and destination-image color—up to the max-
imum RGB color value (255)—where the images overlap. Both images are normal elsewhere.

• Using copy, if the images overlap, only the source image is displayed (the destination is ignored).

• With xor, the images are transparent where they overlap and normal elsewhere.

Section 14.19 Cannon Game
• The HTML5 audio element may contain multiple source elements for the audio file in several

formats, so that you can support cross-browser playback of the sounds.

• You can create your own properties on JavaScript Objects simply by assigning a value to a prop-
erty name.

• Collision detection determines whether the cannonball has collided with any of the canvas’s
edges, with the blocker or with a section of the target. Game-development frameworks generally
provide more sophisticated, built-in collision-detection capabilities.

Section 14.20 save and restore Methods
• The canvas’s state (p. 528) includes its current style and transformations, which are maintained

in a stack.

• The save method (p. 528) is used to save the context's current state.

• The restore method (p. 528) restores the context to its previous state.

Section 14.21 A Note on SVG
• Vector graphics are made of scalable geometric primitives such as line segments and arcs.

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 536 Wednesday, November 16, 2011 1:06 PM

 Self-Review Exercises 537

• SVG (Scalable Vector Graphics, p. 498) is XML-based, so it uses a declarative approach—you
say what you want and SVG builds it for you. HTML5 canvas is JavaScript-based, so it uses an
imperative approach–you say how to build your graphics by programming in JavaScript.

• With SVG, each separate part of your graphic becomes an object that can be manipulated
through the DOM.

• SVG is more convenient for cross-platform graphics, which is becoming especially important
with the proliferation of “form factors,” such as desktops, notebooks, smartphones, tablets and
various special-purpose devices such as car navigation systems.

Self-Review Exercises
14.1 State whether each of the following is true or false. If false, explain why.

a) The strokeStyle attribute specifies the line width.
b) The bevel lineJoin gives the path square corners.
c) canvas’s roundedRect method is used to build rounded rectangles.
d) The fillRect method is used to specify a color or gradient.
e) By default, the origin (0, 0) is located at the exact center of the monitor.
f) The restore method restores the context to its initial state.
g) The canvas’s state includes its current style and transformations, which are maintained

in a stack.

14.2 Fill in the blanks in each of the following:
a) The canvas element has two attributes— and .
b) When drawing a rectangle, the method specifies the path of the stroke in the

format (x, y, w, h).
c) The lineCap attribute has the possible values , , and .
d) The method draws a line from the last specified destination back to the point

of the path’s origin.
e) The method specifies the three points in the Bezier curve.
f) The attribute specifies the color of the shadow.
g) are portions of the circumference of a circle and are measured in .
h) The method is used to save the context's current state.

Answers to Self-Review Exercises
14.1 a) False. The strokeStyle attribute specifies the stroke color. b) False. The bevel lineJoin
gives the path sloping corners. c) False. Unlike CSS3, there’s no roundedRect method in canvas.
d) False. The fillStyle method specifies a color gradient, then the fillRect method draws the color
or gradient on the canvas. e) False. The origin (0, 0) corresponds to the upper-left corner of the canvas
by default. f) False. The restore method restores the context to its previous state. g) True.

14.2 a) width, height. b) strokeRect. c) butt, round, square. d) closePath. e) bezierCurveTo.
f) shadowColor. g) Arcs, radians. h) save.

Exercises
14.3 State whether each of the following is true or false. If false, explain why.

a) The moveTo method sets the x- and y-coordinates of the path’s destination.
b) A square lineCap specifies that the line ends have edges perpendicular to the direction

of the line and no additional cap.
c) A vertical gradient has different x-coordinates but the same y-coordinates.
d) In the canvas coordinate system, x values increase from left to right.

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 537 Wednesday, November 16, 2011 1:06 PM

538 Chapter 14 HTML5: Introduction to canvas

e) Bezier curves have a starting point, an ending point and a single point of inflection.

14.4 Fill in the blanks in each of the following:
a) The method starts the path.
b) The lineJoin attribute has three possible values— , , and .
c) The attribute specifies the line color.
d) The lineJoin bevels the lines at an angle where they meet.
e) Each color stop in a gradient has a value between (the start of the gradient)

and (the end of the gradient).
f) The attribute specifies the horizontal alignment of text relative to the x-coor-

dinate of the text.
g) The constant is the JavaScript representation of the mathematical constant π.

14.5 (Text Shadow) Create a shadow on the phrase "HTML5 Canvas" with an offset-x of 4px,
an offset-y of 10px, a blur radius of 3px and a text-shadow color red.

14.6 (Rounded Rectangle) Generalize the example in Fig. 14.7 into a roundedRect function and
call it thrice with different arguments to place three different rounded rectangles on the canvas.

14.7 (Diagonal Linear Gradient) Create a canvas with a width and height of 250px. Create a
diagonal linear gradient using the following colors —Red, Yellow, Green, Blue, Gray.

14.8 (Horizontal Linear Gradient) Draw a non-rectangular shape using lines, then add a hori-
zontal linear gradient to the shape with three color stops.

14.9 (Radial Gradient) Create a canvas with a width and height of 250px. Create a radial gradient
with three colors. Start the gradient in the bottom-left corner with the colors changing as they move
to the right.

14.10 (Shadows) Create two canvases. On the first, draw a rectangle. Add a shadow that’s offset
up and to the left of the rectangle and that has a shadowBlur of 30. On the second canvas, draw a
triangle. Add a shadow that’s offset down and to the right of the triangle and has a shadowBlur of 15.

14.11 (Concentric Circles) Write a script that draws ten concentric circles. The circles should be
separated from one another by 8 pixels. Vary the colors and thicknesses of each.

14.12 (Changing the Font) Enable a user to dynamically change the font style and size as required.

14.13 (Live Canvas Coordinate System) Draw the canvas coordinate system. As you move the
mouse around, dynamically display its x- and y- coordinates at the extreme left corner.

14.14 (Moving Circle) Crate a square canvas with a width and height of 500. Write a script that
continuously moves a circle counterclockwise in a diamond pattern so that the circle touches the
center of each edge of the canvas.

14.15 (Draw Street Signs) Go to http://mutcd.fhwa.dot.gov/ser-shs_millennium_eng.htm
and find three different street signs of your choosing. Draw each on a canvas.

14.16 (Printing in a Larger Font) Write a script that enables a (visually impaired) user to dynam-
ically scale the font size of text on a canvas to a comfortable size. Use a slider to control the font size.

14.17 (Painting) Create a painting application that allows the you to create art by clicking and
dragging the mouse across the canvas. Include options for changing the drawing color and line
thickness. Provide red, green and blue sliders that allow you to select the RGB color. Include a color
swatch below the three sliders so that as you move each slider, the color swatch shows you the cur-

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 538 Wednesday, November 16, 2011 1:06 PM

 Exercises 539

rent drawing color. Provide a line-width dialog with a single slider that controls the thickness of the
line that you’ll draw. Also include options that allow you to turn the cursor into an eraser, to clear
the screen and to save the current drawing. At any point, you should be able to clear the entire draw-
ing from the canvas.

14.18 (Fireworks Text Skywriter) The website http://js-fireworks.appspot.com/ is a fun
HTML5 application that uses canvas. You can enter a message, which is then written in the sky
over the London skyline using a fireworks effect. The author provides the open-source code. Modify
the example to create your own skywriting effect over an image of your choosing.

14.19 (Live canvas Coordinate System) Draw the canvas coordinate system. As you move the
mouse around, dynamically display its x- and y-coordinates.

14.20 (Kaleidoscope) Create an animated kaleidoscope effect.

14.21 (Random Lines Art) Write a script that draws 50 lines with random lengths, locations,
widths, orientations, colors, and transparencies.

14.22 (Creating Random 2D Art) Create random art using at least two circles, rectangles and
triangles.

14.23 (Flashing Image) Write a script that repeatedly flashes an image on the screen. Do this by
alternating the image with a plain background-color image.

14.24 (Cannon Game Enhancements) In Section 14.19 we showed you how to write a Cannon
Game using JavaScript and HTML5 canvas. Add the following enhancements and others of your
choosing:

1. Add an “explosion animation” each time the cannonball hits one of the sections of the tar-
get. Match the animation with the “explosion sound” that plays when a piece of the target
is hit.

2. Play a sound when the blocker hits the top or the bottom of the screen.

3. Play a sound when the target hits the top ot the bottom of the screen.

4. Add a trail to the cannonball; erase it when the cannonball hits the target.

5. Modify the click events so that a single tap aims the cannon, and the second single tap
fires it.

6. Add a scoring mechanism and keep track of the all-time best score.

7. Using CSS3 Media Queries, determine the size of the display area and scale the cannon
game elements accordingly.

14.25 (Randomly Erasing an Image) Suppose an image is displayed in a canvas. One way to erase
the image is simply to set every pixel to the same background color immediately, but the visual effect
is dull. Write a JavaScript program that displays an image, then erases it by using random-number
generation to select individual pixels to erase. After most of the image is erased, erase all the remain-
ing pixels at once. You might try several variants of this problem. For example, you might display
lines, circles or shapes randomly to erase regions of the screen.

14.26 (Text Flasher) Create a script that repeatedly flashes text on the screen. Do this by alternat-
ing the text with a plain background-color image. Allow the user to control the “blink speed” and
the background color or pattern.

14.27 (Digital Clock) Implement a script that displays a digital clock on the screen. Include alarm-
clock functionality.

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 539 Wednesday, November 16, 2011 1:06 PM

540 Chapter 14 HTML5: Introduction to canvas

14.28 (Analog Clock) Create a script that displays an analog clock with hour, minute and second
hands that move appropriately as the time changes.

14.29 (Calling Attention to an Image) If you want to emphasize an image, you might place a row
of simulated light bulbs around it. You can let the light bulbs flash in unison or fire on and off in
sequence one after the other.

14.30 (Animation) Create a general-purpose JavaScript animation. It should allow the user to
specify the sequence of frames to be displayed, the speed at which the images are displayed, audios
and videos to be played while the animation is running and so on.

14.31 (Random Interimage Transition) In Fig. 5.14, we used CSS3 to “melt” one image into an-
other. This provides a nice visual effect. If you’re displaying one image in a given area on the screen
and you’d like to transition to another image in the same area, store the new screen image in an off-
screen “buffer” and randomly copy pixels from it to the display area, overlaying the pixels already at
those locations. When the vast majority of the pixels have been copied, copy the entire new image
to the display area to be sure you’re displaying the complete new image. You might try several vari-
ants of this problem. For example, select all the pixels in a randomly chosen straight line or shape
in the new image and overlay them above the corresponding positions of the old image.

14.32 (Background Audio) Add background audio to one of your favorite applications.

14.33 (Scrolling Marquee Sign) Create a script that scrolls dotted characters from right to left (or
from left to right if that’s appropriate for your language) across a marquee-like display sign. As an
option, display the text in a continuous loop, so that after the text disappears at one end, it reappears
at the other.

14.34 (Scrolling-Image Marquee) Create a script that scrolls a series of images across a marquee
screen.

14.35 (Dynamic Audio and Graphical Kaleidoscope) Write a kaleidoscope script that displays re-
flected graphics to simulate the popular children’s toy. Incorporate audio effects that “mirror” your
script’s dynamically changing graphics.

14.36 (Automatic Jigsaw Puzzle Generator) Create a jigsaw puzzle generator and manipulator.
The user specifies an image. Your script loads and displays the image, then breaks it into randomly
selected shapes and shuffles them. The user then uses the mouse to move the pieces around to solve
the puzzle. Add appropriate audio sounds as the pieces are moved around and snapped back into
place. You might keep tabs on each piece and where it really belongs—then use audio effects to help
the user get the pieces into the correct positions.

14.37 (Maze Generator and Walker) Develop a multimedia-based maze generator and traverser
script. Let the user customize the maze by specifying the number of rows and columns and by indicat-
ing the level of difficulty. Have an animated mouse walk the maze. Use audio to dramatize the move-
ment of your mouse character.

14.38 (Maze Traversal Using Recursive Backtracking) The grid of #s and dots (.) in Fig. 14.39 is
a two-dimensional array representation of a maze. The #s represent the walls of the maze, and the
dots represent locations in the possible paths through the maze. A move can be made only to a lo-
cation in the array that contains a dot.

Write a recursive method (mazeTraversal) to walk through mazes like the one in Fig. 14.39. The
method should receive as arguments a 12-by-12 character array representing the maze and the current
location in the maze (the first time this method is called, the current location should be the entry
point of the maze). As mazeTraversal attempts to locate the exit, it should place the character x in
each square in the path. There’s a simple algorithm for walking through a maze that guarantees find-
ing the exit (assuming there’s an exit—if there’s no exit, you’ll arrive at the starting location again). For
details, visit: http://en.wikipedia.org/wiki/Maze_solving_algorithm#Wall_follower.

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 540 Wednesday, November 16, 2011 1:06 PM

 Exercises 541

14.39 (Generating Mazes Randomly) Write a method mazeGenerator that takes as an argument a
two-dimensional 12-by-12 character array and randomly produces a maze. The method should also
provide the starting and ending locations of the maze. Test your method mazeTraversal from
Exercise 14.38, using several randomly generated mazes.

14.40 (Mazes of Any Size) Generalize methods mazeTraversal and mazeGenerator of
Exercise 14.38 and Exercise 14.39 to process mazes of any width and height.

14.41 (One-Armed Bandit) Develop a multimedia simulation of a “one-armed bandit.” Have
three spinning wheels. Place symbols and images of various fruits on each wheel. Use random-num-
ber generation to simulate the spinning of each wheel and the stopping of each wheel on a symbol.

14.42 (Horse Race) Create a simulation of a horse race. Have multiple contenders. Use audios for
a race announcer. Play the appropriate audios to indicate the correct status of each contender
throughout the race. Use audios to announce the final results. You might try to simulate the kinds
of horse-racing games that are often played at carnivals. The players take turns at the mouse and
have to perform some skill-oriented manipulation with it to advance their horses.

14.43 (Shuffleboard) Develop a multimedia-based simulation of the game of shuffleboard. Use
appropriate audio and visual effects.

14.44 (Game of Pool) Create a multimedia-based simulation of the game of pool. Each player
takes turns using the mouse to position a pool cue and hit it against the ball at the appropriate angle
to try to make other balls fall into the pockets. Your script should keep score.

14.45 (Fireworks Designer) Create a script that enables the user to create a customized fireworks
display. Create a variety of fireworks demonstrations. Then orchestrate the firing of the fireworks
for maximum effect. You might synchronize your fireworks with audios or videos.

14.46 (Floor Planner) Develop a script that will help someone arrange furniture in a room.

14.47 (Crossword Puzzle) Crossword puzzles are among the most popular pastimes. Develop a
multimedia-based crossword-puzzle script. Your script should enable the player to place and erase
words easily. Tie your script to a large computerized dictionary. Your script also should be able to
suggest completion of words on which letters have already been filled in. Provide other features that
will make the crossword-puzzle enthusiast’s job easier.

14.48 (15 Puzzle) Write a multimedia-based script that enables the user to play the game of 15.
The game is played on a 4-by-4 board having a total of 16 slots. One slot is empty; the others are
occupied by 15 tiles numbered 1 through 15. The user can move any tile next to the currently empty
slot into that slot by clicking on the tile. Your script should create the board with the tiles in random
order. The goal is to arrange the tiles into sequential order, row by row.

Fig. 14.39 | Two-dimensional array representation of a maze.

#
. . . #
. . # . # . # # # # . #
. # # .
. . . . # # # . # . .
. # . # . # .
. . # . # . # . # .
. # . # . # . # .
. # .
. # # # .
. # . . .
#

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 541 Wednesday, November 16, 2011 1:06 PM

542 Chapter 14 HTML5: Introduction to canvas

14.49 (Reaction Time/Reaction Precision Tester) Create a script that moves a randomly created
shape around the screen. The user moves the mouse to catch and click on the shape. The shape’s
speed and size can be varied. Keep statistics on how long the user typically takes to catch a shape of
a given size and speed. The user will have more difficulty catching faster-moving, smaller shapes.

14.50 (Rotating Images) Create a script that lets you rotate an image through some number of de-
grees (out of a maximum of 360 degrees). The script should let you specify that you want to spin
the image continuously. It should let you adjust the spin speed dynamically.

14.51 (Coloring Black-and-White Photographs and Images) Create a script that lets you paint a
black-and-white photograph with color. Provide a color palette for selecting colors. Your script
should let you apply different colors to different regions of the image.

14.52 (Vacuuming Robot) Start with a blank canvas that represents the floor of the room. Add
obstacles such as a chair, couch, table legs, floor-standing vase, etc. Add your vacuum-cleaning ro-
bot. Start it moving in a random direction. It must avoid obstacles and must eventually vacuum the
entire room. It has a known width and height. Keep track of which pixels have been “vacuumed.”
Keep track of the percentage of the canvas that has been vacuumed and how much time it has taken.

14.53 (Eyesight Tester) You’ve probably had your eyesight tested several times—to qualify for a
driver’s license, etc. In these exams, you’re asked to cover one eye, then read out loud the letters from
an eyesight chart called a Snellen chart. The letters are arranged in 11 rows and include only the
letters C, D, E, F, L, N, O, P, T, Z. The first row has one letter in a very large font. As you move
down the page, the number of letters in each row increases by one and the font size of the letters
decreases, ending with a row of 11 letters in a very small font. Your ability to read the letters accu-
rately measures your visual acuity. Create an eyesight testing chart similar to the Snellen chart used
by medical professionals. To learn more about the Snellen chart and to see an example, visit http:/
/en.wikipedia.org/wiki/Snellen_chart.

iw3htp5_14_HTML5_CanvasADeeperLook.fm Page 542 Wednesday, November 16, 2011 1:06 PM

15XML

Like everything metaphysical,
the harmony between thought
and reality is to be found in the
grammar of the language.
—Ludwig Wittgenstein

I played with an idea, and grew
willful; tossed it into the air;
transformed it; let it escape and
recaptured it; made it iridescent
with fancy, and winged it with
paradox.
—Oscar Wilde

O b j e c t i v e s
In this chapter you’ll:

■ Mark up data using XML.

■ Learn how XML namespaces
help provide unique XML
element and attribute names.

■ Create DTDs and schemas for
specifying and validating the
structure of an XML
document.

■ Create and use simple XSL
style sheets to render XML
document data.

■ Retrieve and manipulate XML
data programmatically using
JavaScript.

iw3htp5_15_XML.fm Page 543 Wednesday, November 16, 2011 11:52 AM

544 Chapter 15 XML

15.1 Introduction
The Extensible Markup Language (XML) was developed in 1996 by the World Wide
Web Consortium’s (W3C’s) XML Working Group. XML is a widely supported open
technology (i.e., nonproprietary technology) for describing data that has become the stan-
dard format for data exchanged between applications over the Internet.

Web applications use XML extensively, and web browsers provide many XML-related
capabilities. Sections 15.2–15.7 introduce XML and XML-related technologies—XML
namespaces for providing unique XML element and attribute names, and Document
Type Definitions (DTDs) and XML Schemas for validating XML documents. These sec-
tions support the use of XML in many subsequent chapters. Sections 15.8–15.9 present
additional XML technologies and key JavaScript capabilities for loading and manipulating
XML documents programmatically—this material is optional but is recommended if you
plan to use XML in your own applications.

15.2 XML Basics
XML permits document authors to create markup (i.e., a text-based notation for describ-
ing data) for virtually any type of information, enabling them to create entirely new mark-
up languages for describing any type of data, such as mathematical formulas, software-
configuration instructions, chemical molecular structures, music, news, recipes and finan-
cial reports. XML describes data in a way that human beings can understand and comput-
ers can process.

Figure 15.1 is a simple XML document that describes information for a baseball
player. We focus on lines 5–9 to introduce basic XML syntax. You’ll learn about the other
elements of this document in Section 15.3.

15.1 Introduction
15.2 XML Basics
15.3 Structuring Data
15.4 XML Namespaces
15.5 Document Type Definitions (DTDs)
15.6 W3C XML Schema Documents

15.7 XML Vocabularies
15.7.1 MathML™
15.7.2 Other Markup Languages

15.8 Extensible Stylesheet Language and
XSL Transformations

15.9 Document Object Model (DOM)
15.10 Web Resources

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.1: player.xml -->
4 <!-- Baseball player structured with XML -->
5 <player>
6 <firstName>John</firstName>
7 <lastName>Doe</lastName>
8 <battingAverage>0.375</battingAverage>
9 </player>

Fig. 15.1 | XML that describes a baseball player’s information.

iw3htp5_15_XML.fm Page 544 Wednesday, November 16, 2011 11:52 AM

15.2 XML Basics 545

XML Elements
XML documents contain text that represents content (i.e., data), such as John (line 6 of
Fig. 15.1), and elements that specify the document’s structure, such as firstName (line 6
of Fig. 15.1). XML documents delimit elements with start tags and end tags. A start tag
consists of the element name in angle brackets (e.g., <player> and <firstName> in lines
5 and 6, respectively). An end tag consists of the element name preceded by a forward
slash (/) in angle brackets (e.g., </firstName> and </player> in lines 6 and 9, respective-
ly). An element’s start and end tags enclose text that represents a piece of data (e.g., the
player’s firstName—John—in line 6, which is enclosed by the <firstName> start tag and
</firstName> end tag). Every XML document must have exactly one root element that
contains all the other elements. In Fig. 15.1, the root element is player (lines 5–9).

XML Vocabularies
XML-based markup languages—called XML vocabularies—provide a means for describ-
ing particular types of data in standardized, structured ways. Some XML vocabularies
include XHTML (Extensible HyperText Markup Language), MathML™ (for mathemat-
ics), VoiceXML™ (for speech), CML (Chemical Markup Language—for chemistry),
XBRL (Extensible Business Reporting Language—for financial data exchange) and others
that we discuss in Section 15.7.

Massive amounts of data are currently stored on the Internet in many formats (e.g.,
databases, web pages, text files). Much of this data, especially that which is passed between
systems, will soon take the form of XML. Organizations see XML as the future of data
encoding. Information-technology groups are planning ways to integrate XML into their
systems. Industry groups are developing custom XML vocabularies for most major indus-
tries that will allow business applications to communicate in common languages. For
example, many web services allow web-based applications to exchange data seamlessly
through standard protocols based on XML.

The next generation of the web is being built on an XML foundation, enabling you
to develop more sophisticated web-based applications. XML allows you to assign meaning
to what would otherwise be random pieces of data. As a result, programs can “understand”
the data they manipulate. For example, a web browser might view a street address in a
simple web page as a string of characters without any real meaning. In an XML document,
however, this data can be clearly identified (i.e., marked up) as an address. A program that
uses the document can recognize this data as an address and provide links to a map of that
location, driving directions from that location or other location-specific information.
Likewise, an application can recognize names of people, dates, ISBN numbers and any
other type of XML-encoded data. The application can then present users with other
related information, providing a richer, more meaningful user experience.

Viewing and Modifying XML Documents
XML documents are highly portable. Viewing or modifying an XML document—which
is a text file that usually ends with the .xml filename extension—does not require special
software, although many software tools exist, and new ones are frequently released that
make it more convenient to develop XML-based applications. Any text editor that sup-
ports ASCII/Unicode characters can open XML documents for viewing and editing. Also,
most web browsers can display XML documents in a formatted manner that shows the

iw3htp5_15_XML.fm Page 545 Wednesday, November 16, 2011 11:52 AM

546 Chapter 15 XML

XML’s structure (as we show in Section 15.3). An important characteristic of XML is that
it’s both human and machine readable.

Processing XML Documents
Processing an XML document requires software called an XML parser (or XML proces-
sor). A parser makes the document’s data available to applications. While reading an XML
document’s contents, a parser checks that the document follows the syntax rules specified
by the W3C’s XML Recommendation (www.w3.org/XML). XML syntax requires a single
root element, a start tag and end tag for each element, and properly nested tags (i.e., the
end tag for a nested element must appear before the end tag of the enclosing element). Fur-
thermore, XML is case sensitive, so the proper capitalization must be used in elements. A
document that conforms to this syntax is a well-formed XML document and is syntacti-
cally correct. We present fundamental XML syntax in Section 15.3. If an XML parser can
process an XML document successfully, that XML document is well-formed. Parsers can
provide access to XML-encoded data in well-formed documents only. XML parsers are of-
ten built into browsers and other software.

Validating XML Documents
An XML document can reference a Document Type Definition (DTD) or a schema that
defines the document’s proper structure. When an XML document references a DTD or
a schema, some parsers (called validating parsers) can read it and check that the XML doc-
ument follows the structure it defines. If the XML document conforms to the DTD/sche-
ma (i.e., has the appropriate structure), the document is valid. For example, if in Fig. 15.1
we were referencing a DTD that specified that a player element must have firstName,
lastName and battingAverage elements, then omitting the lastName element (line 7 in
Fig. 15.1) would invalidate the XML document player.xml. However, it would still be
well-formed, because it follows proper XML syntax (i.e., it has one root element, each el-
ement has a start tag and an end tag, and the elements are nested properly). By definition,
a valid XML document is well-formed. Parsers that cannot check for document conformi-
ty against DTDs/schemas are non-validating parsers—they determine only whether an
XML document is well-formed, not whether it’s valid.

We discuss validation, DTDs and schemas, as well as the key differences between
these two types of structural specifications, in Sections 15.5–15.6. For now, note that
schemas are XML documents themselves, whereas DTDs are not. As you’ll learn in
Section 15.6, this difference presents several advantages in using schemas over DTDs.

Formatting and Manipulating XML Documents
Most XML documents contain only data, so applications that process XML documents
must decide how to manipulate or display the data. For example, a PDA (personal digital
assistant) may render an XML document differently than a wireless phone or a desktop

Software Engineering Observation 15.1
DTDs and schemas are essential for business-to-business (B2B) transactions and mission-
critical systems. Validating XML documents ensures that disparate systems can
manipulate data structured in standardized ways and prevents errors caused by missing
or malformed data.

iw3htp5_15_XML.fm Page 546 Wednesday, November 16, 2011 11:52 AM

15.3 Structuring Data 547

computer. You can use Extensible Stylesheet Language (XSL) to specify rendering in-
structions for different platforms. We discuss XSL in Section 15.8.

XML-processing programs can also search, sort and manipulate XML data using XSL.
Some other XML-related technologies are XPath (XML Path Language—a language for
accessing parts of an XML document), XSL-FO (XSL Formatting Objects—an XML
vocabulary used to describe document formatting) and XSLT (XSL Transformations—a
language for transforming XML documents into other documents). We present XSLT and
XPath in Section 15.8.

15.3 Structuring Data
In this section and throughout this chapter, we create our own XML markup. XML allows
you to describe data precisely in a well-structured format.

XML Markup for an Article
In Fig. 15.2, we present an XML document that marks up a simple article using XML.
The line numbers shown are for reference only and are not part of the XML document.

XML Declaration
This document begins with an XML declaration (line 1), which identifies the document
as an XML document. The version attribute specifies the XML version to which the doc-
ument conforms. The current XML standard is version 1.0. Though the W3C released a
version 1.1 specification in February 2004, this newer version is not yet widely supported.
The W3C may continue to release new versions as XML evolves to meet the requirements
of different fields.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.2: article.xml -->
4 <!-- Article structured with XML -->
5 <article>
6 <title>Simple XML</title>
7 <date>July 4, 2007</date>
8 <author>
9 <firstName>John</firstName>

10 <lastName>Doe</lastName>
11 </author>
12 <summary>XML is pretty easy.</summary>
13 <content>This chapter presents examples that use XML.</content>
14 </article>

Fig. 15.2 | XML used to mark up an article.

Portability Tip 15.1
Documents should include the XML declaration to identify the version of XML used. A
document that lacks an XML declaration might be assumed to conform to the latest ver-
sion of XML—when it does not, errors could result.

iw3htp5_15_XML.fm Page 547 Wednesday, November 16, 2011 11:52 AM

548 Chapter 15 XML

Blank Space and Comments
As in most markup languages, blank lines (line 2), white spaces and indentation help im-
prove readability. Blank lines are normally ignored by XML parsers. XML comments
(lines 3–4), which begin with <!-- and end with -->, can be placed almost anywhere in
an XML document and can span multiple lines. There must be one end marker (-->) for
each begin marker (<!--).

Root Node and XML Prolog
In Fig. 15.2, article (lines 5–14) is the root element. The lines that precede the root el-
ement (lines 1–4) are the XML prolog. In an XML prolog, the XML declaration must ap-
pear before the comments and any other markup.

XML Element Names
The elements we use in the example do not come from any specific markup language. In-
stead, we chose the element names and markup structure that best describe our particular
data. You can invent elements to mark up your data. For example, element title (line 6)
contains text that describes the article’s title (e.g., Simple XML). Similarly, date (line 7),
author (lines 8–11), firstName (line 9), lastName (line 10), summary (line 12) and con-
tent (line 13) contain text that describes the date, author, the author’s first name, the au-
thor’s last name, a summary and the content of the document, respectively. XML element
names can be of any length and may contain letters, digits, underscores, hyphens and pe-
riods. However, they must begin with either a letter or an underscore, and they should not
begin with “xml” in any combination of uppercase and lowercase letters (e.g., XML, Xml,
xMl), as this is reserved for use in the XML standards.

Nesting XML Elements
XML elements are nested to form hierarchies—with the root element at the top of the hi-
erarchy. This allows document authors to create parent/child relationships between data

Common Programming Error 15.1
Placing any characters, including white space, before the XML declaration is an error.

Common Programming Error 15.2
In an XML document, each start tag must have a matching end tag; omitting either tag
is an error. Soon, you’ll learn how such errors are detected.

Common Programming Error 15.3
XML is case sensitive. Using different cases for the start-tag and end-tag names for the
same element is a syntax error.

Common Programming Error 15.4
Using a white-space character in an XML element name is an error.

Good Programming Practice 15.1
XML element names should be meaningful to humans and should not use abbreviations.

iw3htp5_15_XML.fm Page 548 Wednesday, November 16, 2011 11:52 AM

15.3 Structuring Data 549

items. For example, elements title, date, author, summary and content are children of
article. Elements firstName and lastName are children of author. We discuss the hier-
archy of Fig. 15.2 later in this chapter (Fig. 15.23).

Any element that contains other elements (e.g., article or author) is a container ele-
ment. Container elements also are called parent elements. Elements nested inside a con-
tainer element are child elements (or children) of that container element. If those child
elements are at the same nesting level, they’re siblings of one another.

Viewing an XML Document in a Web Browser
The XML document in Fig. 15.2 is simply a text file named article.xml. It does not con-
tain formatting information for the article. This is because XML is a technology for de-
scribing the structure of data. The formatting and displaying of data from an XML
document are application-specific issues. For example, when the user loads article.xml
in a web browser, the browser parses and displays the document’s data. Each browser has
a built-in style sheet to format the data. The resulting format of the data (Fig. 15.3) is sim-
ilar to the format of the listing in Fig. 15.2. In Section 15.8, we show how you can create
your own style sheets to transform XML data into formats suitable for display.

The down arrow () and right arrow () in the screen shots of Fig. 15.3 are not part
of the XML document. Google Chrome places them next to every container element. A
down arrow indicates that the browser is displaying the container element’s child ele-
ments. Clicking the down arrow next to an element collapses that element (i.e., causes the
browser to hide the container element’s children and replace the down arrow with a right
arrow). Conversely, clicking the right arrow next to an element expands that element (i.e.,

Common Programming Error 15.5
Nesting XML tags improperly is a syntax error. For example, <x><y>hello</x></y> is an
error, because the </y> tag must precede the </x> tag.

Fig. 15.3 | article.xml displayed in the Google Chrome browser. (Part 1 of 2.)

Down arrow

Expanded
author
element

a) article.xml with all elements expanded

iw3htp5_15_XML.fm Page 549 Wednesday, November 16, 2011 11:52 AM

550 Chapter 15 XML

causes the browser to display the container element’s children and replace the right arrow
with a down arrow). This behavior is similar to viewing the directory structure in a file-
manager window (like Windows Explorer on Windows or Finder on Mac OS X) or
another similar directory viewer. In fact, a directory structure often is modeled as a series
of tree structures, in which the root of a tree represents a disk drive (e.g., C:), and nodes
in the tree represent directories. Parsers often store XML data as tree structures to facilitate
efficient manipulation, as discussed in Section 15.9. [Note: Some browsers display minus
and plus signs, rather than down and right arrows.]

XML Markup for a Business Letter
Now that you’ve seen a simple XML document, let’s examine a more complex one that
marks up a business letter (Fig. 15.4). Again, we begin the document with the XML dec-
laration (line 1) that states the XML version to which the document conforms.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.4: letter.xml -->
4 <!-- Business letter marked up with XML -->
5 <!DOCTYPE letter SYSTEM "letter.dtd">
6
7 <letter>
8 <contact type = "sender">
9 <name>Jane Doe</name>

10 <address1>Box 12345</address1>
11 <address2>15 Any Ave.</address2>
12 <city>Othertown</city>
13 <state>Otherstate</state>
14 <zip>67890</zip>
15 <phone>555-4321</phone>
16 <flag gender = "F" />
17 </contact>

Fig. 15.4 | Business letter marked up with XML. (Part 1 of 2.)

Fig. 15.3 | article.xml displayed in the Google Chrome browser. (Part 2 of 2.)

Right arrow

Collapsed
author
element

b) article.xml with the author element collapsed

iw3htp5_15_XML.fm Page 550 Wednesday, November 16, 2011 11:52 AM

15.3 Structuring Data 551

Line 5 specifies that this XML document references a DTD. Recall from Section 15.2
that DTDs define the structure of the data for an XML document. For example, a DTD
specifies the elements and parent/child relationships between elements permitted in an
XML document.

DOCTYPE
The DOCTYPE reference (line 5) contains three items: the name of the root element that the
DTD specifies (letter); the keyword SYSTEM (which denotes an external DTD—a DTD
declared in a separate file, as opposed to a DTD declared locally in the same file); and the
DTD’s name and location (i.e., letter.dtd in the current directory; this could also be a
fully qualified URL). DTD document filenames typically end with the .dtd extension.
We discuss DTDs and letter.dtd in detail in Section 15.5.

18
19 <contact type = "receiver">
20 <name>John Doe</name>
21 <address1>123 Main St.</address1>
22 <address2></address2>
23 <city>Anytown</city>
24 <state>Anystate</state>
25 <zip>12345</zip>
26 <phone>555-1234</phone>
27 <flag gender = "M" />
28 </contact>
29
30 <salutation>Dear Sir:</salutation>
31
32 <paragraph>It is our privilege to inform you about our new database
33 managed with XML. This new system allows you to reduce the
34 load on your inventory list server by having the client machine
35 perform the work of sorting and filtering the data.
36 </paragraph>
37
38 <paragraph>Please visit our website for availability and pricing.
39 </paragraph>
40
41 <closing>Sincerely,</closing>
42 <signature>Ms. Jane Doe</signature>
43 </letter>

Error-Prevention Tip 15.1
An XML document is not required to reference a DTD, but validating XML parsers can
use a DTD to ensure that the document has the proper structure.

Portability Tip 15.2
Validating an XML document helps guarantee that independent developers will exchange
data in a standardized form that conforms to the DTD.

Fig. 15.4 | Business letter marked up with XML. (Part 2 of 2.)

iw3htp5_15_XML.fm Page 551 Wednesday, November 16, 2011 11:52 AM

552 Chapter 15 XML

Validating an XML Document Against a DTD
Many online tools can validate your XML documents against DTDs (Section 15.5) or
schemas (Section 15.6). The validator at

can validate XML documents against either DTDs or schemas. To use it, you can either
paste your XML document’s code into a text area on the page or upload the file. If the
XML document references a DTD, the site asks you to paste in the DTD or upload the
DTD file. You can also select a checkbox for validating against a schema instead. You can
then click a button to validate your XML document.

The XML Document’s Contents
Root element letter (lines 7–43 of Fig. 15.4) contains the child elements contact, con-
tact, salutation, paragraph, paragraph, closing and signature. Data can be placed
between an element’s tags or as attributes—name/value pairs that appear within the angle
brackets of an element’s start tag. Elements can have any number of attributes (separated
by spaces) in their start tags. The first contact element (lines 8–17) has an attribute named
type with attribute value "sender", which indicates that this contact element identifies
the letter’s sender. The second contact element (lines 19–28) has attribute type with val-
ue "receiver", which indicates that this contact element identifies the recipient of the
letter. Like element names, attribute names are case sensitive, can be any length, may con-
tain letters, digits, underscores, hyphens and periods, and must begin with either a letter
or an underscore character. A contact element stores various items of information about
a contact, such as the contact’s name (represented by element name), address (represented
by elements address1, address2, city, state and zip), phone number (represented by
element phone) and gender (represented by attribute gender of element flag). Element
salutation (line 30) marks up the letter’s salutation. Lines 32–39 mark up the letter’s
body using two paragraph elements. Elements closing (line 41) and signature (line 42)
mark up the closing sentence and the author’s “signature,” respectively.

Line 16 introduces the empty element flag. An empty element is one that does not
have any content. Instead, it sometimes places data in attributes. Empty element flag has
one attribute that indicates the gender of the contact (represented by the parent contact
element). Document authors can close an empty element either by placing a slash imme-
diately preceding the right angle bracket, as shown in line 16, or by explicitly writing an
end tag, as in line 22:

The address2 element in line 22 is empty because there’s no second part to this contact’s
address. However, we must include this element to conform to the structural rules specified
in the XML document’s DTD—letter.dtd (which we present in Section 15.5). This
DTD specifies that each contact element must have an address2 child element (even if it’s
empty). In Section 15.5, you’ll learn how DTDs indicate required and optional elements.

http://www.xmlvalidation.com/

Common Programming Error 15.6
Failure to enclose attribute values in double ("") or single ('') quotes is a syntax error.

<address2></address2>

iw3htp5_15_XML.fm Page 552 Wednesday, November 16, 2011 11:52 AM

15.4 XML Namespaces 553

15.4 XML Namespaces
XML allows document authors to create custom elements. This extensibility can result in
naming collisions among elements in an XML document that have the same name. For
example, we may use the element book to mark up data about a Deitel publication. A
stamp collector may use the element book to mark up data about a book of stamps. Using
both of these elements in the same document could create a naming collision, making it
difficult to determine which kind of data each element contains.

An XML namespace is a collection of element and attribute names. XML namespaces
provide a means for document authors to unambiguously refer to elements with the same
name (i.e., prevent collisions). For example,

and

use element subject to mark up data. In the first case, the subject is something one studies
in school, whereas in the second case, the subject is a field of medicine. Namespaces can
differentiate these two subject elements—for example:

and

Both highschool and medicalschool are namespace prefixes. A document author places
a namespace prefix and colon (:) before an element name to specify the namespace to
which that element belongs. Document authors can create their own namespace prefixes
using virtually any name except the reserved namespace prefix xml. In the subsections that
follow, we demonstrate how document authors ensure that namespaces are unique.

Differentiating Elements with Namespaces
Figure 15.5 demonstrates namespaces. In this document, namespaces differentiate two
distinct elements—the file element related to a text file and the file document related
to an image file.

<subject>Geometry</subject>

<subject>Cardiology</subject>

<highschool:subject>Geometry</highschool:subject>

<medicalschool:subject>Cardiology</medicalschool:subject>

Common Programming Error 15.7
Attempting to create a namespace prefix named xml in any mixture of uppercase and low-
ercase letters is a syntax error—the xml namespace prefix is reserved for internal use by
XML itself.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.5: namespace.xml -->
4 <!-- Demonstrating namespaces -->
5 <text:directory
6 xmlns:text = "urn:deitel:textInfo"
7 xmlns:image = "urn:deitel:imageInfo">

Fig. 15.5 | XML namespaces demonstration. (Part 1 of 2.)

iw3htp5_15_XML.fm Page 553 Wednesday, November 16, 2011 11:52 AM

554 Chapter 15 XML

The xmlns Attribute
Lines 6–7 use the XML-namespace reserved attribute xmlns to create two namespace pre-
fixes—text and image. Each namespace prefix is bound to a series of characters called a
Uniform Resource Identifier (URI) that uniquely identifies the namespace. Document
authors create their own namespace prefixes and URIs. A URI is a way to identifying a
resource, typically on the Internet. Two popular types of URI are Uniform Resource
Name (URN) and Uniform Resource Locator (URL).

Unique URIs
To ensure that namespaces are unique, document authors must provide unique URIs. In
this example, we use urn:deitel:textInfo and urn:deitel:imageInfo as URIs. These
URIs employ the URN scheme that is often used to identify namespaces. Under this nam-
ing scheme, a URI begins with "urn:", followed by a unique series of additional names
separated by colons.

Another common practice is to use URLs, which specify the location of a file or a
resource on the Internet. For example, www.deitel.com is the URL that identifies the
home page of the Deitel & Associates website. Using URLs guarantees that the
namespaces are unique because the domain names (e.g., www.deitel.com) are guaranteed
to be unique. For example, lines 5–7 could be rewritten as

where URLs related to the deitel.com domain name serve as URIs to identify the text and
image namespaces. The parser does not visit these URLs, nor do these URLs need to refer to
actual web pages. They each simply represent a unique series of characters used to differen-
tiate URI names. In fact, any string can represent a namespace. For example, our image
namespace URI could be hgjfkdlsa4556, in which case our prefix assignment would be

Namespace Prefix
Lines 9–11 use the text namespace prefix for elements file and description. The end
tags must also specify the namespace prefix text. Lines 13–16 apply namespace prefix
image to the elements file, description and size. Attributes do not require namespace
prefixes (although they can have them), because each attribute is already part of an element

8
9 <text:file filename = "book.xml">

10 <text:description>A book list</text:description>
11 </text:file>
12
13 <image:file filename = "funny.jpg">
14 <image:description>A funny picture</image:description>
15 <image:size width = "200" height = "100" />
16 </image:file>
17 </text:directory>

<text:directory
 xmlns:text = "http://www.deitel.com/xmlns-text"
 xmlns:image = "http://www.deitel.com/xmlns-image">

xmlns:image = "hgjfkdlsa4556"

Fig. 15.5 | XML namespaces demonstration. (Part 2 of 2.)

iw3htp5_15_XML.fm Page 554 Wednesday, November 16, 2011 11:52 AM

15.5 Document Type Definitions (DTDs) 555

that specifies the namespace prefix. For example, attribute filename (line 9) is implicitly
part of namespace text because its element (i.e., file) specifies the text namespace prefix.

Specifying a Default Namespace
To eliminate the need to place namespace prefixes in each element, document authors may
specify a default namespace for an element and its children. Figure 15.6 demonstrates us-
ing a default namespace (urn:deitel:textInfo) for element directory.

Line 5 defines a default namespace using attribute xmlns with no prefix specified but
with a URI as its value. Once we define this, child elements belonging to the namespace need
not be qualified by a namespace prefix. Thus, element file (lines 8–10) is in the default
namespace urn:deitel:textInfo. Compare this to lines 9–10 of Fig. 15.5, where we had
to prefix the file and description element names with the namespace prefix text.

The default namespace applies to the directory element and all elements that are not
qualified with a namespace prefix. However, we can use a namespace prefix to specify a
different namespace for a particular element. For example, the file element in lines 12–
15 of Fig. 15.16 includes the image namespace prefix, indicating that this element is in the
urn:deitel:imageInfo namespace, not the default namespace.

Namespaces in XML Vocabularies
XML-based languages, such as XML Schema (Section 15.6) and Extensible Stylesheet Lan-
guage (XSL) (Section 15.8), often use namespaces to identify their elements. Each vocabu-
lary defines special-purpose elements that are grouped in namespaces. These namespaces
help prevent naming collisions between predefined elements and user-defined elements.

15.5 Document Type Definitions (DTDs)
Document Type Definitions (DTDs) are one of two main types of documents you can use
to specify XML document structure. Section 15.6 presents W3C XML Schema docu-
ments, which provide an improved method of specifying XML document structure.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.6: defaultnamespace.xml -->
4 <!-- Using default namespaces -->
5 <directory xmlns = "urn:deitel:textInfo"
6 xmlns:image = "urn:deitel:imageInfo">
7
8 <file filename = "book.xml">
9 <description>A book list</description>

10 </file>
11
12 <image:file filename = "funny.jpg">
13 <image:description>A funny picture</image:description>
14 <image:size width = "200" height = "100" />
15 </image:file>
16 </directory>

Fig. 15.6 | Default namespace demonstration.

iw3htp5_15_XML.fm Page 555 Wednesday, November 16, 2011 11:52 AM

556 Chapter 15 XML

Creating a Document Type Definition
Figure 15.4 presented a simple business letter marked up with XML. Recall that line 5 of
letter.xml references a DTD—letter.dtd (Fig. 15.7). This DTD specifies the business
letter’s element types and attributes and their relationships to one another.

A DTD describes the structure of an XML document and enables an XML parser to
verify whether an XML document is valid (i.e., whether its elements contain the proper
attributes and appear in the proper sequence). DTDs allow users to check document struc-
ture and to exchange data in a standardized format. A DTD expresses the set of rules for
document structure using an EBNF (Extended Backus-Naur Form) grammar. DTDs are
not themselves XML documents. [Note: EBNF grammars are commonly used to define

Software Engineering Observation 15.2
XML documents can have many different structures, and for this reason an application
cannot be certain whether a particular document it receives is complete, ordered properly,
and not missing data. DTDs and schemas (Section 15.6) solve this problem by providing
an extensible way to describe XML document structure. Applications should use DTDs or
schemas to confirm whether XML documents are valid.

Software Engineering Observation 15.3
Many organizations and individuals are creating DTDs and schemas for a broad range
of applications. These collections—called repositories—are available free for download
from the web (e.g., www.xml.org, www.oasis-open.org).

1 <!-- Fig. 15.7: letter.dtd -->
2 <!-- DTD document for letter.xml -->
3
4 <!ELEMENT letter (contact+, salutation, paragraph+,
5 closing, signature)>
6
7 <!ELEMENT contact (name, address1, address2, city, state,
8 zip, phone, flag)>
9 <!ATTLIST contact type CDATA #IMPLIED>

10
11 <!ELEMENT name (#PCDATA)>
12 <!ELEMENT address1 (#PCDATA)>
13 <!ELEMENT address2 (#PCDATA)>
14 <!ELEMENT city (#PCDATA)>
15 <!ELEMENT state (#PCDATA)>
16 <!ELEMENT zip (#PCDATA)>
17 <!ELEMENT phone (#PCDATA)>
18 <!ELEMENT flag EMPTY>
19 <!ATTLIST flag gender (M | F) "M">
20
21 <!ELEMENT salutation (#PCDATA)>
22 <!ELEMENT closing (#PCDATA)>
23 <!ELEMENT paragraph (#PCDATA)>
24 <!ELEMENT signature (#PCDATA)>

Fig. 15.7 | Document Type Definition (DTD) for a business letter.

iw3htp5_15_XML.fm Page 556 Wednesday, November 16, 2011 11:52 AM

15.5 Document Type Definitions (DTDs) 557

programming languages. To learn more about EBNF grammars, visit en.wikipedia.org/
wiki/EBNF or www.garshol.priv.no/download/text/bnf.html.]

Defining Elements in a DTD
The ELEMENT element type declaration in lines 4–5 defines the rules for element letter.
In this case, letter contains one or more contact elements, one salutation element, one
or more paragraph elements, one closing element and one signature element, in that
sequence. The plus sign (+) occurrence indicator specifies that the DTD requires one or
more occurrences of an element. Other occurrence indicators include the asterisk (*),
which indicates an optional element that can occur zero or more times, and the question
mark (?), which indicates an optional element that can occur at most once (i.e., zero or
one occurrence). If an element does not have an occurrence indicator, the DTD requires
exactly one occurrence.

The contact element type declaration (lines 7–8) specifies that a contact element
contains child elements name, address1, address2, city, state, zip, phone and flag—
in that order. The DTD requires exactly one occurrence of each of these elements.

Defining Attributes in a DTD
Line 9 uses the ATTLIST attribute-list declaration to define an attribute named type for
the contact element. Keyword #IMPLIED specifies that if the parser finds a contact ele-
ment without a type attribute, the parser can choose an arbitrary value for the attribute or
can ignore the attribute. Either way the document will still be valid (if the rest of the doc-
ument is valid)—a missing type attribute will not invalidate the document. Other key-
words that can be used in place of #IMPLIED in an ATTLIST declaration include #REQUIRED
and #FIXED. Keyword #REQUIRED specifies that the attribute must be present in the ele-
ment, and keyword #FIXED specifies that the attribute (if present) must have the given
fixed value. For example,

indicates that attribute zip (if present in element address) must have the value 01757 for
the document to be valid. If the attribute is not present, then the parser, by default, uses
the fixed value that the ATTLIST declaration specifies.

Character Data vs. Parsed Character Data
Keyword CDATA (line 9) specifies that attribute type contains character data (i.e., a string).
A parser will pass such data to an application without modification.

Keyword #PCDATA (line 11) specifies that an element (e.g., name) may contain parsed
character data (i.e., data that’s processed by an XML parser). Elements with parsed char-

Common Programming Error 15.8
For documents validated with DTDs, any document that uses elements, attributes or nest-
ing relationships not explicitly defined by a DTD is an invalid document.

<!ATTLIST address zip CDATA #FIXED "01757">

Software Engineering Observation 15.4
DTD syntax cannot describe an element’s or attribute’s data type. For example, a DTD
cannot specify that a particular element or attribute can contain only integer data.

iw3htp5_15_XML.fm Page 557 Wednesday, November 16, 2011 11:52 AM

558 Chapter 15 XML

acter data cannot contain markup characters, such as less than (<), greater than (>) or
ampersand (&). The document author should replace any markup character in a #PCDATA
element with the character’s corresponding character entity reference. For example, the
character entity reference < should be used in place of the less-than symbol (<), and the
character entity reference > should be used in place of the greater-than symbol (>). A
document author who wishes to use a literal ampersand should use the entity reference
& instead—parsed character data can contain ampersands (&) only for inserting enti-
ties. See Appendix A, HTML Special Characters, for a list of other character entity refer-
ences.

Defining Empty Elements in a DTD
Line 18 defines an empty element named flag. Keyword EMPTY specifies that the element
does not contain any data between its start and end tags. Empty elements commonly de-
scribe data via attributes. For example, flag’s data appears in its gender attribute (line 19).
Line 19 specifies that the gender attribute’s value must be one of the enumerated values
(M or F) enclosed in parentheses and delimited by a vertical bar (|) meaning “or.” Note that
line 19 also indicates that gender has a default value of M.

Well-Formed Documents vs. Valid Documents
In Section 15.3, we demonstrated how to use the Microsoft XML Validator to validate an
XML document against its specified DTD. The validation revealed that the XML docu-
ment letter.xml (Fig. 15.4) is well-formed and valid—it conforms to letter.dtd
(Fig. 15.7). Recall that a well-formed document is syntactically correct (i.e., each start tag
has a corresponding end tag, the document contains only one root element, etc.), and a
valid document contains the proper elements with the proper attributes in the proper se-
quence. An XML document cannot be valid unless it’s well-formed.

When a document fails to conform to a DTD or a schema, an XML validator displays
an error message. For example, the DTD in Fig. 15.7 indicates that a contact element
must contain the child element name. A document that omits this child element is still
well-formed but is not valid. Figure 15.8 shows the error message displayed by the vali-
dator at www.xmlvalidation.com for a version of the letter.xml file that’s missing the
first contact element’s name element.

15.6 W3C XML Schema Documents
In this section, we introduce schemas for specifying XML document structure and validat-
ing XML documents. Many developers in the XML community believe that DTDs are
not flexible enough to meet today’s programming needs. For example, DTDs lack a way
of indicating what specific type of data (e.g., numeric, text) an element can contain, and
DTDs are not themselves XML documents, forcing developers to learn multiple gram-
mars and developers to create multiple types of parsers. These and other limitations have
led to the development of schemas.

Common Programming Error 15.9
Using markup characters (e.g., <, > and &) in parsed character data is an error. Use char-
acter entity references (e.g., <, > and &) instead.

iw3htp5_15_XML.fm Page 558 Wednesday, November 16, 2011 11:52 AM

15.6 W3C XML Schema Documents 559

Unlike DTDs, schemas do not use EBNF grammar. Instead, they use XML syntax
and are actually XML documents that programs can manipulate. Like DTDs, schemas are
used by validating parsers to validate documents.

In this section, we focus on the W3C’s XML Schema vocabulary (note the capital “S”
in “Schema”). To refer to it, we use the term XML Schema in the rest of the chapter. For
the latest information on XML Schema, visit www.w3.org/XML/Schema. For tutorials on
XML Schema concepts beyond what we present here, visit www.w3schools.com/schema/
default.asp.

Recall that a DTD describes an XML document’s structure, not the content of its ele-
ments. For example,

contains character data. If the document that contains element quantity references a
DTD, an XML parser can validate the document to confirm that this element indeed does
contain PCDATA content. However, the parser cannot validate that the content is numeric;
DTDs do not provide this capability. So, unfortunately, the parser also considers

to be valid. An application that uses the XML document containing this markup should
test that the data in element quantity is numeric and take appropriate action if it’s not.

XML Schema enables schema authors to specify that element quantity’s data must
be numeric or, even more specifically, an integer. A parser validating the XML document

Fig. 15.8 | Error message when validating letter.xml with a missing contact name.

<quantity>5</quantity>

<quantity>hello</quantity>

iw3htp5_15_XML.fm Page 559 Wednesday, November 16, 2011 11:52 AM

560 Chapter 15 XML

against this schema can determine that 5 conforms and hello does not. An XML docu-
ment that conforms to a schema document is schema valid, and one that does not conform
is schema invalid. Schemas are XML documents and therefore must themselves be valid.

Validating Against an XML Schema Document
Figure 15.9 shows a schema-valid XML document named book.xml, and Fig. 15.10
shows the pertinent XML Schema document (book.xsd) that defines the structure for
book.xml. By convention, schemas use the .xsd extension. We used an online XSD sche-
ma validator provided at

to ensure that the XML document in Fig. 15.9 conforms to the schema in Fig. 15.10. To
validate the schema document itself (i.e., book.xsd) and produce the output shown in
Fig. 15.10, we used an online XSV (XML Schema Validator) provided by the W3C at

These tools are free and enforce the W3C’s specifications regarding XML Schemas and
schema validation.

www.xmlforasp.net/SchemaValidator.aspx

www.w3.org/2001/03/webdata/xsv

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.9: book.xml -->
4 <!-- Book list marked up as XML -->
5 <deitel:books xmlns:deitel = "http://www.deitel.com/booklist">
6 <book>
7 <title>Visual Basic 2010 How to Program</title>
8 </book>
9 <book>

10 <title>Visual C# 2010 How to Program, 4/e</title>
11 </book>
12 <book>
13 <title>Java How to Program, 9/e</title>
14 </book>
15 <book>
16 <title>C++ How to Program, 8/e</title>
17 </book>
18 <book>
19 <title>Internet and World Wide Web How to Program, 5/e</title>
20 </book>
21 </deitel:books>

Fig. 15.9 | Schema-valid XML document describing a list of books.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.10: book.xsd -->
4 <!-- Simple W3C XML Schema document -->

Fig. 15.10 | XML Schema document for book.xml. (Part 1 of 2.)

iw3htp5_15_XML.fm Page 560 Wednesday, November 16, 2011 11:52 AM

15.6 W3C XML Schema Documents 561

Figure 15.9 contains markup describing several Deitel books. The books element
(line 5) has the namespace prefix deitel, indicating that the books element is a part of the
http://www.deitel.com/booklist namespace.

Creating an XML Schema Document
Figure 15.10 presents the XML Schema document that specifies the structure of book.xml
(Fig. 15.9). This document defines an XML-based language (i.e., a vocabulary) for writing
XML documents about collections of books. The schema defines the elements, attributes
and parent/child relationships that such a document can (or must) include. The schema
also specifies the type of data that these elements and attributes may contain.

Root element schema (Fig. 15.10, lines 5–23) contains elements that define the struc-
ture of an XML document such as book.xml. Line 5 specifies as the default namespace the
standard W3C XML Schema namespace URI—http://www.w3.org/2001/XMLSchema.
This namespace contains predefined elements (e.g., root-element schema) that comprise
the XML Schema vocabulary—the language used to write an XML Schema document.

5 <schema xmlns = "http://www.w3.org/2001/XMLSchema"
6 xmlns:deitel = "http://www.deitel.com/booklist"
7 targetNamespace = "http://www.deitel.com/booklist">
8
9 <element name = "books" type = "deitel:BooksType"/>

10
11 <complexType name = "BooksType">
12 <sequence>
13 <element name = "book" type = "deitel:SingleBookType"
14 minOccurs = "1" maxOccurs = "unbounded"/>
15 </sequence>
16 </complexType>
17
18 <complexType name = "SingleBookType">
19 <sequence>
20 <element name = "title" type = "string"/>
21 </sequence>
22 </complexType
23 </schema>

Fig. 15.10 | XML Schema document for book.xml. (Part 2 of 2.)

iw3htp5_15_XML.fm Page 561 Wednesday, November 16, 2011 11:52 AM

562 Chapter 15 XML

Line 6 binds the URI http://www.deitel.com/booklist to namespace prefix
deitel. As we discuss momentarily, the schema uses this namespace to differentiate names
created by us from names that are part of the XML Schema namespace. Line 7 also spec-
ifies http://www.deitel.com/booklist as the targetNamespace of the schema. This
attribute identifies the namespace of the XML vocabulary that this schema defines. Note
that the targetNamespace of book.xsd is the same as the namespace referenced in line 5
of book.xml (Fig. 15.9). This is what “connects” the XML document with the schema that
defines its structure. When a schema validator examines book.xml and book.xsd, it will
recognize that book.xml uses elements and attributes from the http://www.deitel.com/
booklist namespace. The validator also will recognize that this namespace is the
namespace defined in book.xsd (i.e., the schema’s targetNamespace). Thus the validator
knows where to look for the structural rules for the elements and attributes used in
book.xml.

Defining an Element in XML Schema
In XML Schema, the element tag (line 9 of Fig. 15.10) defines an element to be included in
an XML document that conforms to the schema. In other words, element specifies the ac-
tual elements that can be used to mark up data. Line 9 defines the books element, which we
use as the root element in book.xml (Fig. 15.9). Attributes name and type specify the ele-
ment’s name and type, respectively. An element’s type indicates the data that the element
may contain. Possible types include XML Schema-defined types (e.g., string, double) and
user-defined types (e.g., BooksType, which is defined in lines 11–16 of Fig. 15.10).
Figure 15.11 lists several of XML Schema’s many built-in types. For a complete list of built-
in types, see Section 3 of the specification found at www.w3.org/TR/xmlschema-2.

Portability Tip 15.3
W3C XML Schema authors specify URI http://www.w3.org/2001/XMLSchema when re-
ferring to the XML Schema namespace. This namespace contains predefined elements that
comprise the XML Schema vocabulary. Specifying this URI ensures that validation tools
correctly identify XML Schema elements and do not confuse them with those defined by
document authors.

Type Description Range or structure Examples

string A character string "hello"

boolean True or false true, false true

decimal A decimal
numeral

i * (10n), where i is an integer and
n is an integer that’s less than or
equal to zero.

5, -12, -45.78

float A floating-point
number

m * (2e), where m is an integer
whose absolute value is less than
224 and e is an integer in the range
-149 to 104. Plus three additional
numbers: positive infinity, negative
infinity and not-a-number (NaN).

0, 12, -109.375,
NaN

Fig. 15.11 | Some XML Schema types. (Part 1 of 2.)

iw3htp5_15_XML.fm Page 562 Wednesday, November 16, 2011 11:52 AM

15.6 W3C XML Schema Documents 563

In this example, books is defined as an element of type deitel:BooksType (line 9).
BooksType is a user-defined type (lines 11–16 of Fig. 15.10) in the namespace http://
www.deitel.com/booklist and therefore must have the namespace prefix deitel. It’s not
an existing XML Schema type.

Two categories of type exist in XML Schema—simple types and complex types. They
differ only in that simple types cannot contain attributes or child elements and complex
types can.

A user-defined type that contains attributes or child elements must be defined as a
complex type. Lines 11–16 use element complexType to define BooksType as a complex
type that has a child element named book. The sequence element (lines 12–15) allows you
to specify the sequential order in which child elements must appear. The element (lines
13–14) nested within the complexType element indicates that a BooksType element (e.g.,
books) can contain child elements named book of type deitel:SingleBookType (defined
in lines 18–22). Attribute minOccurs (line 14), with value 1, specifies that elements of type
BooksType must contain a minimum of one book element. Attribute maxOccurs (line 14),
with value unbounded, specifies that elements of type BooksType may have any number of
book child elements.

Lines 18–22 define the complex type SingleBookType. An element of this type con-
tains a child element named title. Line 20 defines element title to be of simple type
string. Recall that elements of a simple type cannot contain attributes or child elements.
The schema end tag (</schema>, line 23) declares the end of the XML Schema document.

double A floating-point
number

m * (2e), where m is an integer
whose absolute value is less than
253 and e is an integer in the range
-1075 to 970. Plus three additional
numbers: positive infinity, nega-
tive infinity and not-a-number
(NaN).

0, 12, -109.375,
NaN

long A whole number -9223372036854775808 to
9223372036854775807, inclusive.

1234567890,
-1234567890

int A whole number -2147483648 to 2147483647, inclu-
sive.

1234567890,
-1234567890

short A whole number -32768 to 32767, inclusive. 12, -345

date A date consisting
of a year, month
and day

yyyy-mm with an optional dd and
an optional time zone, where yyyy
is four digits long and mm and dd
are two digits long.

2005-05-10

time A time consisting
of hours, minutes
and seconds

hh:mm:ss with an optional time
zone, where hh, mm and ss are two
digits long.

16:30:25-05:00

Type Description Range or structure Examples

Fig. 15.11 | Some XML Schema types. (Part 2 of 2.)

iw3htp5_15_XML.fm Page 563 Wednesday, November 16, 2011 11:52 AM

564 Chapter 15 XML

A Closer Look at Types in XML Schema
Every element in XML Schema has a type. Types include the built-in types provided by
XML Schema (Fig. 15.11) or user-defined types (e.g., SingleBookType in Fig. 15.10).

Every simple type defines a restriction on an XML Schema-defined type or a restric-
tion on a user-defined type. Restrictions limit the possible values that an element can hold.

Complex types are divided into two groups—those with simple content and those
with complex content. Both can contain attributes, but only complex content can contain
child elements. Complex types with simple content must extend or restrict some other
existing type. Complex types with complex content do not have this limitation. We dem-
onstrate complex types with each kind of content in the next example.

The schema document in Fig. 15.12 creates both simple types and complex types.
The XML document in Fig. 15.13 (laptop.xml) follows the structure defined in
Fig. 15.12 to describe parts of a laptop computer. A document such as laptop.xml that
conforms to a schema is known as an XML instance document—the document is an
instance (i.e., example) of the schema.

1 <?xml version = "1.0"?>
2 <!-- Fig. 15.12: computer.xsd -->
3 <!-- W3C XML Schema document -->
4
5 <schema xmlns = "http://www.w3.org/2001/XMLSchema"
6 xmlns:computer = "http://www.deitel.com/computer"
7 targetNamespace = "http://www.deitel.com/computer">
8
9 <simpleType name = "gigahertz">

10 <restriction base = "decimal">
11 <minInclusive value = "2.1"/>
12 </restriction>
13 </simpleType>
14
15 <complexType name = "CPU">
16 <simpleContent>
17 <extension base = "string">
18 <attribute name = "model" type = "string"/>
19 </extension>
20 </simpleContent>
21 </complexType>
22
23 <complexType name = "portable">
24 <all>
25 <element name = "processor" type = "computer:CPU"/>
26 <element name = "monitor" type = "int"/>
27 <element name = "CPUSpeed" type = "computer:gigahertz"/>
28 <element name = "RAM" type = "int"/>
29 </all>
30 <attribute name = "manufacturer" type = "string"/>
31 </complexType>
32
33 <element name = "laptop" type = "computer:portable"/>
34 </schema>

Fig. 15.12 | XML Schema document defining simple and complex types.

iw3htp5_15_XML.fm Page 564 Wednesday, November 16, 2011 11:52 AM

15.6 W3C XML Schema Documents 565

Line 5 of Fig. 15.12 declares the default namespace to be the standard XML Schema
namespace—any elements without a prefix are assumed to be in that namespace. Line 6
binds the namespace prefix computer to the namespace http://www.deitel.com/
computer. Line 7 identifies this namespace as the targetNamespace—the namespace
being defined by the current XML Schema document.

To design the XML elements for describing laptop computers, we first create a simple
type in lines 9–13 using the simpleType element. We name this simpleType gigahertz
because it will be used to describe the clock speed of the processor in gigahertz. Simple
types are restrictions of a type typically called a base type. For this simpleType, line 10
declares the base type as decimal, and we restrict the value to be at least 2.1 by using the
minInclusive element in line 11.

Next, we declare a complexType named CPU that has simpleContent (lines 16–20).
Remember that a complex type with simple content can have attributes but not child ele-
ments. Also recall that complex types with simple content must extend or restrict some
XML Schema type or user-defined type. The extension element with attribute base (line
17) sets the base type to string. In this complexType, we extend the base type string with
an attribute. The attribute element (line 18) gives the complexType an attribute of type
string named model. Thus an element of type CPU must contain string text (because the
base type is string) and may contain a model attribute that’s also of type string.

Last, we define type portable, which is a complexType with complex content (lines
23–31). Such types are allowed to have child elements and attributes. The element all
(lines 24–29) encloses elements that must each be included once in the corresponding
XML instance document. These elements can be included in any order. This complex type
holds four elements—processor, monitor, CPUSpeed and RAM. They’re given types CPU,
int, gigahertz and int, respectively. When using types CPU and gigahertz, we must
include the namespace prefix computer, because these user-defined types are part of the
computer namespace (http://www.deitel.com/computer)—the namespace defined in
the current document (line 7). Also, portable contains an attribute defined in line 30.
The attribute element indicates that elements of type portable contain an attribute of
type string named manufacturer.

Line 33 declares the actual element that uses the three types defined in the schema.
The element is called laptop and is of type portable. We must use the namespace prefix
computer in front of portable.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.13: laptop.xml -->
4 <!-- Laptop components marked up as XML -->
5 <computer:laptop xmlns:computer = "http://www.deitel.com/computer"
6 manufacturer = "IBM">
7
8 <processor model = "Centrino">Intel</processor>
9 <monitor>17</monitor>

10 <CPUSpeed>2.4</CPUSpeed>
11 <RAM>256</RAM>
12 </computer:laptop>

Fig. 15.13 | XML document using the laptop element defined in computer.xsd.

iw3htp5_15_XML.fm Page 565 Wednesday, November 16, 2011 11:52 AM

566 Chapter 15 XML

We’ve now created an element named laptop that contains child elements pro-
cessor, monitor, CPUSpeed and RAM, and an attribute manufacturer. Figure 15.13 uses
the laptop element defined in the computer.xsd schema. Once again, we used an online
XSD schema validator (www.xmlforasp.net/SchemaValidator.aspx) to ensure that this
XML instance document adheres to the schema’s structural rules.

Line 5 declares namespace prefix computer. The laptop element requires this prefix
because it’s part of the http://www.deitel.com/computer namespace. Line 6 sets the
laptop’s manufacturer attribute, and lines 8–11 use the elements defined in the schema
to describe the laptop’s characteristics.

This section introduced W3C XML Schema documents for defining the structure of
XML documents, and we validated XML instance documents against schemas using an
online XSD schema validator. Section 15.7 discusses several XML vocabularies and dem-
onstrates the MathML vocabulary.

15.7 XML Vocabularies
XML allows authors to create their own tags to describe data precisely. People and orga-
nizations in various fields of study have created many different kinds of XML for structur-
ing data. Some of these markup languages are: MathML (Mathematical Markup
Language), Scalable Vector Graphics (SVG), Wireless Markup Language (WML), Ex-
tensible Business Reporting Language (XBRL), Extensible User Interface Language
(XUL) and Product Data Markup Language (PDML). Two other examples of XML vo-
cabularies are W3C XML Schema and the Extensible Stylesheet Language (XSL), which
we discuss in Section 15.6 and Section 15.8, respectively. The following subsections de-
scribe MathML and other custom markup languages.

15.7.1 MathML™
Until recently, computers typically required specialized software packages such as TeX and
LaTeX for displaying complex mathematical expressions. This section introduces
MathML, which the W3C developed for describing mathematical notations and expres-
sions. The Firefox and Opera browsers can render MathML. There are also plug-ins or ex-
tensions available that enable you to render MathML in other browsers.

MathML markup describes mathematical expressions for display. MathML is divided
into two types of markup—content markup and presentation markup. Content markup
provides tags that embody mathematical concepts. Content MathML allows programmers
to write mathematical notation specific to different areas of mathematics. For instance, the
multiplication symbol has one meaning in set theory and another in linear algebra. Con-
tent MathML distinguishes between different uses of the same symbol. Programmers can
take content MathML markup, discern mathematical context and evaluate the marked-up
mathematical operations. Presentation MathML is directed toward formatting and dis-
playing mathematical notation. We focus on Presentation MathML in the MathML
examples.

Simple Equation in MathML
Figure 15.14 uses MathML to mark up a simple expression. For this example, we show
the expression rendered in Firefox.

iw3htp5_15_XML.fm Page 566 Wednesday, November 16, 2011 11:52 AM

15.7 XML Vocabularies 567

By convention, MathML files end with the .mml filename extension. A MathML doc-
ument’s root node is the math element, and its default namespace is http://www.w3.org/
1998/Math/MathML (line 7). The mn element (line 8) marks up a number. The mo element
(line 9) marks up an operator (e.g., +). Using this markup, we define the expression 2 + 3
= 5, which any MathML capable browser can display.

Algebraic Equation in MathML
Let’s consider using MathML to mark up an algebraic equation containing exponents and
arithmetic operators (Fig. 15.15). For this example, we again show the expression ren-
dered in Firefox.

1 <?xml version="1.0" encoding="iso-8859-1"?>
2 <!DOCTYPE math PUBLIC "-//W3C//DTD MathML 2.0//EN"
3 "http://www.w3.org/TR/MathML2/dtd/mathml2.dtd">
4
5 <!-- Fig. 15.14: mathml1.mml -->
6 <!-- MathML equation. -->
7 <math xmlns="http://www.w3.org/1998/Math/MathML">
8 <mn>2</mn>
9 <mo>+</mo>

10 <mn>3</mn>
11 <mo>=</mo>
12 <mn>5</mn>
13 </math>

Fig. 15.14 | Expression marked up with MathML and displayed in the Firefox browser.

1 <?xml version="1.0" encoding="iso-8859-1"?>
2 <!DOCTYPE math PUBLIC "-//W3C//DTD MathML 2.0//EN"
3 "http://www.w3.org/TR/MathML2/dtd/mathml2.dtd">
4
5 <!-- Fig. 15.15: mathml2.html -->
6 <!-- MathML algebraic equation. -->
7 <math xmlns="http://www.w3.org/1998/Math/MathML">
8 <mn>3</mn>
9 <mo>⁢</mo>

10 <msup>
11 <mi>x</mi>
12 <mn>2</mn>
13 </msup>
14 <mo>+</mo>

Fig. 15.15 | Algebraic equation marked up with MathML and displayed in the Firefox browser.
(Part 1 of 2.)

iw3htp5_15_XML.fm Page 567 Wednesday, November 16, 2011 11:52 AM

568 Chapter 15 XML

Line 9 uses entity reference ⁢ to indicate a multiplication operation
without explicit symbolic representation (i.e., the multiplication symbol does not appear
between the 3 and x). For exponentiation, lines 10–13 use the msup element, which repre-
sents a superscript. This msup element has two children—the expression to be superscripted
(i.e., the base) and the superscript (i.e., the exponent). Correspondingly, the msub element
represents a subscript. To display variables such as x, line 11 uses identifier element mi.

To display a fraction, lines 17–20 use the mfrac element. Lines 18–19 specify the
numerator and the denominator for the fraction. If either the numerator or the denomi-
nator contains more than one element, it must appear in an mrow element.

Calculus Expression in MathML
Figure 15.16 marks up a calculus expression that contains an integral symbol and a square-
root symbol.

15 <mn>x</mn>
16 <mo>−</mo>
17 <mfrac>
18 <mn>2</mn>
19 <mi>x</mi>
20 </mfrac>
21 <mo>=</mo>
22 <mn>0</mn>
23 </math>

1 <?xml version="1.0" encoding="iso-8859-1"?>
2 <!DOCTYPE math PUBLIC "-//W3C//DTD MathML 2.0//EN"
3 "http://www.w3.org/TR/MathML2/dtd/mathml2.dtd">
4
5 <!-- Fig. 15.16 mathml3.html -->
6 <!-- Calculus example using MathML -->
7 <math xmlns="http://www.w3.org/1998/Math/MathML">
8 <mrow>
9 <msubsup>

10 <mo>∫</mo>
11 <mn>0</mn>
12 <mrow>
13 <mn>1</mn>

Fig. 15.16 | Calculus expression marked up with MathML and displayed in the Firefox browser.
(Part 1 of 2.)

Fig. 15.15 | Algebraic equation marked up with MathML and displayed in the Firefox browser.
(Part 2 of 2.)

iw3htp5_15_XML.fm Page 568 Wednesday, November 16, 2011 11:52 AM

15.7 XML Vocabularies 569

Lines 8–30 group the entire expression in an mrow element, which is used to group ele-
ments that are positioned horizontally in an expression. The entity reference ∫ (line 10)
represents the integral symbol, while the msubsup element (lines 9–17) specifies the sub-
script and superscript for a base expression (e.g., the integral symbol). Element mo marks up
the integral operator. The msubsup element requires three child elements—an operator
(e.g., the integral entity, line 10), the subscript expression (line 11) and the superscript
expression (lines 12–16). Element mn (line 11) marks up the number (i.e., 0) that represents
the subscript. Element mrow (lines 12–16) marks up the superscript expression (i.e., 1-y).

Element msqrt (lines 18–27) represents a square-root expression. Line 28 introduces
entity reference δ for representing a lowercase delta symbol. Delta is an operator,
so line 28 places this entity in element mo. To see other operations and symbols in
MathML, visit www.w3.org/Math.

15.7.2 Other Markup Languages
Literally hundreds of markup languages derive from XML. Every day developers find new
uses for XML. Figure 15.18 summarizes a few of these markup languages. The website

provides a nice list of common XML vocabularies and descriptions.

14 <mo>−</mo>
15 <mi>y</mi>
16 </mrow>
17 </msubsup>
18 <msqrt>
19 <mn>4</mn>
20 <mo>⁢</mo>
21 <msup>
22 <mi>x</mi>
23 <mn>2</mn>
24 </msup>
25 <mo>+</mo>
26 <mi>y</mi>
27 </msqrt>
28 <mo>δ</mo>
29 <mi>x</mi>
30 </mrow>
31 </math>

www.service-architecture.com/xml/articles/index.html

Fig. 15.16 | Calculus expression marked up with MathML and displayed in the Firefox browser.
(Part 2 of 2.)

Integral
symbol

Delta symbol

iw3htp5_15_XML.fm Page 569 Wednesday, November 16, 2011 11:52 AM

570 Chapter 15 XML

15.8 Extensible Stylesheet Language and XSL
Transformations
Extensible Stylesheet Language (XSL) documents specify how programs are to render
XML document data. XSL is a group of three technologies—XSL-FO (XSL Formatting
Objects), XPath (XML Path Language) and XSLT (XSL Transformations). XSL-FO is
a vocabulary for specifying formatting, and XPath is a string-based language of expressions
used by XML and many of its related technologies for effectively and efficiently locating
structures and data (such as specific elements and attributes) in XML documents.

The third portion of XSL—XSL Transformations (XSLT)—is a technology for trans-
forming XML documents into other documents—i.e., transforming the structure of the
XML document data to another structure. XSLT provides elements that define rules for
transforming one XML document to produce a different XML document. This is useful
when you want to use data in multiple applications or on multiple platforms, each of
which may be designed to work with documents written in a particular vocabulary. For
example, XSLT allows you to convert a simple XML document to an HTML5 document
that presents the XML document’s data (or a subset of the data) formatted for display in
a web browser.

Markup language Description

Chemical Markup
Language (CML)

Chemical Markup Language (CML) is an XML vocabulary for
representing molecular and chemical information. Many previous
methods for storing this type of information (e.g., special file
types) inhibited document reuse. CML takes advantage of XML’s
portability to enable document authors to use and reuse molecular
information without corrupting important data in the process.

VoiceXML™ The VoiceXML Forum founded by AT&T, IBM, Lucent and
Motorola developed VoiceXML. It provides interactive voice com-
munication between humans and computers through a telephone,
PDA (personal digital assistant) or desktop computer. IBM’s
VoiceXML SDK can process VoiceXML documents. Visit
www.voicexml.org for more information on VoiceXML.

Synchronous Multimedia
Integration Language
(SMIL™)

SMIL is an XML vocabulary for multimedia presentations. The
W3C was the primary developer of SMIL, with contributions from
some companies. Visit www.w3.org/AudioVideo for more on SMIL.

Research Information
Exchange Markup
Language (RIXML)

RIXML, developed by a consortium of brokerage firms, marks up
investment data. Visit www.rixml.org for more information on
RIXML.

Geography Markup
Language (GML)

OpenGIS developed the Geography Markup Language to
describe geographic information. Visit www.opengis.org for more
information on GML.

Extensible User Interface
Language (XUL)

The Mozilla Project created the Extensible User Interface Lan-
guage for describing graphical user interfaces in a platform-inde-
pendent way.

Fig. 15.17 | Various markup languages derived from XML.

iw3htp5_15_XML.fm Page 570 Wednesday, November 16, 2011 11:52 AM

15.8 Extensible Stylesheet Language and XSL Transformations 571

Transforming an XML document using XSLT involves two tree structures—the
source tree (i.e., the XML document to transform) and the result tree (i.e., the XML doc-
ument to create). XPath locates parts of the source-tree document that match templates
defined in an XSL style sheet. When a match occurs, the matching template executes and
adds its result to the result tree. When there are no more matches, XSLT has transformed
the source tree into the result tree. The XSLT does not analyze every node of the source
tree; it selectively navigates the source tree using XPath’s select and match attributes. For
XSLT to function, the source tree must be properly structured. Schemas, DTDs and val-
idating parsers can validate document structure before using XPath and XSLTs.

A Simple XSL Example
Figure 15.18 lists an XML document that describes various sports. The output shows the
result of the transformation (specified in the XSLT template of Fig. 15.19). Some web
browsers will perform transformations on XML files only if they are accessed from a web
server. For this reason, we’ve posted the example online at

Also, to save space, we do not show the contents of the example’s CSS file here.

http://test.deitel.com/iw3htp5/ch15/Fig15_18-19/sports.xml

1 <?xml version = "1.0"?>
2 <?xml-stylesheet type = "text/xsl" href = "sports.xsl"?>
3
4 <!-- Fig. 15.18: sports.xml -->
5 <!-- Sports Database -->
6
7 <sports>
8 <game id = "783">
9 <name>Cricket</name>

10
11 <paragraph>
12 More popular among commonwealth nations.
13 </paragraph>
14 </game>
15
16 <game id = "239">
17 <name>Baseball</name>
18
19 <paragraph>
20 More popular in America.
21 </paragraph>
22 </game>
23
24 <game id = "418">
25 <name>Soccer (Futbol)</name>
26
27 <paragraph>
28 Most popular sport in the world.
29 </paragraph>
30 </game>
31 </sports>

Fig. 15.18 | XML document that describes various sports. (Part 1 of 2.)

iw3htp5_15_XML.fm Page 571 Wednesday, November 16, 2011 11:52 AM

572 Chapter 15 XML

To perform transformations, an XSLT processor is required. Popular XSLT proces-
sors include Microsoft’s MSXML and the Apache Software Foundation’s Xalan 2
(xml.apache.org). The XML document in Fig. 15.18 is transformed into an XHTML
document when it’s loaded into the web browser.

Line 2 (Fig. 15.18) is a processing instruction (PI) that references the XSL style sheet
sports.xsl (Fig. 15.19). A processing instruction is embedded in an XML document and
provides application-specific information to whichever XML processor the application
uses. In this particular case, the processing instruction specifies the location of an XSLT
document with which to transform the XML document. The <? and ?> (line 2,
Fig. 15.18) delimit a processing instruction, which consists of a PI target (e.g., xml-
stylesheet) and a PI value (e.g., type = "text/xsl" href = "sports.xsl"). The PI
value’s type attribute specifies that sports.xsl is a text/xsl file (i.e., a text file con-
taining XSL content). The href attribute specifies the name and location of the style sheet
to apply—in this case, sports.xsl in the current directory.

Figure 15.19 shows the XSL document for transforming the structured data of the
XML document of Fig. 15.18 into an XHTML document for presentation. By conven-
tion, XSL documents have the filename extension .xsl.

Software Engineering Observation 15.5
XSL enables document authors to separate data presentation (specified in XSL documents)
from data description (specified in XML documents).

Common Programming Error 15.10
You’ll sometimes see the XML processing instruction <?xml-stylesheet?> written as
<?xml:stylesheet?> with a colon rather than a dash. The version with a colon results
in an XML parsing error in Firefox.

1 <?xml version = "1.0"?>
2 <!-- Fig. 15.19: sports.xsl -->
3 <!-- A simple XSLT transformation -->
4

Fig. 15.19 | XSLT that creates elements and attributes in an HTML5 document. (Part 1 of 2.)

Fig. 15.18 | XML document that describes various sports. (Part 2 of 2.)

iw3htp5_15_XML.fm Page 572 Wednesday, November 16, 2011 11:52 AM

15.8 Extensible Stylesheet Language and XSL Transformations 573

Lines 6–7 begin the XSL style sheet with the stylesheet start tag. Attribute version
specifies the XSLT version to which this document conforms. Line 7 binds namespace
prefix xsl to the W3C’s XSLT URI (i.e., http://www.w3.org/1999/XSL/Transform).

Outputting the DOCTYPE
Line 9 uses element xsl:output to write an HTML5 document type declaration (DOC-
TYPE) to the result tree (i.e., the XML document to be created). At the time of this writing,
the W3C has not yet updated the XSLT recommendation (standard) to support the
HTML5 DOCTYPE—in the meantime, they recommend setting the attribute doctype-

5 <!-- reference XSL style sheet URI -->
6 <xsl-stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:output method = "html" doctype-system = "about:legacy-compat" />

10 <xsl:template match = "/"> <!-- match root element -->
11
12 <html xmlns = "http://www.w3.org/1999/xhtml">
13 <head>
14 <meta charset = "utf-8"/>
15 <link rel = "stylesheet" type = "text/css" href = "style.css"/>
16 <title>Sports</title>
17 </head>
18
19 <body>
20 <table>
21 <caption>Information about various sports</caption>
22 <thead>
23 <tr>
24 <th>ID</th>
25 <th>Sport</th>
26 <th>Information</th>
27 </tr>
28 </thead>
29
30 <!-- insert each name and paragraph element value -->
31 <!-- into a table row. -->
32 <xsl:for-each select = "/sports/game">
33 <tr>
34 <td><xsl:value-of select = "@id"/></td>
35 <td><xsl:value-of select = "name"/></td>
36 <td><xsl:value-of select = "paragraph"/></td>
37 </tr>
38 </xsl:for-each>
39 </table>
40 </body>
41 </html>
42
43 </xsl:template>
44 </xsl:stylesheet>

Fig. 15.19 | XSLT that creates elements and attributes in an HTML5 document. (Part 2 of 2.)

iw3htp5_15_XML.fm Page 573 Wednesday, November 16, 2011 11:52 AM

574 Chapter 15 XML

system to the value about:legacy-compat to produce an HTML5 compatible DOCTYPE
using XSLT.

Templates
XSLT uses templates (i.e., xsl:template elements) to describe how to transform partic-
ular nodes from the source tree to the result tree. A template is applied to nodes that are
specified in the required match attribute. Line 10 uses the match attribute to select the doc-
ument root (i.e., the conceptual part of the document that contains the root element and
everything below it) of the XML source document (i.e., sports.xml). The XPath charac-
ter / (a forward slash) always selects the document root. Recall that XPath is a string-based
language used to locate parts of an XML document easily. In XPath, a leading forward
slash specifies that we’re using absolute addressing (i.e., we’re starting from the root and
defining paths down the source tree). In the XML document of Fig. 15.18, the child nodes
of the document root are the two processing-instruction nodes (lines 1–2), the two com-
ment nodes (lines 4–5) and the sports-element node (lines 7–31). The template in
Fig. 15.19, line 14, matches a node (i.e., the root node), so the contents of the template
are now added to the result tree.

Repetition in XSL
The browser’s XML processor writes the HTML5 in lines 13–28 (Fig. 15.19) to the result
tree exactly as it appears in the XSL document. Now the result tree consists of the DOCTYPE
definition and the HTML5 code from lines 13–28. Lines 32–38 use element xsl:for-
each to iterate through the source XML document, searching for game elements. Attribute
select is an XPath expression that specifies the nodes (called the node set) on which the
xsl:for-each operates. Again, the first forward slash means that we’re using absolute ad-
dressing. The forward slash between sports and game indicates that game is a child node
of sports. Thus, the xsl:for-each finds game nodes that are children of the sports node.
The XML document sports.xml contains only one sports node, which is also the docu-
ment root node. After finding the elements that match the selection criteria, the xsl:for-
each processes each element with the code in lines 33–37 (these lines produce one row in
a table each time they execute) and places the result in the result tree.

Line 34 uses element value-of to retrieve attribute id’s value and place it in a td ele-
ment in the result tree. The XPath symbol @ specifies that id is an attribute node of the
context node game. Lines 35–36 place the name and paragraph element values in td ele-
ments and insert them in the result tree. When an XPath expression has no beginning for-
ward slash, the expression uses relative addressing. Omitting the beginning forward slash
tells the xsl:value-of select statements to search for name and paragraph elements that
are children of the context node, not the root node. Owing to the last XPath expression
selection, the current context node is game, which indeed has an id attribute, a name child
element and a paragraph child element.

Using XSLT to Sort and Format Data
Figure 15.20 presents an XML document (sorting.xml) that marks up information
about a book. Note that several elements of the markup describing the book appear out of
order (e.g., the element describing Chapter 3 appears before the element describing Chap-
ter 2). We arranged them this way purposely to demonstrate that the XSL style sheet ref-
erenced in line 2 (sorting.xsl) can sort the XML file’s data for presentation purposes.

iw3htp5_15_XML.fm Page 574 Wednesday, November 16, 2011 11:52 AM

15.8 Extensible Stylesheet Language and XSL Transformations 575

Figure 15.21 presents an XSL document (sorting.xsl) for transforming the XML
document sorting.xml (Fig. 15.20) to HTML5. (To save space, we do not show the con-
tents of the example’s CSS file here.) Recall that an XSL document navigates a source tree
and builds a result tree. In this example, the source tree is XML, and the output tree is
HTML5. Line 12 of Fig. 15.21 matches the root element of the document in Fig. 15.20.
Line 13 outputs an html start tag to the result tree. In line 14, the <xsl:apply-templates/
> element specifies that the XSLT processor is to apply the xsl:templates defined in this
XSL document to the current node’s (i.e., the document root’s) children. The content
from the applied templates is output in the html element that ends at line 15. You can view
the results of the transformation at:

1 <?xml version = "1.0"?>
2 <?xml-stylesheet type = "text/xsl" href = "sorting.xsl"?>
3
4 <!-- Fig. 15.20: sorting.xml -->
5 <!-- XML document containing book information -->
6 <book isbn = "999-99999-9-X">
7 <title>Deitel's XML Primer</title>
8
9 <author>

10 <firstName>Jane</firstName>
11 <lastName>Blue</lastName>
12 </author>
13
14 <chapters>
15 <frontMatter>
16 <preface pages = "2" />
17 <contents pages = "5" />
18 <illustrations pages = "4" />
19 </frontMatter>
20
21 <chapter number = "3" pages = "44">Advanced XML</chapter>
22 <chapter number = "2" pages = "35">Intermediate XML</chapter>
23 <appendix number = "B" pages = "26">Parsers and Tools</appendix>
24 <appendix number = "A" pages = "7">Entities</appendix>
25 <chapter number = "1" pages = "28">XML Fundamentals</chapter>
26 </chapters>
27
28 <media type = "CD" />
29 </book>

Fig. 15.20 | XML document containing book information.

http://test.deitel.com/iw3htp5/ch15/Fig15_20-21/sorting.xml

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.21: sorting.xsl -->
4 <!-- Transformation of book information into HTML5 -->

Fig. 15.21 | XSL document that transforms sorting.xml into HTML5. (Part 1 of 3.)

iw3htp5_15_XML.fm Page 575 Wednesday, November 16, 2011 11:52 AM

576 Chapter 15 XML

5 <xsl:stylesheet version = "1.0"
6 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
7
8 <!-- write XML declaration and DOCTYPE DTD information -->
9 <xsl:output method = "html" doctype-system = "about:legacy-compat" />

10
11 <!-- match document root -->
12 <xsl:template match = "/">
13 <html>
14 <xsl:apply-templates/>
15 </html>
16 </xsl:template>
17
18 <!-- match book -->
19 <xsl:template match = "book">
20 <head>
21 <meta charset = "utf-8"/>
22 <link rel = "stylesheet" type = "text/css" href = "style.css"/>
23 <title>ISBN <xsl:value-of select = "@isbn"/> -
24 <xsl:value-of select = "title"/></title>
25 </head>
26
27 <body>
28 <h1><xsl:value-of select = "title"/></h1>
29 <h2>by
30 <xsl:value-of select = "author/lastName"/>,
31 <xsl:value-of select = "author/firstName"/></h2>
32
33 <table>
34
35 <xsl:for-each select = "chapters/frontMatter/*">
36 <tr>
37 <td>
38 <xsl:value-of select = "name()"/>
39 </td>
40
41 <td>
42 (<xsl:value-of select = "@pages"/> pages)
43 </td>
44 </tr>
45 </xsl:for-each>
46
47 <xsl:for-each select = "chapters/chapter">
48 <xsl:sort select = "@number" data-type = "number"
49 order = "ascending"/>
50 <tr>
51 <td>
52 Chapter <xsl:value-of select = "@number"/>
53 </td>
54
55 <td>
56 <xsl:value-of select = "text()"/>

Fig. 15.21 | XSL document that transforms sorting.xml into HTML5. (Part 2 of 3.)

iw3htp5_15_XML.fm Page 576 Wednesday, November 16, 2011 11:52 AM

15.8 Extensible Stylesheet Language and XSL Transformations 577

57 (<xsl:value-of select = "@pages"/> pages)
58 </td>
59 </tr>
60 </xsl:for-each>
61
62 <xsl:for-each select = "chapters/appendix">
63 <xsl:sort select = "@number" data-type = "text"
64 order = "ascending"/>
65 <tr>
66 <td>
67 Appendix <xsl:value-of select = "@number"/>
68 </td>
69
70 <td>
71 <xsl:value-of select = "text()"/>
72 (<xsl:value-of select = "@pages"/> pages)
73 </td>
74 </tr>
75 </xsl:for-each>
76 </table>
77
78 <p>Pages:
79 <xsl:variable name = "pagecount"
80 select = "sum(chapters//*/@pages)"/>
81 <xsl:value-of select = "$pagecount"/>
82 <p>Media Type: <xsl:value-of select = "media/@type"/></p>
83 </body>
84 </xsl:template>
85 </xsl:stylesheet>

Fig. 15.21 | XSL document that transforms sorting.xml into HTML5. (Part 3 of 3.)

iw3htp5_15_XML.fm Page 577 Wednesday, November 16, 2011 11:52 AM

578 Chapter 15 XML

Lines 19–84 specify a template that matches element book. The template indicates
how to format the information contained in book elements of sorting.xml (Fig. 15.20)
as HTML5.

Lines 23–24 create the title for the HTML5 document. We use the book’s ISBN
(from attribute isbn) and the contents of element title to create the string that appears
in the browser window’s title bar (ISBN 999-99999-9-X - Deitel’s XML Primer).

Line 28 creates a header element that contains the book’s title. Lines 29–31 create a
header element that contains the book’s author. Because the context node (i.e., the current
node being processed) is book, the XPath expression author/lastName selects the author’s
last name, and the expression author/firstName selects the author’s first name.

Line 35 selects each element (indicated by an asterisk) that’s a child of element front-
Matter. Line 38 calls node-set function name to retrieve the current node’s element name
(e.g., preface). The current node is the context node specified in the xsl:for-each (line
35). Line 42 retrieves the value of the pages attribute of the current node.

Line 47 selects each chapter element. Lines 48–49 use element xsl:sort to sort
chapters by number in ascending order. Attribute select selects the value of attribute
number in context node chapter. Attribute data-type, with value "number", specifies a
numeric sort, and attribute order, with value "ascending", specifies ascending order.
Attribute data-type also accepts the value "text" (line 63), and attribute order also
accepts the value "descending". Line 56 uses node-set function text to obtain the text
between the chapter start and end tags (i.e., the name of the chapter). Line 57 retrieves
the value of the pages attribute of the current node. Lines 62–75 perform similar tasks for
each appendix.

Lines 79–80 use an XSL variable to store the value of the book’s total page count and
output the page count to the result tree. Attribute name specifies the variable’s name (i.e.,
pagecount), and attribute select assigns a value to the variable. Function sum (line 80)
totals the values for all page attribute values. The two slashes between chapters and *
indicate a recursive descent—the MSXML processor will search for elements that contain
an attribute named pages in all descendant nodes of chapters. The XPath expression

selects all the nodes in an XML document. Line 81 retrieves the value of the newly created
XSL variable pagecount by placing a dollar sign in front of its name.

Summary of XSL Stylesheet Elements
This section’s examples used several predefined XSL elements to perform various opera-
tions. Figure 15.22 lists these and several other commonly used XSL elements. For more
information on these elements and XSL in general, see www.w3.org/Style/XSL.

//*

Element Description

<xsl:apply-templates> Applies the templates of the XSL document to the children of
the current node.

Fig. 15.22 | XSL style-sheet elements. (Part 1 of 2.)

iw3htp5_15_XML.fm Page 578 Wednesday, November 16, 2011 11:52 AM

15.9 Document Object Model (DOM) 579

15.9 Document Object Model (DOM)
Although an XML document is a text file, retrieving data from the document using tradi-
tional sequential file-processing techniques is neither practical nor efficient, especially for
adding and removing elements dynamically.

Upon successfully parsing a document, some XML parsers store document data as tree
structures in memory. Figure 15.23 illustrates the tree structure for the root element of the
document article.xml (Fig. 15.2). This hierarchical tree structure is called a Document
Object Model (DOM) tree, and an XML parser that creates this type of structure is
known as a DOM parser. Each element name (e.g., article, date, firstName) is repre-
sented by a node. A node that contains other nodes (called child nodes or children) is
called a parent node (e.g., author). A parent node can have many children, but a child
node can have only one parent node. Nodes that are peers (e.g., firstName and lastName)
are called sibling nodes. A node’s descendant nodes include its children, its children’s chil-
dren and so on. A node’s ancestor nodes include its parent, its parent’s parent and so on.
Many of the XML DOM capabilities you’ll see in this section are similar or identical to
those of the HTML5 DOM you learned in Chapter 12.

The DOM tree has a single root node, which contains all the other nodes in the doc-
ument. For example, the root node of the DOM tree that represents article.xml
(Fig. 15.23) contains a node for the XML declaration (line 1), two nodes for the com-
ments (lines 3–4) and a node for the XML document’s root element article (line 5).

To introduce document manipulation with the XML Document Object Model, we
provide a scripting example (Figs. 15.24–15.25) that uses JavaScript and XML. This

<xsl:apply-templates

 match = "expression">
Applies the templates of the XSL document to the children of
expression. The value of the attribute match (i.e., expression)
must be an XPath expression that specifies elements.

<xsl:template> Contains rules to apply when a specified node is matched.

<xsl:value-of select =

 "expression">
Selects the value of an XML element and adds it to the output
tree of the transformation. The required select attribute con-
tains an XPath expression.

<xsl:for-each select =

 "expression">
Applies a template to every node selected by the XPath speci-
fied by the select attribute.

<xsl:sort select =

 "expression">
Used as a child element of an <xsl:apply-templates> or
<xsl:for-each> element. Sorts the nodes selected by the
<xsl:apply-template> or <xsl:for-each> element so that the
nodes are processed in sorted order.

<xsl:output> Has various attributes to define the format (e.g., XML), ver-
sion (e.g., 1.0, 2.0), document type and media type of the out-
put document. This tag is a top-level element—it can be used
only as a child element of an xml:stylesheet.

<xsl:copy> Adds the current node to the output tree.

Element Description

Fig. 15.22 | XSL style-sheet elements. (Part 2 of 2.)

iw3htp5_15_XML.fm Page 579 Wednesday, November 16, 2011 11:52 AM

580 Chapter 15 XML

example loads the XML document article.xml (Fig. 15.2) and uses the XML DOM API
to display the document’s element names and values. The example also provides buttons
that enable you to navigate the DOM structure. As you click each button, an appropriate
part of the document is highlighted.

HTML5 Document
Figure 15.24 contains the HTML5 document. When this document loads, the load event
calls our JavaScript function start (Fig. 15.25) to register event handlers for the buttons
in the document and to load and display the contents of article.xml in the div at line
21 (outputDiv). Lines 13–20 define a form consisting of five buttons. When each button
is pressed, it invokes one of our JavaScript functions to navigate article.xml’s DOM
structure. (To save space, we do not show the contents of the example’s CSS file here.)
Some browsers allow you to load XML documents dynamically only when accessing the
files from a web server. For this reason, you can test this example at:

Fig. 15.23 | Tree structure for the document article.xml of Fig. 15.2.

http://test.deitel.com/iw3htp5/ch15/Fig15_24-25/XMLDOMTraversal.xml

1 <!DOCTYPE html>
2
3 <!-- Fig. 15.24: XMLDOMTraversal.html -->
4 <!-- Traversing an XML document using the XML DOM. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <link rel = "stylesheet" type = "text/css" href = "style.css">
9 <script src = "XMLDOMTraversal.js"></script>

10 <title>Traversing an XML document using the XML DOM</title>
11 </head>

Fig. 15.24 | Traversing an XML document using the XML DOM. (Part 1 of 5.)

title

firstName

article

author

date

summary

content

lastName

root element

children of the
article

root element sibling
elements

iw3htp5_15_XML.fm Page 580 Wednesday, November 16, 2011 11:52 AM

15.9 Document Object Model (DOM) 581

12 <body id = "body">
13 <form action = "#">
14 <input id = "firstChild" type = "button" value = "firstChild">
15 <input id = "nextSibling" type = "button" value = "nextSibling">
16 <input id = "previousSibling" type = "button"
17 value = "previousSibling">
18 <input id = "lastChild" type = "button" value = "lastChild">
19 <input id = "parentNode" type = "button" value = "parentNode">
20 </form>
21 <div id = "outputDiv"></div>
22 </body>
23 </html>

Fig. 15.24 | Traversing an XML document using the XML DOM. (Part 2 of 5.)

a) Comment node at the
beginning of article.xml is
highlighted when the XML
document first loads

b) User clicked the
nextSibling button to
highlight the second
comment node

iw3htp5_15_XML.fm Page 581 Wednesday, November 16, 2011 11:52 AM

582 Chapter 15 XML

Fig. 15.24 | Traversing an XML document using the XML DOM. (Part 3 of 5.)

c) User clicked the
nextSibling button
again to highlight the
article node

d) User clicked the
firstChild button to
highlight the article
node’s title child
node

e) User clicked the
firstChild button
again to highlight the
title node’s text
child node

iw3htp5_15_XML.fm Page 582 Wednesday, November 16, 2011 11:52 AM

15.9 Document Object Model (DOM) 583

Fig. 15.24 | Traversing an XML document using the XML DOM. (Part 4 of 5.)

f) User clicked the
parentNode button
to highlight the text
node’s parent title
node

g) User clicked the
nextSibling button to
highlight the title
node’s date sibling
node

h) User clicked the
nextSibling button to
highlight the date
node’s author sibling
node

iw3htp5_15_XML.fm Page 583 Wednesday, November 16, 2011 11:52 AM

584 Chapter 15 XML

JavaScript Code
Figure 15.24 lists the JavaScript code that manipulates this XML document and displays
its content in an HTML5 page. Line 187 indicates that the document’s load event handler
should call the script’s start function.

1 <!-- Fig. 15.25: XMLDOMTraversal.html -->
2 <!-- JavaScript for traversing an XML document using the XML DOM. -->
3 var outputHTML = ""; // stores text to output in outputDiv
4 var idCounter = 1; // used to create div IDs
5 var depth = -1; // tree depth is -1 to start
6 var current = null; // represents the current node for traversals
7 var previous = null; // represents prior node in traversals

Fig. 15.25 | JavaScript for traversing an XML document using the XML DOM. (Part 1 of 5.)

Fig. 15.24 | Traversing an XML document using the XML DOM. (Part 5 of 5.)

i) User clicked the
lastChild button to
highlight the author
node’s last child node
(lastName)

j) User clicked the
parentNode button
to highlight the
lastName node’s
author parent node

iw3htp5_15_XML.fm Page 584 Wednesday, November 16, 2011 11:52 AM

15.9 Document Object Model (DOM) 585

8
9 // register event handlers for buttons and load XML document

10 function start()
11 {
12 document.getElementById("firstChild").addEventListener(
13 "click", processFirstChild, false);
14 document.getElementById("nextSibling").addEventListener(
15 "click", processNextSibling, false);
16 document.getElementById("previousSibling").addEventListener(
17 "click", processPreviousSibling, false);
18 document.getElementById("lastChild").addEventListener(
19 "click", processLastChild, false);
20 document.getElementById("parentNode").addEventListener(
21 "click", processParentNode, false);
22 loadXMLDocument('article.xml')
23 } // end function start
24
25 // load XML document based on whether the browser is IE7 or Firefox 2
26 function loadXMLDocument(url)
27 {
28
29
30
31
32 buildHTML(); // display the nodes
33 displayDoc(); // display the document and highlight current node
34 } // end function loadXMLDocument
35
36 // traverse xmlDocument and build HTML5 representation of its content
37 function buildHTML(childList)
38 {
39 ++depth; // increase tab depth
40
41 // display each node's content
42 for (var i = 0; i < childList.length; i++)
43 {
44 switch ()
45 {
46 case 1: // Node.ELEMENT_NODE; value used for portability
47 outputHTML += "<div id=\"id" + idCounter + "\">";
48 spaceOutput(depth); // insert spaces
49 outputHTML += ; // show node's name
50 ++idCounter; // increment the id counter
51
52 // if current node has children, call buildHTML recursively
53 if (!= 0)
54
55
56 outputHTML += "</div>";
57 break;
58 case 3: // Node.TEXT_NODE; value used for portability
59 case 8: // Node.COMMENT_NODE; value used for portability

Fig. 15.25 | JavaScript for traversing an XML document using the XML DOM. (Part 2 of 5.)

var xmlHttpRequest = new XMLHttpRequest();
xmlHttpRequest.open("get", url, false);
xmlHttpRequest.send(null);
var doc = xmlHttpRequest.responseXML;

doc.childNodes

childList[i].nodeType

childList[i].nodeName

childList[i].childNodes.length
buildHTML(childList[i].childNodes);

iw3htp5_15_XML.fm Page 585 Wednesday, November 16, 2011 11:52 AM

586 Chapter 15 XML

60 // if nodeValue is not 3 or 6 spaces (Firefox issue),
61 // include nodeValue in HTML
62 if (childList[i].nodeValue.indexOf(" ") == -1 &&
63 childList[i].nodeValue.indexOf(" ") == -1)
64 {
65 outputHTML += "<div id=\"id" + idCounter + "\">";
66 spaceOutput(depth); // insert spaces
67 outputHTML += + "</div>";
68 ++idCounter; // increment the id counter
69 } // end if
70 } // end switch
71 } // end for
72
73 --depth; // decrease tab depth
74 } // end function buildHTML
75
76 // display the XML document and highlight the first child
77 function displayDoc()
78 {
79 document.getElementById("outputDiv").innerHTML = outputHTML;
80 current = document.getElementById('id1');
81 setCurrentNodeStyle(current.getAttribute("id"), true);
82 } // end function displayDoc
83
84 // insert nonbreaking spaces for indentation
85 function spaceOutput(number)
86 {
87 for (var i = 0; i < number; i++)
88 {
89 outputHTML += " ";
90 } // end for
91 } // end function spaceOutput
92
93 // highlight first child of current node
94 function processFirstChild()
95 {
96 if (current.childNodes.length == 1 && // only one child
97 current.firstChild.nodeType == 3) // and it's a text node
98 {
99 alert("There is no child node");
100 } // end if
101 else if (current.childNodes.length > 1)
102 {
103 previous = current; // save currently highlighted node
104
105 if (current.firstChild.nodeType != 3) // if not text node
106 current = current.firstChild; // get new current node
107 else // if text node, use firstChild's nextSibling instead
108 current = current.firstChild.nextSibling; // get first sibling
109
110 setCurrentNodeStyle(previous.getAttribute("id"), false);
111 setCurrentNodeStyle(current.getAttribute("id"), true);
112 } // end if

Fig. 15.25 | JavaScript for traversing an XML document using the XML DOM. (Part 3 of 5.)

childList[i].nodeValue

iw3htp5_15_XML.fm Page 586 Wednesday, November 16, 2011 11:52 AM

15.9 Document Object Model (DOM) 587

113 else
114 alert("There is no child node");
115 } // end function processFirstChild
116
117 // highlight next sibling of current node
118 function processNextSibling()
119 {
120 if (current.getAttribute("id") != "outputDiv" &&
121 current.nextSibling)
122 {
123 previous = current; // save currently highlighted node
124 current = current.nextSibling; // get new current node
125 setCurrentNodeStyle(previous.getAttribute("id"), false);
126 setCurrentNodeStyle(current.getAttribute("id"), true);
127 } // end if
128 else
129 alert("There is no next sibling");
130 } // end function processNextSibling
131
132 // highlight previous sibling of current node if it is not a text node
133 function processPreviousSibling()
134 {
135 if (current.getAttribute("id") != "outputDiv" &&
136 current.previousSibling && current.previousSibling.nodeType != 3)
137 {
138 previous = current; // save currently highlighted node
139 current = current.previousSibling; // get new current node
140 setCurrentNodeStyle(previous.getAttribute("id"), false);
141 setCurrentNodeStyle(current.getAttribute("id"), true);
142 } // end if
143 else
144 alert("There is no previous sibling");
145 } // end function processPreviousSibling
146
147 // highlight last child of current node
148 function processLastChild()
149 {
150 if (current.childNodes.length == 1 &&
151 current.lastChild.nodeType == 3)
152 {
153 alert("There is no child node");
154 } // end if
155 else if (current.childNodes.length != 0)
156 {
157 previous = current; // save currently highlighted node
158 current = current.lastChild; // get new current node
159 setCurrentNodeStyle(previous.getAttribute("id"), false);
160 setCurrentNodeStyle(current.getAttribute("id"), true);
161 } // end if
162 else
163 alert("There is no child node");
164 } // end function processLastChild
165

Fig. 15.25 | JavaScript for traversing an XML document using the XML DOM. (Part 4 of 5.)

iw3htp5_15_XML.fm Page 587 Wednesday, November 16, 2011 11:52 AM

588 Chapter 15 XML

Global Script Variables
Lines 3–7 declare several variables used throughout the script. Variable outputHTML stores
the markup that will be placed in outputDiv. Variable idCounter is used to track the
unique id attributes that we assign to each element in the outputHTML markup. These ids
will be used to dynamically highlight parts of the document when the user clicks the but-
tons in the form. Variable depth determines the indentation level for the content in ar-
ticle.xml. We use this to structure the output using the nesting of the elements in
article.xml. Variables current and previous track the current and previous nodes in
article.xml’s DOM structure as the user navigates it.

Function start
Function start (lines 10–23) registers event handlers for each of the buttons in
Fig. 15.24, then calls function loadXMLDocument.

Function loadXMLDocument
Function loadXMLDocument (lines 26–35) loads the XML document at the specified URL.
Line 28 creates an XMLHttpRequest object, which can be used to load an XML document.
Typically, such an object is used with Ajax to make asynchronous requests to a server—the
topic of the next chapter. Here, we need to load an XML document immediately for use in
this example. Line 29 uses the XMLHttpRequest object’s open method to create a get request
for an XML document at a specified URL. When the last argument’s value is false, the re-
quest will be made synchronously—that is, the script will not continue until the document
is received. Next, line 30 executes the XMLHttpRequest, which actually loads the XML doc-
ument. The argument null to the send method indicates that no data is being sent to the
server as part of this request. When the request completes, the resulting XML document is

166 // highlight parent of current node
167 function processParentNode()
168 {
169 if (current.parentNode.getAttribute("id") != "body")
170 {
171 previous = current; // save currently highlighted node
172 current = current.parentNode; // get new current node
173 setCurrentNodeStyle(previous.getAttribute("id"), false);
174 setCurrentNodeStyle(current.getAttribute("id"), true);
175 } // end if
176 else
177 alert("There is no parent node");
178 } // end function processParentNode
179
180 // set style of node with specified id
181 function setCurrentNodeStyle(id, highlight)
182 {
183 document.getElementById(id).className =
184 (highlight ? "highlighted" : "");
185 } // end function setCurrentNodeStyle
186
187 window.addEventListener("load", start, false);

Fig. 15.25 | JavaScript for traversing an XML document using the XML DOM. (Part 5 of 5.)

iw3htp5_15_XML.fm Page 588 Wednesday, November 16, 2011 11:52 AM

15.9 Document Object Model (DOM) 589

stored in the XMLHttpRequest object’s responseXML property, which we assign to local vari-
able doc. When this completes, we call our buildHTML method (defined in lines 37–74) to
construct an HTML5 representation of the XML document. The expression doc.child-
Nodes is a list of the XML document’s top-level nodes. Line 33 calls our displayDoc func-
tion (lines 77–82) to display the contents of article.xml in outputDiv.

Function buildHTML
Function buildHTML (lines 37–74) is a recursive function that receives a list of nodes as an
argument. Line 39 increments the depth for indentation purposes. Lines 42–71 iterate
through the nodes in the list. The switch statement (lines 44–70) uses the current node’s
nodeType property to determine whether the current node is an element (line 46), a text
node (i.e., the text content of an element; line 58) or a comment node (line 59). If it’s an
element, then we begin a new div element in our HTML5 (line 47) and give it a unique id.
Then function spaceOutput (defined in lines 85–91) appends nonbreaking spaces (&nb-
sp;)—i.e., spaces that the browser is not allowed to collapse or that can be used to keep
words together—to indent the current element to the correct level. Line 49 appends the
name of the current element using the node’s nodeName property. If the current element has
children, the length of the current node’s childNodes list is nonzero and line 54 recursively
calls buildHTML to append the current element’s child nodes to the markup. When that re-
cursive call completes, line 56 completes the div element that we started at line 47.

If the current element is a text node, lines 62–63 obtain the node’s value with the
nodeValue property and use the string method indexOf to determine whether the node’s
value starts with three or six spaces. Some XML parsers do not ignore the white space used
for indentation in XML documents. Instead they create text nodes containing just the
space characters. The condition in lines 62–63 enables us to ignore these nodes in such
browsers. If the node contains text, lines 65–67 append a new div to the markup and use
the node’s nodeValue property to insert that text in the div. Line 73 in buildHTML decre-
ments the depth counter.

Function displayDoc
In function displayDoc (lines 77–82), line 79 uses the DOM’s getElementById method
to obtain the outputDiv element and set its innerHTML property to the new markup gen-
erated by buildHTML. Then, line 80 sets variable current to refer to the div with id 'id1'
in the new markup, and line 81 uses our setCurrentNodeStyle method (defined at lines
181–185) to highlight that div.

Functions processFirstChild and processLastChild
Function processFirstChild (lines 94–115) is invoked by the onclick event of the
firstChild button. If the current node has only one child and it’s a text node (lines 96–
97), line 99 displays an alert dialog indicating that there’s no child node—we navigate
only to nested XML elements in this example. If there are two or more children, line 103
stores the value of current in previous, and lines 105–108 set current to refer to its
firstChild (if this child is not a text node) or its firstChild’s nextSibling (if the

Portability Tip 15.4
Firefox’s XML parser does not ignore white space used for indentation in XML documents.
Instead, it creates text nodes containing the white-space characters.

iw3htp5_15_XML.fm Page 589 Wednesday, November 16, 2011 11:52 AM

590 Chapter 15 XML

firstChild is a text node)—again, this is to ensure that we navigate only to nodes that
represent XML elements. Then lines 110–111 unhighlight the previous node and high-
light the new current node. Function processLastChild (lines 148–164) works similar-
ly, using the current node’s lastChild property.

Functions processNextSibling and processPreviousSibling
Function processNextSibling (lines 118–130) first ensures that the current node is not
the outputDiv and that nextSibling exists. If so, lines 123–124 adjust the previous and
current nodes accordingly and update their highlighting. Function processPrevious-
Sibling (lines 133–145) works similarly, ensuring first that the current node is not the
outputDiv, that previousSibling exists and that previousSibling is not a text node.

Function processParentNode
Function processParentNode (lines 167–178) first checks whether the current node’s
parentNode is the HTML5 page’s body. If not, lines 171–174 adjust the previous and
current nodes accordingly and update their highlighting.

Common DOM Properties
The tables in Figs. 15.26–15.31 describe many common DOM properties and methods.
Some of the key DOM objects are Node (a node in the tree), NodeList (an ordered set of
Nodes), Document (the document), Element (an element node), Attr (an attribute node)
and Text (a text node). There are many more objects, properties and methods than we can
possibly list here. Our XML Resource Center (www.deitel.com/XML/) includes links to
various DOM reference websites.

Property/Method Description

nodeType An integer representing the node type.

nodeName The name of the node.

nodeValue A string or null depending on the node type.

parentNode The parent node.

childNodes A NodeList (Fig. 15.27) with all the children of the node.

firstChild The first child in the Node’s NodeList.

lastChild The last child in the Node’s NodeList.

previousSibling The node preceding this node; null if there’s no such node.

nextSibling The node following this node; null if there’s no such node.

attributes A collection of Attr objects (Fig. 15.30) containing the attributes for
this node.

insertBefore Inserts the node (passed as the first argument) before the existing node
(passed as the second argument). If the new node is already in the tree,
it’s removed before insertion. The same behavior is true for other meth-
ods that add nodes.

Fig. 15.26 | Common Node properties and methods. (Part 1 of 2.)

iw3htp5_15_XML.fm Page 590 Wednesday, November 16, 2011 11:52 AM

15.9 Document Object Model (DOM) 591

replaceChild Replaces the second argument node with the first argument node.

removeChild Removes the child node passed to it.

appendChild Appends the node it receives to the list of child nodes.

Property/Method Description

item Method that receives an index number and returns the element node at
that index. Indices range from 0 to length – 1. You can also access the
nodes in a NodeList via array indexing.

length The total number of nodes in the list.

Fig. 15.27 | NodeList property and method.

Property/Method Description

documentElement The root node of the document.

createElement Creates and returns an element node with the specified tag
name.

createAttribute Creates and returns an Attr node (Fig. 15.30) with the specified
name and value.

createTextNode Creates and returns a text node that contains the specified text.

getElementsByTagName Returns a NodeList of all the nodes in the subtree with the name
specified as the first argument, ordered as they would be encoun-
tered in a preorder traversal. An optional second argument spec-
ifies either the direct child nodes (0) or any descendant (1).

Fig. 15.28 | Document property and methods.

Property/Method Description

tagName The name of the element.

getAttribute Returns the value of the specified attribute.

setAttribute Changes the value of the attribute passed as the first argument to the
value passed as the second argument.

removeAttribute Removes the specified attribute.

getAttributeNode Returns the specified attribute node.

setAttributeNode Adds a new attribute node with the specified name.

Fig. 15.29 | Element property and methods.

Property/Method Description

Fig. 15.26 | Common Node properties and methods. (Part 2 of 2.)

iw3htp5_15_XML.fm Page 591 Wednesday, November 16, 2011 11:52 AM

592 Chapter 15 XML

Locating Data in XML Documents with XPath
Although you can use XML DOM capabilities to navigate through and manipulate nodes,
this is not the most efficient means of locating data in an XML document’s DOM tree. A
simpler way to locate nodes is to search for lists of nodes matching search criteria that are
written as XPath expressions. Recall that XPath (XML Path Language) provides a syntax
for locating specific nodes in XML documents effectively and efficiently. XPath is a string-
based language of expressions used by XML and many of its related technologies (such as
XSLT, discussed in Section 15.8).

The example of Figs. 15.32–15.34 enables the user to enter XPath expressions in an
HTML5 form. (To save space, we do not show the contents of the example’s CSS file
here.) When the user clicks the Get Matches button, the script applies the XPath expres-
sion to the XML DOM and displays the matching nodes.

HTML5 Document
When the HTML5 document (Fig. 15.32) loads, its load event calls loadDocument (as spec-
ified in Fig. 15.33, line 61) to load the sports.xml file (Fig. 15.34). The user specifies the
XPath expression in the input element at line 14 (of Fig. 15.32). When the user clicks the
Get Matches button (line 15), its click event handler invokes our processXPathExpression
function (Fig. 15.33) to locate any matches and display the results in outputDiv (Fig. 15.32,
line 17). Some browsers allow you to load XML documents dynamically only when access-
ing the files from a web server. For this reason, you can test this example at:

Property Description

value The specified attribute’s value.

name The name of the attribute.

Fig. 15.30 | Attr properties.

Property Description

data The text contained in the node.

length The number of characters contained in the node.

Fig. 15.31 | Text properties.

http://test.deitel.com/iw3htp5/ch15/Fig15_24-25/XMLDOMTraversal.xml

1 <!DOCTYPE html>
2
3 <!-- Fig. 15.32: xpath.html -->
4 <!-- Using XPath to locate nodes in an XML document. -->
5 <html>
6 <head>

Fig. 15.32 | Using XPath to locate nodes in an XML document. (Part 1 of 2.)

iw3htp5_15_XML.fm Page 592 Wednesday, November 16, 2011 11:52 AM

15.9 Document Object Model (DOM) 593

JavaScript
The script of Fig. 15.33 loads the XML document sports.xml (Fig. 15.34) using the
same techniques we presented in Fig. 15.25, so we focus on only the new features in this
example.

7 <meta charset = "utf-8">
8 <link rel = "stylesheet" type = "text/css" href = "style.css">
9 <script src = "xpath.js"></script>

10 <title>Using XPath</title>
11 </head>
12 <body id = "body">
13 <form id = "myForm" action = "#">
14 <input id = "inputField" type = "text">
15 <input id = "matchesButton" type = "button" value = "Get Matches">
16 </form>
17 <div id = "outputDiv"></div>
18 </body>
19 </html>

.

Fig. 15.32 | Using XPath to locate nodes in an XML document. (Part 2 of 2.)

a) Selecting the sports node b) Selecting the game nodes from the sports node

c) Selecting the name node from each game node d) Selecting the paragraph node from each game node

e) Selecting the game with the id attribute value 239 f) Selecting the game with name element value Cricket

iw3htp5_15_XML.fm Page 593 Wednesday, November 16, 2011 11:52 AM

594 Chapter 15 XML

1 // Fig. 15.33: xpath.html
2 // JavaScript that uses XPath to locate nodes in an XML document.
3 var doc; // variable to reference the XML document
4 var outputHTML = ""; // stores text to output in outputDiv
5
6 // register event handler for button and load XML document
7 function start()
8 {
9 document.getElementById("matchesButton").addEventListener(

10 "click", processXPathExpression, false);
11 loadXMLDocument("sports.xml");
12 } // end function start
13
14 // load XML document programmatically
15 function loadXMLDocument(url)
16 {
17 var xmlHttpRequest = new XMLHttpRequest();
18 xmlHttpRequest.open("get", url, false);
19 xmlHttpRequest.send(null);
20 doc = xmlHttpRequest.responseXML;
21 } // end function loadXMLDocument
22
23 // display the XML document
24 function displayHTML()
25 {
26 document.getElementById("outputDiv").innerHTML = outputHTML;
27 } // end function displayDoc
28
29 // obtain and apply XPath expression
30 function processXPathExpression()
31 {
32 var xpathExpression = document.getElementById("inputField").value;
33 var result;
34 outputHTML = "";
35
36 if () // Internet Explorer
37 {
38
39
40 for (var i = 0; i < result.length; i++)
41 {
42 outputHTML += "<p>" + + "</p>";
43 } // end for
44 } // end if
45 else // other browsers
46 {
47
48
49
50
51 while (current)
52 {

Fig. 15.33 | Using XPath to locate nodes in an XML document. (Part 1 of 2.)

!doc.evaluate

result = doc.selectNodes(xpathExpression);

result.item(i).text

result = doc.evaluate(xpathExpression, doc, null,
 XPathResult.ORDERED_NODE_ITERATOR_TYPE, null);
var current = result.iterateNext();

iw3htp5_15_XML.fm Page 594 Wednesday, November 16, 2011 11:52 AM

15.9 Document Object Model (DOM) 595

Function processXPathExpression
Function processXPathExpression (Fig. 15.33, lines 30–59) obtains the XPath expression
(line 32) from the inputField. Internet Explorer and other browsers handle XPath process-
ing differently, so this function contains an if…else statement to handle the differences.

 Lines 36–44 apply the XPath expression in Internet Explorer (or any other browser
that does not support to evaluate method on an XML document object), and lines 45–
56 apply the XPath expression in all other browsers. In IE, the XML document object’s
selectNodes method (line 38) receives an XPath expression as an argument and returns a
collection of elements that match the expression. Lines 40–43 iterate through the results
and mark up each one in a separate p element. After this loop completes, line 58 displays
the generated markup in outputDiv.

For other browsers, lines 47–48 invoke the XML document object’s evaluate
method, which receives five arguments—the XPath expression, the document to apply the
expression to, a namespace resolver, a result type and an XPathResult object into which
to place the results. The result type XPathResult.ORDERED_NODE_ITERATOR_TYPE indicates
that the method should return an object that can be used to iterate through the results in
the order they appeared in the XML document. If the last argument is null, the function
simply returns a new XPathResult object containing the matches. The namespace resolver
argument can be null if you’re not using XML namespace prefixes in the XPath pro-
cessing. Lines 47–55 iterate through the XPathResult and mark up the results. Line 49
invokes the XPathResult’s iterateNext method to position to the first result. If there’s a
result, the condition in line 51 will be true, and line 53 creates a p element for that result.
Line 54 then positions to the next result. After this loop completes, line 58 displays the
generated markup in outputDiv.

sports.xml
Figure 15.34 shows the XML document sports.xml that we use in this example. [Note:
The versions of sports.xml presented in Fig. 15.34 and Fig. 15.18 are nearly identical. In
the current example, we do not want to apply an XSLT, so we omit the processing instruc-
tion found in line 2 of Fig. 15.18. We also removed extra blank lines to save space.]

53 outputHTML += "<p>" + + "</p>";
54
55 } // end while
56 } // end else
57
58 displayHTML();
59 } // end function processXPathExpression
60
61 window.addEventListener("load", start, false);

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.34: sports.xml -->

Fig. 15.34 | XML document that describes various sports. (Part 1 of 2.)

Fig. 15.33 | Using XPath to locate nodes in an XML document. (Part 2 of 2.)

current.textContent
current = result.iterateNext();

iw3htp5_15_XML.fm Page 595 Wednesday, November 16, 2011 11:52 AM

596 Chapter 15 XML

Function processXPathExpression
Figure 15.35 summarizes the XPath expressions that we demonstrated in Fig. 15.32’s
sample outputs.

4 <!-- Sports Database -->
5 <sports>
6 <game id = "783">
7 <name>Cricket</name>
8 <paragraph>
9 More popular among commonwealth nations.

10 </paragraph>
11 </game>
12 <game id = "239">
13 <name>Baseball</name>
14 <paragraph>
15 More popular in America.
16 </paragraph>
17 </game>
18 <game id = "418">
19 <name>Soccer (Futbol)</name>
20 <paragraph>
21 Most popular sport in the world.
22 </paragraph>
23 </game>
24 </sports>

Expression Description

/sports Matches all sports nodes that are child nodes of
the document root node.

/sports/game Matches all game nodes that are child nodes of
sports, which is a child of the document root.

/sports/game/name Matches all name nodes that are child nodes of
game. The game is a child of sports, which is a
child of the document root.

/sports/game/paragraph Matches all paragraph nodes that are child nodes
of game. The game is a child of sports, which is a
child of the document root.

/sports/game [@id=’239’] Matches the game node with the id number 239.
The game is a child of sports, which is a child of
the document root.

/sports/game [name='Cricket'] Matches all game nodes that contain a child ele-
ment whose name is Cricket. The game is a child
of sports, which is a child of the document root.

Fig. 15.35 | XPath expressions and descriptions.

Fig. 15.34 | XML document that describes various sports. (Part 2 of 2.)

iw3htp5_15_XML.fm Page 596 Wednesday, November 16, 2011 11:52 AM

15.10 Web Resources 597

15.10 Web Resources
www.deitel.com/XML/

The Deitel XML Resource Center focuses on the vast amount of free XML content available online,
plus some for-sale items. Start your search here for tools, downloads, tutorials, podcasts, wikis, doc-
umentation, conferences, FAQs, books, e-books, sample chapters, articles, newsgroups, forums,
downloads from CNET’s download.com, jobs and contract opportunities, and more that will help
you develop XML applications.

Summary
Section 15.1 Introduction
• The eXtensible Markup Language (XML; p. 544) is a portable, widely supported, open (i.e.,

nonproprietary) technology for data storage and exchange.

Section 15.2 XML Basics
• XML documents are readable by both humans and machines.

• XML permits document authors to create custom markup for any type of information. This en-
ables document authors to create entirely new markup languages (p. 544) that describe specific
types of data, including mathematical formulas, chemical molecular structures, music and recipes.

• An XML parser (p. 546) is responsible for identifying components of XML documents (typically
files with the .xml extension) and then storing those components in a data structure for manip-
ulation.

• An XML document can optionally reference a Document Type Definition (DTD, p. 546) or
schema that defines the XML document’s structure.

• An XML document that conforms to a DTD/schema (i.e., has the appropriate structure) is valid.

• If an XML parser (validating or non-validating; p. 546) can process an XML document success-
fully, that XML document is well-formed (p. 546).

Section 15.3 Structuring Data
• An XML document begins with an XML declaration (p. 547), which identifies the document as

an XML document. The version attribute (p. 547) specifies the version of XML syntax used in
the document.

• XML comments begin with <!-- and end with -->.

• An XML document contains text that represents its content (i.e., data) and elements that specify
its structure. XML documents delimit an element with start and end tags.

• The root element (p. 550) of an XML document encompasses all its other elements.

• XML element names can be of any length and can contain letters, digits, underscores, hyphens
and periods. However, they must begin with either a letter or an underscore, and they should not
begin with “xml” in any combination of uppercase and lowercase letters, as this is reserved for use
in the XML standards.

• When a user loads an XML document in a browser, a parser parses the document, and the brows-
er uses a style sheet to format the data for display.

• Data can be placed between tags or in attributes (name/value pairs that appear within the angle
brackets of start tags, p. 552). Elements can have any number of attributes.

iw3htp5_15_XML.fm Page 597 Wednesday, November 16, 2011 11:52 AM

598 Chapter 15 XML

Section 15.4 XML Namespaces
• XML allows document authors to create their own markup, and as a result, naming collisions

(i.e., two different elements that have the same name, p. 553) can occur. XML namespaces
(p. 553) provide a means for document authors to prevent collisions.

• Each namespace prefix (p. 553) is bound to a Uniform Resource Identifier (URI, p. 554) that
uniquely identifies the namespace. A URI is a series of characters that differentiate names. Doc-
ument authors create their own namespace prefixes. Any name can be used as a namespace prefix,
but the namespace prefix xml is reserved for use in XML standards.

• To eliminate the need to place a namespace prefix in each element, authors can specify a default
namespace for an element and its children. We declare a default namespace using keyword xmlns
(p. 554) with a URI as its value.

• Document authors commonly use URLs (Uniform Resource Locators, p. 554) for URIs, because
domain names (e.g., deitel.com) in URLs must be unique.

Section 15.5 Document Type Definitions (DTDs)
• DTDs and schemas specify documents’ element types and attributes and their relationships to

one another.

• DTDs and schemas enable an XML parser to verify whether an XML document is valid (i.e., its
elements contain the proper attributes and appear in the proper sequence).

• A DTD expresses the set of rules for document structure using an EBNF (Extended Backus-Naur
Form) grammar.

• In a DTD, an ELEMENT element type declaration (p. 557) defines the rules for an element. An
ATTLIST attribute-list declaration (p. 557) defines attributes for a particular element.

Section 15.6 W3C XML Schema Documents
• XML schemas use XML syntax and are themselves XML documents.

• Unlike DTDs, XML Schema (p. 559) documents can specify what type of data (e.g., numeric,
text) an element can contain.

• An XML document that conforms to a schema document is schema valid (p. 560).

• Two categories of types exist in XML Schema: simple types and complex types (p. 563). Simple
types cannot contain attributes or child elements; complex types can.

• Every simple type defines a restriction on an XML Schema-defined schema type or on a user-
defined type.

• Complex types can have either simple content or complex content. Both can contain attributes,
but only complex content can contain child elements.

• Whereas complex types with simple content must extend or restrict some other existing type,
complex types with complex content do not have this limitation.

Section 15.7 XML Vocabularies
• XML allows authors to create their own tags to describe data precisely.

• Some of these XML vocabularies include MathML (Mathematical Markup Language, p. 566),
Scalable Vector Graphics (SVG, p. 566), Wireless Markup Language (WML, p. 566), Extensible
Business Reporting Language (XBRL, p. 566), Extensible User Interface Language (XUL,
p. 566), Product Data Markup Language (PDML, p. 566), W3C XML Schema and Extensible
Stylesheet Language (XSL).

• MathML markup describes mathematical expressions for display. MathML is divided into two
types of markup—content markup (p. 566) and presentation markup (p. 566).

iw3htp5_15_XML.fm Page 598 Wednesday, November 16, 2011 11:52 AM

 Summary 599

• Content markup provides tags that embody mathematical concepts. Content MathML allows
programmers to write mathematical notation specific to different areas of mathematics.

• Presentation MathML is directed toward formatting and displaying mathematical notation.

• By convention, MathML files end with the .mml filename extension.

• A MathML document’s root node is the math element and its default namespace is http://
www.w3.org/1998/Math/MathML.

• The mn element (p. 567) marks up a number. The mo element (p. 567) marks up an operator.

• Entity reference ⁢ (p. 568) indicates a multiplication operation without explicit
symbolic representation (p. 568).

• The msup element (p. 568) represents a superscript. It has two children—the expression to be su-
perscripted (i.e., the base) and the superscript (i.e., the exponent). Correspondingly, the msub el-
ement (p. 568) represents a subscript.

• To display variables, use identifier element mi (p. 568).

• The mfrac element (p. 568) displays a fraction. If either the numerator or the denominator con-
tains more than one element, it must appear in an mrow element (p. 569).

• An mrow element is used to group elements that are positioned horizontally in an expression.

• The entity reference ∫ (p. 569) represents the integral symbol.

• The msubsup element (p. 569) specifies the subscript and superscript of a symbol. It requires
three child elements—an operator, the subscript expression and the superscript expression.

• Element msqrt (p. 569) represents a square-root expression.

• Entity reference δ represents a lowercase delta symbol.

Section 15.8 Extensible Stylesheet Language and XSL Transformations
• eXtensible Stylesheet Language (XSL; p. 570) can convert XML into any text-based document.

XSL documents have the extension .xsl.

• XPath (p. 570) is a string-based language of expressions used by XML and many of its related
technologies for effectively and efficiently locating structures and data (such as specific elements
and attributes) in XML documents.

• XPath is used to locate parts of the source-tree document that match templates defined in an XSL
style sheet. When a match occurs (i.e., a node matches a template), the matching template exe-
cutes and adds its result to the result tree (p. 571). When there are no more matches, XSLT has
transformed the source tree (p. 571) into the result tree.

• The XSLT does not analyze every node of the source tree; it selectively navigates the source tree
using XPath’s select and match attributes.

• For XSLT to function, the source tree must be properly structured. Schemas, DTDs and validat-
ing parsers can validate document structure before using XPath and XSLTs.

• XSL style sheets (p. 571) can be connected directly to an XML document by adding an
xml:stylesheet processing instruction to the XML document.

• Two tree structures are involved in transforming an XML document using XSLT—the source
tree (the document being transformed) and the result tree (the result of the transformation).

• The XPath character / (a forward slash) always selects the document root. In XPath, a leading
forward slash specifies that we’re using absolute addressing.

• An XPath expression with no beginning forward slash uses relative addressing (p. 574).

• XSL element value-of retrieves an attribute’s value. The @ symbol specifies an attribute node.

iw3htp5_15_XML.fm Page 599 Wednesday, November 16, 2011 11:52 AM

600 Chapter 15 XML

• XSL node-set function name (p. 578) retrieves the current node’s element name.

• XSL node-set function text (p. 578) retrieves the text between an element’s start and end tags.

• The XPath expression //* selects all the nodes in an XML document.

Section 15.9 Document Object Model (DOM)
• Although an XML document is a text file, retrieving data from the document using traditional

sequential file-processing techniques is neither practical nor efficient, especially for adding and
removing elements dynamically.

• Upon successfully parsing a document, some XML parsers store document data as tree structures
in memory. This hierarchical tree structure is called a Document Object Model (DOM) tree
(p. 579), and an XML parser that creates this type of structure is known as a DOM parser (p. 579).

• Each element name is represented by a node. A node that contains other nodes is called a parent
node. A parent node (p. 579) can have many children, but a child node (p. 579) can have only
one parent node.

• Nodes that are peers are called sibling nodes (p. 579).

• A node’s descendant nodes (p. 579) include its children, its children’s children and so on. A
node’s ancestor nodes (p. 579) include its parent, its parent’s parent and so on.

• Many of the XML DOM capabilities are similar or identical to those of the HTML5 DOM.

• The DOM tree has a single root node (p. 579), which contains all the other nodes in the document.

• An XMLHttpRequest object can be used to load an XML document.

• The XMLHttpRequest object’s open method (p. 588) can be used to create a get request for an
XML document at a specified URL. When the last argument’s value is false, the request will be
made synchronously.

• XMLHttpRequest method send (p. 588) executes the request to load the XML document. When
the request completes, the resulting XML document is stored in the XMLHttpRequest object’s re-
sponseXML property.

• A document’s childNodes property contains a list of the XML document’s top-level nodes.

• A node’s nodeType property (p. 589) contains the type of the node.

• Nonbreaking spaces (, p. 589) are spaces that the browser is not allowed to collapse or that
can be used to keep words together.

• The name of an element can be obtained by the node’s nodeName property (p. 589).

• If the currrent node has children, the length of the node’s childNodes list is nonzero.

• The nodeValue property (p. 589) returns the value of an element.

• Node property firstChild (p. 589) refers to the first child of a given node. Similarly, lastChild
(p. 590) refers to the last child of a given node.

• Node property nextSibling (p. 589) refers to the next sibling in a list of children of a particular
node. Similarly, previousSibling refers to the current node’s previous sibling.

• Property parentNode (p. 590) refers to the current node’s parent node.

• A simpler way to locate nodes is to search for lists of node-matching search criteria that are writ-
ten as XPath expressions.

• In IE, the XML document object’s selectNodes method (p. 595) receives an XPath expression
as an argument and returns a collection of elements that match the expression.

• Other browsers search for XPath matches using the XML document object’s evaluate method
(p. 595), which receives five arguments—the XPath expression, the document to apply the ex-

iw3htp5_15_XML.fm Page 600 Wednesday, November 16, 2011 11:52 AM

 Self-Review Exercises 601

pression to, a namespace resolver, a result type and an XPathResult object (p. 595) into which
to place the results. If the last argument is null, the function simply returns a new XPathResult
object containing the matches. The namespace resolver argument can be null if you’re not using
XML namespace prefixes in the XPath processing.

Self-Review Exercises
15.1 Which of the following are valid XML element names? (Select all that apply.)

a) yourQualification

b) your Qualification

c) your.Qualification

d) your_Qualification

e) your-Qualification1

f) 5_yourQualification

15.2 State which of the following statements are true and which are false. If false, explain why.
a) XML is a technology for creating markup languages.
b) XML markup is delimited by forward and backward slashes (/ and \).
c) All XML start tags must have corresponding end tags.
d) Parsers check an XML document’s syntax.
e) XML does not support namespaces.
f) When creating XML elements, document authors must use the set of XML tags provid-

ed by the W3C.
g) The pound character (#), dollar sign ($), ampersand (&) and angle brackets (< and >) are

examples of XML reserved characters.
h) XML is not case sensitive.
i) XML Schemas are better than DTDs, because DTDs lack a way of indicating what spe-

cific type of data (e.g., numeric, text) an element can contain, and DTDs are not them-
selves XML documents.

j) DTDs are written using an XML vocabulary.
k) Schema is a technology for locating information in an XML document.

15.3 Fill in the blanks for each of the following:
a) XML comments begin with <! -- and end with .
b) A(n) object can be used to load an XML document.
c) Nodes that are peers are called .
d) markup describes mathematical expressions for display.
e) Entity reference represents a lowercase delta symbol in XML.
f) A document’s property contains a list of the XML document’s top-level

nodes.
g) The XPath expression selects all the nodes in an XML document.
h) In XPath, a leading forward slash specifies that we’re using .
i) XSL element retrieves an attribute’s value.

15.4 In Fig. 15.2, we subdivided the author element into more detailed pieces. How might you
subdivide the address element? Use the address Baker Street, London, 6789, as an example.

15.5 Write a processing instruction that includes style sheet book.xsl.

15.6 Write an XPath expression that locates salutation nodes in letter.xml (Fig. 15.4).

Answers to Self-Review Exercises
15.1 a, c, d, e. [Choice b is incorrect because it contains a space. Choice f is incorrect because the
first character is a number.]

iw3htp5_15_XML.fm Page 601 Wednesday, November 16, 2011 11:52 AM

602 Chapter 15 XML

15.2 a) True. b) False. In an XML document, markup text is delimited by tags enclosed in angle
brackets (< and >) with a forward slash just after the < in the end tag. c) True. d) True. e) False. XML
does support namespaces. f) False. When creating tags, document authors can use any valid name
but should avoid ones that begin with the reserved word xml (also XML, Xml, etc.). g) False. XML
reserved characters include the ampersand (&), the left angle bracket (<) and the right angle bracket
(>), but not # and $. h) False. XML is case sensitive. i) True. j) False. DTDs use EBNF grammar,
which is not XML syntax. k) False. XPath is a technology for locating information in an XML doc-
ument. XML Schema provides a means for type checking XML documents and verifying their va-
lidity.

15.3 a) --> . b) XMLHttpRequest. c) sibling nodes. d) MathML. e) δ. f) childNodes. g) //*.
h) absolute addressing . i) value-of.

15.4 <address>

 <street>Baker Street</street>

 <city>London</city>

 <pin>6789</pin>

</address>

15.5 <?xsl:stylesheet type = "text/xsl" href = "book.xsl"?>

15.6 /salutation /contact.

Exercises
15.7 (Nutrition Information XML Document) Create an XML document that marks up the nu-
trition facts for a package of Grandma White’s cookies. A package of cookies has a serving size of 1
package and the following nutritional value per serving: 260 calories, 100 fat calories, 11 grams of
fat, 2 grams of saturated fat, 5 milligrams of cholesterol, 210 milligrams of sodium, 36 grams of total
carbohydrates, 2 grams of fiber, 15 grams of sugars and 5 grams of protein. Name this document
nutrition.xml. Load the XML document into your web browser. [Hint: Your markup should con-
tain elements describing the product name, serving size/amount, calories, sodium, cholesterol, pro-
teins, etc. Mark up each nutrition fact/ingredient listed above.]

15.8 (Nutrition Information XML Schema) Write an XML Schema document (nutrition.xsd)
specifying the structure of the XML document created in Exercise 15.7.

15.9 (Nutrition Information XSL Style Sheet) Write an XSL style sheet for your solution to
Exercise 15.7 that displays the nutritional facts in an HTML5 table.

15.10 (Sorting XSLT Modification) Modify Fig. 15.21 (sorting.xsl) to sort by the number of
pages rather than by chapter number. Save the modified document as sorting_byPage.xsl.

iw3htp5_15_XML.fm Page 602 Wednesday, November 16, 2011 11:52 AM

16Ajax-Enabled Rich Internet
Applications with XML and
JSON

… the challenges are for the
designers of these applications:
to forget what we think we
know about the limitations of
the Web, and begin to imagine a
wider, richer range of
possibilities. It’s going to be fun.
—Jesse James Garrett

To know how to suggest is the
great art of teaching.
—Henri-Frederic Amiel

It is characteristic of the
epistemological tradition to
present us with partial scenarios
and then to demand whole or
categorical answers as it were.
—Avrum Stroll

O! call back yesterday, bid time
return.
—William Shakespeare

O b j e c t i v e s
In this chapter you will:

■ Learn what Ajax is and why
it’s important for building
Rich Internet Applications.

■ Use asynchronous requests
to give web applications the
feel of desktop applications.

■ Use the XMLHttpRequest
object to manage
asynchronous requests to
servers and to receive
asynchronous responses.

■ Use XML with the DOM.

■ Create a full-scale Ajax-
enabled application.

iw3htp5_16_AJAX.fm Page 603 Wednesday, November 16, 2011 11:52 AM

604 Chapter 16 Ajax-Enabled Rich Internet Applications with XML and JSON

16.1 Introduction
Despite the tremendous technological growth of the Internet over the past decade, the us-
ability of web applications has lagged behind that of desktop applications. Rich Internet
Applications (RIAs) are web applications that approximate the look, feel and usability of
desktop applications. Two key attributes of RIAs are performance and a rich GUI.

RIA performance comes from Ajax (Asynchronous JavaScript and XML), which uses
client-side scripting to make web applications more responsive. Ajax applications separate
client-side user interaction and server communication and run them in parallel, reducing
the delays of server-side processing normally experienced by the user.

There are many ways to implement Ajax functionality. “Raw” Ajax uses JavaScript to
send asynchronous requests to the server, then updates the page using the DOM. “Raw” Ajax
is best suited for creating small Ajax components that asynchronously update a section of the
page. However, when writing “raw” Ajax you need to deal directly with cross-browser por-
tability issues, making it impractical for developing large-scale applications. These portability
issues are hidden by Ajax toolkits, such as jQuery, ASP.NET Ajax and JSF’s Ajax capabili-
ties, which provide powerful ready-to-use controls and functions that enrich web applica-
tions and simplify JavaScript coding by making it cross-browser compatible.

Traditional web applications use HTML5 forms to build GUIs that are simple by
comparison with those of Windows, Macintosh and desktop systems in general. You can
achieve rich GUIs in RIAs with JavaScript toolkits providing powerful ready-to-use con-
trols and functions that enrich web applications.

Previous chapters discussed HTML5, CSS3, JavaScript, the DOM and XML. This
chapter uses these technologies to build Ajax-enabled web applications. The client side of
Ajax applications is written in HTML5 and CSS3 and uses JavaScript to add functionality
to the user interface. XML is used to structure the data passed between server and client.
We’ll also use JSON (JavaScript Object Notation) for this purpose. The Ajax component
that manages interaction with the server is usually implemented with JavaScript’s
XMLHttpRequest object—commonly abbreviated as XHR. The server processing can be

16.1 Introduction
16.1.1 Traditional Web Applications vs. Ajax

Applications
16.1.2 Traditional Web Applications
16.1.3 Ajax Web Applications

16.2 Rich Internet Applications (RIAs)
with Ajax

16.3 History of Ajax
16.4 “Raw” Ajax Example Using the

XMLHttpRequest Object
16.4.1 Asynchronous Requests
16.4.2 Exception Handling
16.4.3 Callback Functions
16.4.4 XMLHttpRequest Object Event,

Properties and Methods

16.5 Using XML and the DOM
16.6 Creating a Full-Scale Ajax-Enabled

Application
16.6.1 Using JSON
16.6.2 Rich Functionality
16.6.3 Interacting with a Web Service on the

Server
16.6.4 Parsing JSON Data
16.6.5 Creating HTML5 Elements and Setting

Event Handlers on the Fly
16.6.6 Implementing Type-Ahead
16.6.7 Implementing a Form with

Asynchronous Validation

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

iw3htp5_16_AJAX.fm Page 604 Wednesday, November 16, 2011 11:52 AM

16.1 Introduction 605

implemented using any server-side technology, such as PHP, ASP.NET and JavaServer
Faces, each of which we cover in later chapters.

We begin with several examples that build basic Ajax applications using JavaScript
and the XMLHttpRequest object. In subsequent chapters, we use tools such as ASP.NET
Ajax and JavaServer Faces to build Ajax-enabled RIAs. We also include an online intro-
duction to jQuery.

16.1.1 Traditional Web Applications vs. Ajax Applications
In this section, we consider the key differences between traditional web applications and
Ajax-based web applications.

16.1.2 Traditional Web Applications
Figure 16.1 presents the typical interactions between the client and the server in a tradi-
tional web application, such as one that employs a user registration form. The user first
fills in the form’s fields, then submits the form (Fig. 16.1, Step 1). The browser generates
a request to the server, which receives the request and processes it (Step 2). The server gen-
erates and sends a response containing the exact page that the browser will render (Step 3),
which causes the browser to load the new page (Step 4) and temporarily makes the browser
window blank. Note that the client waits for the server to respond and reloads the entire
page with the data from the response (Step 4). While such a synchronous request is being
processed on the server, the user cannot interact with the client web page. Frequent long
periods of waiting, due perhaps to Internet congestion, have led some users to refer to the
World Wide Web as the “World Wide Wait;” this situation has improved greatly in recent
years. If the user interacts with and submits another form, the process begins again (Steps
5–8).

This model was originally designed for a web of hypertext documents—what some
people call the “brochure web.” As the web evolved into a full-scale applications platform,

Fig. 16.1 | Classic web application reloading the page for every user interaction.

Se
rv

er
C

lie
nt Form

Form

Page 1

Form

Form

Page 2

Form

Form

Page 3

Request 1

Process
request

Generate
response

Process
request

Generate
response

Page
reloading

Request 2

Page
reloading

Form

Form

Page 2

Form

Form

Page 3

1

2

3

4

5

6

7

8

iw3htp5_16_AJAX.fm Page 605 Wednesday, November 16, 2011 11:52 AM

606 Chapter 16 Ajax-Enabled Rich Internet Applications with XML and JSON

the model shown in Fig. 16.1 yielded erratic application performance. Every full-page
refresh required users to re-establish their understanding of the full-page contents. Users
sought a model that would yield the responsive feel of desktop applications.

16.1.3 Ajax Web Applications
Ajax applications add a layer between the client and the server to manage communication
between the two (Fig. 16.2). When the user interacts with the page, the client creates an
XMLHttpRequest object to manage a request (Step 1). The XMLHttpRequest object sends
the request to the server (Step 2) and awaits the response. The requests are asynchronous,
so the user can continue interacting with the application on the client side while the server
processes the earlier request concurrently. Other user interactions could result in additional
requests to the server (Steps 3 and 4). Once the server responds to the original request (Step
5), the XMLHttpRequest object that issued the request calls a client-side function to process
the data returned by the server. This function—known as a callback function—uses par-
tial page updates (Step 6) to display the data in the existing web page without reloading the
entire page. At the same time, the server may be responding to the second request (Step 7)
and the client side may be starting to do another partial page update (Step 8). The callback
function updates only a designated part of the page. Such partial page updates help make
web applications more responsive, making them feel more like desktop applications. The
web application does not load a new page while the user interacts with it.

16.2 Rich Internet Applications (RIAs) with Ajax
Ajax improves the user experience by making interactive web applications more respon-
sive. Consider a registration form with a number of fields (e.g., first name, last name e-
mail address, telephone number, etc.) and a Register (or Submit) button that sends the en-

Fig. 16.2 | Ajax-enabled web application interacting with the server asynchronously.

Se
rv

er
C

lie
nt Form

Form

Page 1

Process
request 1

Generate
response

Process
request 2

Generate
response

Request object

Callback function
Response processing Request object

Callback function
Response processing

Update Update

User interaction initiates
asynchronous request

User interaction initiates
asynchronous request

Partial
page update

Partial
page update

1

2

3

4

5

6

7

8

data data

iw3htp5_16_AJAX.fm Page 606 Wednesday, November 16, 2011 11:52 AM

16.2 Rich Internet Applications (RIAs) with Ajax 607

tered data to the server. Usually each field has rules that the user’s entries have to follow
(e.g., valid e-mail address, valid telephone number, etc.).

When the user clicks Register, an HTML5 form sends the server all of the data to be
validated (Fig. 16.3). While the server is validating the data, the user cannot interact with
the page. The server finds invalid data, generates a new page identifying the errors in the
form and sends it back to the client—which renders the page in the browser. Once the
user fixes the errors and clicks the Register button, the cycle repeats until no errors are
found, then the data is stored on the server. The entire page reloads every time the user
submits invalid data.

Ajax-enabled forms are more interactive. Rather than the entire form being sent to be
validated, entries can be validated individually, dynamically, as the user enters data into
the fields. For example, consider a website registration form that requires a valid e-mail
address. When the user enters an e-mail address into the appropriate field, then moves to
the next form field to continue entering data, an asynchronous request is sent to the server
to validate the e-mail address. If it’s not valid, the server sends an error message that’s dis-
played on the page informing the user of the problem (Fig. 16.4). By sending each entry
asynchronously, the user can address each invalid entry quickly, versus making edits and
resubmitting the entire form repeatedly until all entries are valid. Simple validation like
this for e-mails and phone numbers can also be accomplished with HTML5’s new input
elements that you learned in Chapter 3, rather than using Ajax. Asynchronous requests
could also be used to fill some fields based on previous fields (e.g., automatically filling in
the “city” and “state” fields based on the ZIP code entered by the user).

Fig. 16.3 | Classic HTML5 form: The user submits the form to the server, which validates the
data (if any). Server responds indicating any fields with invalid or missing data. (Part 1 of 2.)

a) A sample registration
form in which the user has
not filled in the required
fields, but attempts to
submit the form anyway
by clicking Register.

iw3htp5_16_AJAX.fm Page 607 Wednesday, November 16, 2011 11:52 AM

608 Chapter 16 Ajax-Enabled Rich Internet Applications with XML and JSON

Fig. 16.4 | Ajax-enabled form shows errors asynchronously when user moves to another field.

Fig. 16.3 | Classic HTML5 form: The user submits the form to the server, which validates the
data (if any). Server responds indicating any fields with invalid or missing data. (Part 2 of 2.)

b) The server responds by
indicating all the form fields
with missing or invalid data.
The user must correct the
problems and resubmit the
entire form repeatedly until
all errors are corrected.

Error message in red

iw3htp5_16_AJAX.fm Page 608 Wednesday, November 16, 2011 11:52 AM

16.3 History of Ajax 609

16.3 History of Ajax
The term Ajax was coined by Jesse James Garrett of Adaptive Path in February 2005, when
he was presenting the previously unnamed technology to a client. The technologies of Ajax
(HTML, JavaScript, CSS, the DOM and XML) had all existed for many years prior to 2005.

Asynchronous page updates can be traced back to earlier browsers. In the 1990s,
Netscape’s LiveScript language made it possible to include scripts in web pages (e.g., web
forms) that could run on the client. LiveScript evolved into JavaScript. In 1998, Microsoft
introduced the XMLHttpRequest object to create and manage asynchronous requests and
responses. Popular applications like Flickr and Google’s Gmail use the XMLHttpRequest
object to update pages dynamically. For example, Flickr uses the technology for its text
editing, tagging and organizational features; Gmail continuously checks the server for new
e-mail; and Google Maps allows you to drag a map in any direction, downloading the new
areas on the map without reloading the entire page.

The name Ajax immediately caught on and brought attention to its component tech-
nologies. Ajax has enabled “webtop” applications to challenge the dominance of estab-
lished desktop applications. This has become increasingly significant as more and more
computing moves to “the cloud.”

16.4 “Raw” Ajax Example Using the XMLHttpRequest
Object
In this section, we use the XMLHttpRequest object to create and manage asynchronous re-
quests. This object, which resides on the client, is the layer between the client and the serv-
er that manages asynchronous requests in Ajax applications. It’s supported on most
browsers, though they may implement it differently—a common issue with browsers. To
initiate an asynchronous request (shown in Fig. 16.5), you create an instance of the XML-
HttpRequest object, then use its open method to set up the request and its send method
to initiate the request. We summarize the XMLHttpRequest properties and methods in
Figs. 16.6–16.7.

Figure 16.5 presents an Ajax application in which the user interacts with the page by
moving the mouse over book-cover images; a detailed code walkthrough follows the
figure. We use the mouseover and mouseout events to trigger events when the user moves
the mouse over and out of an image, respectively. The mouseover event calls function get-
Content with the URL of the document containing the book’s description. The function
makes this request asynchronously using an XMLHttpRequest object. When the
XMLHttpRequest object receives the response, the book description is displayed below the
book images. When the user moves the mouse out of the image, the mouseout event calls
function clearContent to clear the display box. These tasks are accomplished without
reloading the page on the client. You can test-drive this example at http://

test.deitel.com/iw3htp5/ch16/fig16_05/SwitchContent.html.

Performance Tip 16.1
When an Ajax application requests a file from a server, such as an HTML5 document or
an image, the browser typically caches that file. Subsequent requests for the same file can
load it from the browser’s cache rather than making the round trip to the server again.

iw3htp5_16_AJAX.fm Page 609 Wednesday, November 16, 2011 11:52 AM

610 Chapter 16 Ajax-Enabled Rich Internet Applications with XML and JSON

16.4.1 Asynchronous Requests
The function getContent (lines 46–63) sends the asynchronous request. Line 51 creates
the XMLHttpRequest object, which manages the asynchronous request. We store the object
in the global variable asyncRequest (declared at line 13) so that it can be accessed any-
where in the script. You can test this web page at test.deitel.com/iw3htp5/ch16/
fig16_05/SwitchContent.html.

Line 56 calls the XMLHttpRequest open method to prepare an asynchronous GET
request. In this example, the url parameter specifies the address of an HTML document
containing the description of a particular book. When the third argument is true, the
request is asynchronous. The URL is passed to function getContent in response to the
onmouseover event for each image. Line 57 sends the asynchronous request to the server
by calling the XMLHttpRequest send method. The argument null indicates that this
request is not submitting data in the body of the request.

Software Engineering Observation 16.1
For security purposes, the XMLHttpRequest object doesn’t allow a web application to re-
quest resources from domains other than the one that served the application. For this rea-
son, the web application and its resources must reside on the same web server (this could
be a web server on your local computer).This is commonly known as the same origin pol-
icy (SOP). SOP aims to close a vulnerability called cross-site scripting, also known as
XSS, which allows an attacker to compromise a website’s security by injecting a malicious
script onto the page from another domain. To get content from another domain securely,
you can implement a server-side proxy—an application on the web application’s web
server—that can make requests to other servers on the web application’s behalf.

1 <!DOCTYPE html>
2
3 <!-- Fig. 16.5: SwitchContent.html -->
4 <!-- Asynchronously display content without reloading the page. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <style type = "text/css">
9 .box { border: 1px solid black; padding: 10px }

10 </style>
11 <title>Switch Content Asynchronously</title>
12 <script>
13 var asyncRequest; // variable to hold XMLHttpRequest object
14
15 // set up event handlers
16 function registerListeners()
17 {
18 var img;
19 img = document.getElementById("cpphtp");
20 img.addEventListener("mouseover",
21 function() { getContent("cpphtp8.html"); }, false);
22 img.addEventListener("mouseout", clearContent, false);
23 img = document.getElementById("iw3htp");

Fig. 16.5 | Asynchronously display content without reloading the page. (Part 1 of 4.)

iw3htp5_16_AJAX.fm Page 610 Wednesday, November 16, 2011 11:52 AM

16.4 “Raw” Ajax Example Using the XMLHttpRequest Object 611

24 img.addEventListener("mouseover",
25 function() { getContent("iw3htp.html"); }, false);
26 img.addEventListener("mouseout", clearContent, false);
27 img = document.getElementById("jhtp");
28 img.addEventListener("mouseover",
29 function() { getContent("jhtp.html"); }, false);
30 img.addEventListener("mouseout", clearContent, false);
31 img = document.getElementById("vbhtp");
32 img.addEventListener("mouseover",
33 function() { getContent("vbhtp.html"); }, false);
34 img.addEventListener("mouseout", clearContent, false);
35 img = document.getElementById("vcshtp");
36 img.addEventListener("mouseover",
37 function() { getContent("vcshtp.html"); }, false);
38 img.addEventListener("mouseout", clearContent, false);
39 img = document.getElementById("javafp");
40 img.addEventListener("mouseover",
41 function() { getContent("javafp.html"); }, false);
42 img.addEventListener("mouseout", clearContent, false);
43 } // end function registerListeners
44
45 // set up and send the asynchronous request.
46 function getContent(url)
47 {
48 // attempt to create XMLHttpRequest object and make the request
49
50 {
51
52
53 // register event handler
54
55
56
57
58 } // end try
59
60 {
61 alert("Request failed.");
62 } // end catch
63 } // end function getContent
64
65 // displays the response data on the page
66 function stateChange()
67 {
68 if ()
69 {
70 document.getElementById("contentArea").innerHTML =
71 asyncRequest.responseText; // places text in contentArea
72 } // end if
73 } // end function stateChange
74

Fig. 16.5 | Asynchronously display content without reloading the page. (Part 2 of 4.)

try

asyncRequest = new XMLHttpRequest(); // create request object

asyncRequest.addEventListener(
 "readystatechange", stateChange, false);
asyncRequest.open("GET", url, true); // prepare the request
asyncRequest.send(null); // send the request

catch (exception)

asyncRequest.readyState == 4 && asyncRequest.status == 200

iw3htp5_16_AJAX.fm Page 611 Wednesday, November 16, 2011 11:52 AM

612 Chapter 16 Ajax-Enabled Rich Internet Applications with XML and JSON

75 // clear the content of the box
76 function clearContent()
77 {
78 document.getElementById("contentArea").innerHTML = "";
79 } // end function clearContent
80
81 window.addEventListener("load", registerListeners, false);
82 </script>
83 </head>
84 <body>
85 <h1>Mouse over a book for more information.</h1>
86 <img id = "cpphtp" alt = "C++ How to Program book cover"
87 src = "http://test.deitel.com/images/thumbs/cpphtp8.jpg">
88 <img id = "iw3htp" alt = "Internet & WWW How to Program book cover"
89 src = "http://test.deitel.com/images/thumbs/iw3htp5.jpg">
90 <img id = "jhtp" alt = "Java How to Program book cover"
91 src = "http://test.deitel.com/images/thumbs/jhtp9.jpg">
92 <img id = "vbhtp" alt = "Visual Basic 2010 How to Program book cover"
93 src = "http://test.deitel.com/images/thumbs/vb2010htp.jpg">
94 <img id = "vcshtp" alt = "Visual C# 2010 How to Program book cover"
95 src = "http://test.deitel.com/images/thumbs/vcsharp2010htp.jpg">
96 <img id = "javafp" alt = "Java for Programmers book cover"
97 src = "http://test.deitel.com/images/thumbs/javafp.jpg">
98 <div class = "box" id = "contentArea"></div>
99 </body>
100 </html>

Fig. 16.5 | Asynchronously display content without reloading the page. (Part 3 of 4.)

a) User hovers over C++ How to Program book-cover image, causing an asynchronous request to the server to obtain the
book’s description. When the response is received, the application performs a partial page update to display the description.

mouse cursor

iw3htp5_16_AJAX.fm Page 612 Wednesday, November 16, 2011 11:52 AM

16.4 “Raw” Ajax Example Using the XMLHttpRequest Object 613

16.4.2 Exception Handling
Lines 59–62 introduce exception handling. An exception is an indication of a problem that
occurs during a program’s execution. The name “exception” implies that the problem occurs
infrequently. Exception handling enables you to create applications that can handle (i.e., re-
solve) exceptions—often allowing a program to continue executing as if no problem had
been encountered.

Lines 49–58 contain a try block, which encloses the code that might cause an excep-
tion and the code that should not execute if an exception occurs (i.e., if an exception
occurs in a statement of the try block, the remaining code in the try block is skipped). A
try block consists of the keyword try followed by a block of code enclosed in curly braces
({}). If there’s a problem sending the request—e.g., if a user tries to access the page using
an older browser that does not support XMLHttpRequest—the try block terminates imme-
diately and a catch block (also called a catch clause or exception handler) catches (i.e.,
receives) and handles the exception. The catch block (lines 59–62) begins with the key-
word catch and is followed by a parameter in parentheses—called the exception param-
eter—and a block of code enclosed in curly braces. The exception parameter’s name
(exception in this example) enables the catch block to interact with a caught exception
object (for example, to obtain the name of the exception or an exception-specific error mes-
sage via the exception object’s name and message properties, respectively). In this case, we
simply display our own error message "Request Failed" and terminate the getContent

Fig. 16.5 | Asynchronously display content without reloading the page. (Part 4 of 4.)

b) User hovers over Internet & World Wide Web How to Program book-cover image, causing the process to repeat.

mouse cursor

iw3htp5_16_AJAX.fm Page 613 Wednesday, November 16, 2011 11:52 AM

614 Chapter 16 Ajax-Enabled Rich Internet Applications with XML and JSON

function. The request can fail because a user accesses the web page with an older browser
or the content that’s being requested is located on a different domain.

16.4.3 Callback Functions
The stateChange function (lines 66–73) is the callback function that’s called when the
client receives the response data. Lines 54–55 register function stateChange as the event
handler for the XMLHttpRequest object’s readystatechange event. Whenever the request
makes progress, the XMLHttpRequest object calls the readystatechange event handler.
This progress is monitored by the readyState property, which has a value from 0 to 4.
The value 0 indicates that the request is not initialized and the value 4 indicates that the
request is complete—all the values for this property are summarized in Fig. 16.6. If the re-
quest completes successfully (line 68), lines 70–71 use the XMLHttpRequest object’s
responseText property to obtain the response data and place it in the div element named
contentArea (defined at line 98). We use the DOM’s getElementById method to get this
div element, and use the element’s innerHTML property to place the content in the div.

16.4.4 XMLHttpRequest Object Event, Properties and Methods
Figures 16.6 and 16.7 summarize some of the XMLHttpRequest object’s properties and
methods, respectively. The properties are crucial to interacting with asynchronous re-
quests. The methods initialize, configure and send asynchronous requests.

Event or Property Description

readystatechange Register a listener for this event to specify the callback function—the
event handler that gets called when the server responds.

readyState Keeps track of the request’s progress. It’s usually used in the callback
function to determine when the code that processes the response should
be launched. The readyState value 0 signifies that the request is unini-
tialized; 1 that the request is loading; 2 that the request has been loaded;
3 that data is actively being sent from the server; and 4 that the request
has been completed.

responseText Text that’s returned to the client by the server.

responseXML If the server’s response is in XML format, this property contains the
XML document; otherwise, it’s empty. It can be used like a document
object in JavaScript, which makes it useful for receiving complex data
(e.g., populating a table).

status HTTP status code of the request. A status of 200 means that request
was successful. A status of 404 means that the requested resource was not
found. A status of 500 denotes that there was an error while the server was
processing the request. For a complete status reference, visit www.w3.org/
Protocols/rfc2616/rfc2616-sec10.html.

statusText Additional information on the request’s status. It’s often used to display
the error to the user when the request fails.

Fig. 16.6 | XMLHttpRequest object event and properties.

iw3htp5_16_AJAX.fm Page 614 Wednesday, November 16, 2011 11:52 AM

16.5 Using XML and the DOM 615

16.5 Using XML and the DOM
When passing structured data between the server and the client, Ajax applications often
use XML because it’s easy to generate and parse. When the XMLHttpRequest object re-
ceives XML data, it parses and stores the data as an XML DOM object in the responseXML
property. The example in Fig. 16.8 asynchronously requests from a server XML docu-
ments containing URLs of book-cover images, then displays the images in the page. The
code that configures the asynchronous request is the same as in Fig. 16.5. You can test-
drive this application at

Method Description

open Initializes the request and has two mandatory parameters—method
and URL. The method parameter specifies the purpose of the
request—typically GET or POST. The URL parameter specifies the
address of the file on the server that will generate the response. A
third optional Boolean parameter specifies whether the request is
asynchronous—it’s set to true by default.

send Sends the request to the server. It has one optional parameter, data,
which specifies the data to be POSTed to the server—it’s set to null
by default.

setRequestHeader Alters the request header. The two parameters specify the header
and its new value. It’s often used to set the content-type field.

getResponseHeader Returns the header data that precedes the response body. It takes
one parameter, the name of the header to retrieve. This call is often
used to determine the response’s type, to parse the response correctly.

getAllResponseHeaders Returns an array that contains all the headers that precede the
response body.

abort Cancels the current request.

Fig. 16.7 | XMLHttpRequest object methods.

http://test.deitel.com/iw3htp5/ch16/fig16_08/PullImagesOntoPage.html

1 <!DOCTYPE html>
2
3 <!-- Fig. 16.8: PullImagesOntoPage.html -->
4 <!-- Image catalog that uses 1Ajax to request XML data asynchronously. -->
5 <html>
6 <head>
7 <meta charset="utf-8">
8 <title> Pulling Images onto the Page </title>
9 <style type = "text/css">

10 li { display: inline-block; padding: 4px; width: 120px; }
11 img { border: 1px solid black }
12 </style>

Fig. 16.8 | Image catalog that uses Ajax to request XML data asynchronously. (Part 1 of 4.)

iw3htp5_16_AJAX.fm Page 615 Wednesday, November 16, 2011 11:52 AM

616 Chapter 16 Ajax-Enabled Rich Internet Applications with XML and JSON

13 <script>
14 var asyncRequest; // variable to hold XMLHttpRequest object
15
16 // set up and send the asynchronous request to get the XML file
17 function getImages(url)
18 {
19 // attempt to create XMLHttpRequest object and make the request
20 try
21 {
22 asyncRequest = new XMLHttpRequest(); // create request object
23
24 // register event handler
25 asyncRequest.addEventListener(
26 "readystatechange", processResponse, false);
27 asyncRequest.open("GET", url, true); // prepare the request
28 asyncRequest.send(null); // send the request
29 } // end try
30 catch (exception)
31 {
32 alert('Request Failed');
33 } // end catch
34 } // end function getImages
35
36 // parses the XML response; dynamically creates an undordered list and
37 // populates it with the response data; displays the list on the page
38 function processResponse()
39 {
40 // if request completed successfully and responseXML is non-null
41 if (asyncRequest.readyState == 4 && asyncRequest.status == 200 &&
42 asyncRequest.responseXML)
43 {
44 clearImages(); // prepare to display a new set of images
45
46 // get the covers from the responseXML
47 var covers = asyncRequest.responseXML.getElementsByTagName(
48 "cover")
49
50 // get base URL for the images
51 var baseUrl = asyncRequest.responseXML.getElementsByTagName(
52 "baseurl").item(0).firstChild.nodeValue;
53
54 // get the placeholder div element named covers
55 var output = document.getElementById("covers");
56
57 // create an unordered list to display the images
58 var imagesUL = document.createElement("ul");
59
60 // place images in unordered list
61 for (var i = 0; i < covers.length; ++i)
62 {
63 var cover = covers.item(i); // get a cover from covers array
64

Fig. 16.8 | Image catalog that uses Ajax to request XML data asynchronously. (Part 2 of 4.)

iw3htp5_16_AJAX.fm Page 616 Wednesday, November 16, 2011 11:52 AM

16.5 Using XML and the DOM 617

65 // get the image filename
66 var image = cover.getElementsByTagName("image").
67 item(0).firstChild.nodeValue;
68
69 // create li and img element to display the image
70 var imageLI = document.createElement("li");
71 var imageTag = document.createElement("img");
72
73 // set img element's src attribute
74 imageTag.setAttribute("src", baseUrl + escape(image));
75 imageLI.appendChild(imageTag); // place img in li
76 imagesUL.appendChild(imageLI); // place li in ul
77 } // end for statement
78
79 output.appendChild(imagesUL); // append ul to covers div
80 } // end if
81 } // end function processResponse
82
83 // clears the covers div
84 function clearImages()
85 {
86 document.getElementById("covers").innerHTML = "";
87 } // end function clearImages
88
89 // register event listeners
90 function registerListeners()
91 {
92 document.getElementById("all").addEventListener(
93 "click", function() { getImages("all.xml"); }, false);
94 document.getElementById("simply").addEventListener(
95 "click", function() { getImages("simply.xml"); }, false);
96 document.getElementById("howto").addEventListener(
97 "click", function() { getImages("howto.xml"); }, false);
98 document.getElementById("dotnet").addEventListener(
99 "click", function() { getImages("dotnet.xml"); }, false);
100 document.getElementById("javaccpp").addEventListener(
101 "click", function() { getImages("javaccpp.xml"); }, false);
102 document.getElementById("none").addEventListener(
103 "click", clearImages, false);
104 } // end function registerListeners
105
106 window.addEventListener("load", registerListeners, false);
107 </script>
108 </head>
109 <body>
110 <input type = "radio" name ="Books" value = "all"
111 id = "all"> All Books
112 <input type = "radio" name = "Books" value = "simply"
113 id = "simply"> Simply Books
114 <input type = "radio" name = "Books" value = "howto"
115 id = "howto"> How to Program Books
116 <input type = "radio" name = "Books" value = "dotnet"
117 id = "dotnet"> .NET Books

Fig. 16.8 | Image catalog that uses Ajax to request XML data asynchronously. (Part 3 of 4.)

iw3htp5_16_AJAX.fm Page 617 Wednesday, November 16, 2011 11:52 AM

618 Chapter 16 Ajax-Enabled Rich Internet Applications with XML and JSON

When the XMLHttpRequest object receives the response, it invokes the callback func-
tion processResponse (lines 38–81). We use XMLHttpRequest object’s responseXML
property to access the XML returned by the server. Lines 41–42 check that the request was

118 <input type = "radio" name = "Books" value = "javaccpp"
119 id = "javaccpp"> Java/C/C++ Books
120 <input type = "radio" checked name = "Books" value = "none"
121 id = "none"> None
122 <div id = "covers"></div>
123 </body>
124 </html>

Fig. 16.8 | Image catalog that uses Ajax to request XML data asynchronously. (Part 4 of 4.)

a) User clicks the All Books radio button to display all the book covers. The application sends an asynchronous request to
the server to obtain an XML document containing the list of book-cover filenames. When the response is received, the
application performs a partial page update to display the set of book covers.

b) User clicks the How to Program Books radio button to select a subset of book covers to display. Application sends an
asynchronous request to the server to obtain an XML document containing the appropriate subset of book-cover filenames.
When the response is received, the application performs a partial page update to display the subset of book covers.

iw3htp5_16_AJAX.fm Page 618 Wednesday, November 16, 2011 11:52 AM

16.6 Creating a Full-Scale Ajax-Enabled Application 619

successful and that the responseXML property is not empty. The XML file that we
requested includes a baseURL node that contains the address of the image directory and a
collection of cover nodes that contain image filenames. responseXML is a document
object, so we can extract data from it using the XML DOM functions. Lines 47–52 use
the DOM’s method getElementsByTagName to extract all the image filenames from cover
nodes and the URL of the directory from the baseURL node. Since the baseURL has no
child nodes, we use item(0).firstChild.nodeValue to obtain the directory’s address and
store it in variable baseURL. The image filenames are stored in the covers array.

As in Fig. 16.5 we have a placeholder div element (line 122) to specify where the
image table will be displayed on the page. Line 55 stores the div in variable output, so we
can fill it with content later in the program.

Lines 58–77 generate an HTML5 unordered list dynamically, using the createEle-
ment, setAttribute and appendChild HTML5 DOM methods. Method createElement
creates an HTML5 element of the specified type. Method appendChild inserts one
HTML5 element into another. Line 58 creates the ul element. Each iteration of the for
statement obtains the filename of the image to be inserted (lines 63–67), creates an li ele-
ment to hold the image (line 70) and creates an element (line 71). Line 74 sets the
image’s src attribute to the image’s URL, which we build by concatenating the filename
to the base URL of the HTML5 document. Lines 75–76 insert the element into the
li element and the li element into the ul element. Once all the images have been inserted
into the unordered list, the list is inserted into the placeholder element covers that’s ref-
erenced by variable output (line 79). This element is located on the bottom of the web
page.

Function clearImages (lines 84–87) is called to clear images when the user clicks the
None radio button. The text is cleared by setting the innerHTML property of the place-
holder element to an empty string.

16.6 Creating a Full-Scale Ajax-Enabled Application
Our next example demonstrates additional Ajax capabilities. The web application interacts
with a web service to obtain data and to modify data in a server-side database. The web
application and server communicate with a data format called JSON (JavaScript Object
Notation). In addition, the application demonstrates server-side validation that occurs in
parallel with the user interacting with the web application. You can test-drive the applica-
tion at http://test.deitel.com/iw3htp5/ch16/fig16_09-10/AddressBook.html.

16.6.1 Using JSON
JSON (JavaScript Object Notation)—a simple way to represent JavaScript objects as
strings—is a simpler alternative to XML for passing data between the client and the server.
Each object in JSON is represented as a list of property names and values contained in
curly braces, in the following format:

Arrays are represented in JSON with square brackets in the following format:

{ "propertyName1" : value1, "propertyName2": value2 }

[value1, value2, value3]

iw3htp5_16_AJAX.fm Page 619 Wednesday, November 16, 2011 11:52 AM

620 Chapter 16 Ajax-Enabled Rich Internet Applications with XML and JSON

Each value can be a string, a number, a JSON representation of an object, true, false or
null. You can convert JSON strings into JavaScript objects with JavaScript’s JSON.parse
function. JSON strings are easier to create and parse than XML and require fewer bytes.
For these reasons, JSON is commonly used to communicate in client/server interaction.

16.6.2 Rich Functionality
The previous examples in this chapter requested data from files on the server. The example
in Figs. 16.9–16.10 is an address-book application that communicates with a server-side
web service. The application uses server-side processing to give the page the functionality
and usability of a desktop application. We use JSON to encode server-side responses and
to create objects on the fly. Figure 16.9 presents the HTML5 document. Figure 16.10
presents the JavaScript.

Initially the address book loads a list of entries, each containing a first and last name
(Fig. 16.9(a)). Each time the user clicks a name, the address book uses Ajax functionality
to load the person’s address from the server and expand the entry without reloading the page
(Fig. 16.9(b))—and it does this in parallel with allowing the user to click other names.

The application allows the user to search the address book by typing a last name. As
the user enters each keystroke, the application asynchronously calls the server to obtain the
list of names in which the last name starts with the characters the user has entered so far
(Fig. 16.9(c), (d) and (e))—a popular feature called type-ahead.

The application also enables the user to add another entry to the address book by
clicking the Add an Entry button (Fig. 16.9(f)). The application displays a form that
enables live field validation.

As the user fills out the form, the ZIP code is eventually entered, and when the user
tabs to the next field, the blur event handler for the ZIP-code field makes an Ajax call to
the server. The server then validates the ZIP code, uses the valid zip code to obtain the
corresponding city and state from a ZIP-code web service and returns this information to
the client (Fig. 16.9(g). [If the ZIP code were invalid, the web service would return an
error to the server, which would then send an error message back to the client.]

When the user enters the telephone number and moves the cursor out of the Telephone:
field, the blur event handler for that field uses an Ajax call to the server to validate the tele-
phone number—if it were invalid, the server would return an error message to the client.

When the Submit button is clicked, the button’s event handler determines that some
required data is missing and displays the message "First Name and Last Name must have a
value." at the bottom of the screen (Fig. 16.9(h)). The user enters the missing data and
clicks Submit again (Fig. 16.9(i)). The client-side code revalidates the data, determines
that it’s correct and sends it to the server. The server performs its own validation, then
returns the updated address book, which is displayed on the client, with the new name
added in (Fig. 16.9(j)).

1 <!DOCTYPE html>
2
3 <!-- Fig. 16.9 addressbook.html -->
4 <!-- Ajax enabled address book application. -->

Fig. 16.9 | Ajax-enabled address-book application. (Part 1 of 4.)

iw3htp5_16_AJAX.fm Page 620 Wednesday, November 16, 2011 11:52 AM

16.6 Creating a Full-Scale Ajax-Enabled Application 621

5 <html>
6 <head>
7 <meta charset="utf-8">
8 <title>Address Book</title>
9 <link rel = "stylesheet" type = "text/css" href = "style.css">

10 <script src = "AddressBook.js"></script>
11 </head>
12 <body>
13 <div>
14 <input id = "addressBookButton" type = "button"
15 value = "Address Book">
16 <input id = "addEntryButton" type = "button"
17 value = "Add an Entry">
18 </div>
19 <div id = "addressBook"">
20 <p>Search By Last Name: <input id = "searchInput"></p>
21 <div id = "Names"></div>
22 </div>
23 <div id = "addEntry" style = "display : none">
24 <p><label>First Name:</label> <input id = "first"></p>
25 <p><label>Last Name:</label> <input id = "last"></p>
26 <p class = "head">Address:</p>
27 <p><label>Street:</label> <input id = "street"></p>
28 <p><label>City:</label>
29 </p>
30 <p><label>State:</label>
31 </p>
32 <p><label>Zip:</label> <input id = "zip">
33 </p>
34 <p><label>Telephone:</label> <input id = "phone">
35 </p>
36 <p><input id = "submitButton" type = "button" value = "Submit"></p>
37 <div id = "success" class = "validator"></div>
38 </div>
39 </body>
40 </html>

Fig. 16.9 | Ajax-enabled address-book application. (Part 2 of 4.)

a) Page is loaded. All the entries are displayed. b) User clicks on an entry. The entry expands, showing
the address and the telephone.

iw3htp5_16_AJAX.fm Page 621 Wednesday, November 16, 2011 11:52 AM

622 Chapter 16 Ajax-Enabled Rich Internet Applications with XML and JSON

Fig. 16.9 | Ajax-enabled address-book application. (Part 3 of 4.)

c) User types "B" in the search field. Application loads
the entries whose last names start with "B".

d) User types "Bl" in the search field. Application
loads the entries whose last names start with "Bl".

e) User types "Bla" in the search field. Application
loads the entries whose last names start with "Bla".

f) User clicks Add an Entry button. The form
allowing user to add an entry is displayed.

g) User enters a valid ZIP code, then tabs to the next
field. The server finds the city and state associated with
the ZIP code entered and displays them on the page.

h) The user enters a telephone number and tries to
submit the data. The application does not allow this,
because the First Name and Last Name are empty.

iw3htp5_16_AJAX.fm Page 622 Wednesday, November 16, 2011 11:52 AM

16.6 Creating a Full-Scale Ajax-Enabled Application 623

1 // Fig. 16.10 addressbook.js
2 // Ajax-enabled address-book JavaScript code
3 // URL of the web service
4
5
6 var phoneValid = false; // indicates if the telephone is valid
7 var zipValid = false; //indicates if the ZIP code is valid
8
9 // get a list of names from the server and display them

10 function showAddressBook()
11 {
12 // hide the "addEntry" form and show the address book
13 document.getElementById("addEntry").style.display = "none";
14 document.getElementById("addressBook").style.display = "block";
15
16 callWebService("/getAllNames", parseData);
17 } // end function showAddressBook
18
19 // send the asynchronous request to the web service
20
21 {
22 // build request URL string
23
24
25 // attempt to send the asynchronous request
26 try
27 {
28 var asyncRequest = new XMLHttpRequest(); // create request
29
30 // set up callback function and store it
31 asyncRequest.addEventListener("readystatechange",
32 function() { callBack(asyncRequest); }, false);

Fig. 16.10 | JavaScript code for the address-book application. (Part 1 of 6.)

Fig. 16.9 | Ajax-enabled address-book application. (Part 4 of 4.)

i) The user enters the last name and the first name
and clicks the Submit button.

j) The address book is redisplayed with the new name
added in.

var webServiceUrl = "/AddressBookWebService/Service.svc";

function callWebService(methodAndArguments, callBack)

var requestUrl = webServiceUrl + methodAndArguments;

iw3htp5_16_AJAX.fm Page 623 Wednesday, November 16, 2011 11:52 AM

624 Chapter 16 Ajax-Enabled Rich Internet Applications with XML and JSON

33
34 // send the asynchronous request
35 asyncRequest.open("GET", requestUrl, true);
36 asyncRequest.setRequestHeader("Accept",
37 "application/json; charset=utf-8");
38 asyncRequest.send(); // send request
39 } // end try
40 catch (exception)
41 {
42 alert ("Request Failed");
43 } // end catch
44 } // end function callWebService
45
46 // parse JSON data and display it on the page
47 function parseData(asyncRequest)
48 {
49 // if request has completed successfully, process the response
50 if (asyncRequest.readyState == 4 && asyncRequest.status == 200)
51 {
52 // convert the JSON string to an Object
53 var data = JSON.parse(asyncRequest.responseText);
54 displayNames(data); // display data on the page
55 } // end if
56 } // end function parseData
57
58 // use the DOM to display the retrieved address-book entries
59 function displayNames(data)
60 {
61 // get the placeholder element from the page
62 var listBox = document.getElementById("Names");
63 listBox.innerHTML = ""; // clear the names on the page
64
65 // iterate over retrieved entries and display them on the page
66 for (var i = 0; i < data.length; ++i)
67 {
68 // dynamically create a div element for each entry
69 // and a fieldset element to place it in
70 var entry = document.createElement("div");
71 var field = document.createElement("fieldset");
72 entry.onclick = function() { getAddress(this, this.innerHTML); };
73 entry.id = i; // set the id
74 entry.innerHTML = data[i].First + " " + data[i].Last;
75 field.appendChild(entry); // insert entry into the field
76 listBox.appendChild(field); // display the field
77 } // end for
78 } // end function displayAll
79
80 // search the address book for input
81 // and display the results on the page
82 function search(input)
83 {
84 // get the placeholder element and delete its content
85 var listBox = document.getElementById("Names");

Fig. 16.10 | JavaScript code for the address-book application. (Part 2 of 6.)

iw3htp5_16_AJAX.fm Page 624 Wednesday, November 16, 2011 11:52 AM

16.6 Creating a Full-Scale Ajax-Enabled Application 625

86 listBox.innerHTML = ""; // clear the display box
87
88 // if no search string is specified, all the names are displayed
89 if (input == "") // if no search value specified
90 {
91 showAddressBook(); // Load the entire address book
92 } // end if
93 else
94 {
95 callWebService("/search/" + input, parseData);
96 } // end else
97 } // end function search
98
99 // Get address data for a specific entry
100 function getAddress(entry, name)
101 {
102 // find the address in the JSON data using the element's id
103 // and display it on the page
104 var firstLast = name.split(" "); // convert string to array
105 var requestUrl = webServiceUrl + "/getAddress/"
106 + firstLast[0] + "/" + firstLast[1];
107
108 // attempt to send an asynchronous request
109 try
110 {
111 // create request object
112 var asyncRequest = new XMLHttpRequest();
113
114 // create a callback function with 2 parameters
115 asyncRequest.addEventListener("readystatechange",
116 function() { displayAddress(entry, asyncRequest); }, false);
117
118 asyncRequest.open("GET", requestUrl, true);
119 asyncRequest.setRequestHeader("Accept",
120 "application/json; charset=utf-8"); // set response datatype
121 asyncRequest.send(); // send request
122 } // end try
123 catch (exception)
124 {
125 alert ("Request Failed.");
126 } // end catch
127 } // end function getAddress
128
129 // clear the entry's data
130 function displayAddress(entry, asyncRequest)
131 {
132 // if request has completed successfully, process the response
133 if (asyncRequest.readyState == 4 && asyncRequest.status == 200)
134 {
135 // convert the JSON string to an object
136 var data = JSON.parse(asyncRequest.responseText);
137 var name = entry.innerHTML // save the name string
138 entry.innerHTML = name + "
" + data.Street +

Fig. 16.10 | JavaScript code for the address-book application. (Part 3 of 6.)

iw3htp5_16_AJAX.fm Page 625 Wednesday, November 16, 2011 11:52 AM

626 Chapter 16 Ajax-Enabled Rich Internet Applications with XML and JSON

139 "
" + data.City + ", " + data.State
140 + ", " + data.Zip + "
" + data.Telephone;
141
142 // change event listener
143 entry.onclick = function() { clearField(entry, name); };
144 } // end if
145 } // end function displayAddress
146
147 // clear the entry's data
148 function clearField(entry, name)
149 {
150 entry.innerHTML = name; // set the entry to display only the name
151 entry.onclick = function() { getAddress(entry, name); };
152 } // end function clearField
153
154 // display the form that allows the user to enter more data
155 function addEntry()
156 {
157 document.getElementById("addressBook").style.display = "none";
158 document.getElementById("addEntry").style.display = "block";
159 } // end function addEntry
160
161 // send the ZIP code to be validated and to generate city and state
162 function validateZip(zip)
163 {
164 callWebService ("/validateZip/" + zip, showCityState);
165 } // end function validateZip
166
167 // get city and state that were generated using the zip code
168 // and display them on the page
169 function showCityState(asyncRequest)
170 {
171 // display message while request is being processed
172 document.getElementById("validateZip").
173 innerHTML = "Checking zip...";
174
175 // if request has completed successfully, process the response
176 if (asyncRequest.readyState == 4)
177 {
178 if (asyncRequest.status == 200)
179 {
180 // convert the JSON string to an object
181 var data = JSON.parse(asyncRequest.responseText);
182
183 // update ZIP-code validity tracker and show city and state
184 if (data.Validity == "Valid")
185 {
186 zipValid = true; // update validity tracker
187
188 // display city and state
189 document.getElementById("validateZip").innerHTML = "";
190 document.getElementById("city").innerHTML = data.City;
191 document.getElementById("state").

Fig. 16.10 | JavaScript code for the address-book application. (Part 4 of 6.)

iw3htp5_16_AJAX.fm Page 626 Wednesday, November 16, 2011 11:52 AM

16.6 Creating a Full-Scale Ajax-Enabled Application 627

192 innerHTML = data.State;
193 } // end if
194 else
195 {
196 zipValid = false; // update validity tracker
197 document.getElementById("validateZip").
198 innerHTML = data.ErrorText; // display the error
199
200 // clear city and state values if they exist
201 document.getElementById("city").innerHTML = "";
202 document.getElementById("state").innerHTML = "";
203 } // end else
204 } // end if
205 else if (asyncRequest.status == 500)
206 {
207 document.getElementById("validateZip").
208 innerHTML = "Zip validation service not avaliable";
209 } // end else if
210 } // end if
211 } // end function showCityState
212
213 // send the telephone number to the server to validate format
214 function validatePhone(phone)
215 {
216 callWebService("/validateTel/" + phone, showPhoneError);
217 } // end function validatePhone
218
219 // show whether the telephone number has correct format
220 function showPhoneError(asyncRequest)
221 {
222 // if request has completed successfully, process the response
223 if (asyncRequest.readyState == 4 && asyncRequest.status == 200)
224 {
225 // convert the JSON string to an object
226 var data = JSON.parse(asyncRequest.responseText);
227
228 if (data.ErrorText != "Valid Telephone Format")
229 {
230 phoneValid = false; // update validity tracker
231 document.getElementById("validatePhone").innerHTML =
232 data.ErrorText; // display the error
233 } // end if
234 else
235 {
236 phoneValid = true; // update validity tracker
237 } // end else
238 } // end if
239 } // end function showPhoneError
240
241 // enter the user's data into the database
242 function saveForm()
243 {
244 // retrieve the data from the form

Fig. 16.10 | JavaScript code for the address-book application. (Part 5 of 6.)

iw3htp5_16_AJAX.fm Page 627 Wednesday, November 16, 2011 11:52 AM

628 Chapter 16 Ajax-Enabled Rich Internet Applications with XML and JSON

245 var first = document.getElementById("first").value;
246 var last = document.getElementById("last").value;
247 var street = document.getElementById("street").value;
248 var city = document.getElementById("city").innerHTML;
249 var state = document.getElementById("state").innerHTML;
250 var zip = document.getElementById("zip").value;
251 var phone = document.getElementById("phone").value;
252
253 // check if data is valid
254 if (!zipValid || !phoneValid)
255 {
256 // display error message
257 document.getElementById("success").innerHTML =
258 "Invalid data entered. Check form for more information";
259 } // end if
260 else if ((first == "") || (last == ""))
261 {
262 // display error message
263 document.getElementById("success").innerHTML =
264 "First Name and Last Name must have a value.";
265 } // end if
266 else
267 {
268 // hide the form and show the address book
269 document.getElementById("addEntry").style.display = "none";
270 document.getElementById("addressBook").style.display = "block";
271
272 // call the web service to insert data into the database
273 callWebService("/addEntry/" + first + "/" + last + "/" + street +
274 "/" + city + "/" + state + "/" + zip + "/" + phone, parseData);
275 } // end else
276 } // end function saveForm
277
278 // register event listeners
279 function start()
280 {
281 document.getElementById("addressBookButton").addEventListener(
282 "click", showAddressBook, false);
283 document.getElementById("addEntryButton").addEventListener(
284 "click", addEntry, false);
285 document.getElementById("searchInput").addEventListener(
286 "keyup", function() { search(this.value); } , false);
287 document.getElementById("zip").addEventListener(
288 "blur", function() { validateZip(this.value); } , false);
289 document.getElementById("phone").addEventListener(
290 "blur", function() { validatePhone(this.value); } , false);
291 document.getElementById("submitButton").addEventListener(
292 "click", saveForm , false);
293
294 showAddressBook();
295 } // end function start
296
297 window.addEventListener("load", start, false);

Fig. 16.10 | JavaScript code for the address-book application. (Part 6 of 6.)

iw3htp5_16_AJAX.fm Page 628 Wednesday, November 16, 2011 11:52 AM

16.6 Creating a Full-Scale Ajax-Enabled Application 629

16.6.3 Interacting with a Web Service on the Server
When the page loads, the load event (Fig. 16.10, line 297) calls the start function (lines
279–295) to register various event listeners and to call showAddressBook, which loads the
address book onto the page. Function showAddressBook (lines 10–17) shows the address-
Book element and hides the addEntry element (lines 13–14). Then it calls function call-
WebService to make an asynchronous request to the server (line 16). Our program uses an
ASP.NET REST web service that we created for this example to do the server-side process-
ing. The web service contains a collection of methods, including getAllNames, that can be
called from a web application. To invoke a method you specify the web service URL fol-
lowed by a forward slash (/), the name of the method to call, a forward slash and the argu-
ments separated by forward slashes. Function callWebService requires a string containing
the method to call on the server and the arguments to the method in the format described
above. In this case, the function we’re invoking on the server requires no arguments, so line
16 passes the string "/getAllNames" as the first argument to callWebService.

Function callWebService (lines 20–44) contains the code to call our web service,
given a string containing the web-service method to call and the arguments to that method
(if any), and the name of a callback function. The web-service method to call and its argu-
ments are appended to the request URL (line 23). In this first call, we do not pass any
parameters because the web method that returns all the entries requires none. However,
future web method calls will include arguments in the methodAndArguments parameter.
Lines 28–38 prepare and send the request, using functionality similar to that in the pre-
vious two examples. There are many types of user interactions in this application, each
requiring a separate asynchronous request. For this reason, we pass the appropriate asyn-
cRequest object as an argument to the function specified by the callBack parameter.
However, event handlers cannot receive arguments, so lines 31–32 register an anonymous
function for asyncRequest’s readystatechange event. When this anonymous function
gets called, it calls function callBack and passes the asyncRequest object as an argument.
Lines 36–37 set an Accept request header to receive JSON-formatted data.

16.6.4 Parsing JSON Data
Each of our web service’s methods in this example returns a JSON representation of an
object or array of objects. For example, when the web application requests the list of names
in the address book, the list is returned as a JSON array, as shown in Fig. 16.11. Each
object in Fig. 16.11 has the attributes first and last.

When the XMLHttpRequest object receives the response, it calls function parseData
(Fig. 16.10, lines 47–56). Line 53 calls the JSON.parse function, which converts the
JSON string into a JavaScript object. Then line 54 calls function displayNames (lines 59–
78), which displays the first and last name of each address-book entry passed to it. Lines

1 [{ "first": "Cheryl", "last": "Black" },
2 { "first": "James", "last": "Blue" },
3 { "first": "Mike", "last": "Brown" },
4 { "first": "Meg", "last": "Gold" }]

Fig. 16.11 | Address-book data formatted in JSON.

iw3htp5_16_AJAX.fm Page 629 Wednesday, November 16, 2011 11:52 AM

630 Chapter 16 Ajax-Enabled Rich Internet Applications with XML and JSON

62–63 use the HTML5 DOM to store the placeholder div element Names in the variable
listbox and clear its content. Once parsed, the JSON string of address-book entries
becomes an array, which this function traverses (lines 66–77).

16.6.5 Creating HTML5 Elements and Setting Event Handlers on the Fly
Line 71 uses an HTML5 fieldset element to create a box in which the entry will be
placed. Line 72 registers an anonymous function that calls getAddress as the onclick
event handler for the div created in line 70. This enables the user to expand each address-
book entry by clicking it. The arguments to getAddress are generated dynamically and
not evaluated until the getAddress function is called. This enables each function to re-
ceive arguments that are specific to the entry the user clicked. Line 74 displays the names
on the page by accessing the first (first name) and last (last name) fields of each element
of the data array. To determine which address the user clicked, we introduce the this key-
word. The meaning of this depends on its context. In an event-handling function, this
refers to the DOM object on which the event occurred. Our function uses this to refer
to the clicked entry. The this keyword allows us to use one event handler to apply a
change to one of many DOM elements, depending on which one received the event.

Function getAddress (lines 100–127) is called when the user clicks an entry. This
request must keep track of the entry where the address is to be displayed on the page. Lines
115–116 set as the callback function an anonymous function that calls displayAddress
with the entry element as an argument. Once the request completes successfully, lines
136–140 parse the response and display the addresses. Line 143 updates the div’s onclick
event handler to hide the address data when that div is clicked again by the user. When
the user clicks an expanded entry, function clearField (lines 148–152) is called. Lines
150–151 reset the entry’s content and its onclick event handler to the values they had
before the entry was expanded.

You’ll notice that we registered click-event handlers for the items in the fieldset by
using the onclick property of each item, rather than the addEventListener method. We
did this for simplicity in this example because we want to modify the event handler for
each item’s click event based on whether the item is currently displaying just the contact’s
name or its complete address. Each call to addEventListener adds another event listener
to the object on which it’s called—for this example, that could result in many event lis-
teners being called for one entry that the user clicks repeatedly. Using the onclick prop-
erty allows you to set only one listener at a time for a paticular event, which makes it easy
for us to switch event listeners as the user clicks each item in the contact list.

16.6.6 Implementing Type-Ahead
The input element declared in line 20 of Fig. 16.9 enables the user to search the address
book by last name. As soon as the user starts typing in the input box, the keyup event han-
dler (registered at lines 285–286 in Fig. 16.10) calls the search function (lines 82–97),
passing the input element’s value as an argument. The search function performs an asyn-
chronous request to locate entries with last names that start with its argument value. When
the response is received, the application displays the matching list of names. Each time the
user changes the text in the input box, function search is called again to make another
asynchronous request.

iw3htp5_16_AJAX.fm Page 630 Wednesday, November 16, 2011 11:52 AM

16.6 Creating a Full-Scale Ajax-Enabled Application 631

The search function first clears the address-book entries from the page (lines 85–86).
If the input argument is the empty string, line 91 displays the entire address book by
calling function showAddressBook. Otherwise line 95 sends a request to the server to
search the data. Line 95 creates a string to represent the method and argument that call-
WebService will append to the request URL. When the server responds, callback function
parseData is invoked, which calls function displayNames to display the results on the
page.

16.6.7 Implementing a Form with Asynchronous Validation
When the Add an Entry button in the HTML5 document is clicked, the addEntry func-
tion (lines 155–159) is called, which hides the addressBook div and shows the addEntry
div that allows the user to add a person to the address book. The addEntry div in the
HTML5 document contains a set of entry fields, some of which have event handlers (reg-
istered in the JavaScript start function) that enable validation that occurs asynchronously
as the user continues to interact with the page. When a user enters a ZIP code, then moves
the cursor to another field, the validateZip function (lines 162–165) is called. This func-
tion calls an external web service to validate the ZIP code. If it’s valid, that external web
service returns the corresponding city and state. Line 164 calls the callWebService func-
tion with the appropriate method and argument, and specifies showCityState (lines 169–
211) as the callback function.

ZIP-code validation can take significant time due to network delays. The function
showCityState is called every time the request object’s readyState property changes.
Until the request completes, lines 172–173 display "Checking zip..." on the page. After
the request completes, line 181 converts the JSON response text to an object. The
response object has four properties—Validity, ErrorText, City and State. If the request
is valid, line 186 updates the zipValid script variable that keeps track of ZIP-code validity,
and lines 189–192 show the city and state that the server generated using the ZIP code.
Otherwise lines 196–198 update the zipValid variable and show the error code. Lines
201–202 clear the city and state elements. If our web service fails to connect to the ZIP-
code validator web service, lines 207–208 display an appropriate error message.

Similarly, when the user enters the telephone number, the function validatePhone
(lines 214–217) sends the phone number to the server. Once the server responds, the
showPhoneError function (lines 220–239) updates the validatePhone script variable and
shows the error message, if the web service returned one.

When the Submit button is clicked, the saveForm function is called (lines 242–276).
Lines 245–251 retrieve the data from the form. Lines 254–259 check if the ZIP code and
telephone number are valid, and display the appropriate error message in the Success ele-
ment on the bottom of the page. Before the data can be entered into a database on the
server, both the first-name and last-name fields must have a value. Lines 260–265 check
that these fields are not empty and, if they’re empty, display the appropriate error message.
Once all the data entered is valid, lines 266–275 hide the entry form and show the address
book. Lines 273–274 call function callWebService to invoke the addEntry function of
our web service with the data for the new contact. Once the server saves the data, it queries
the database for an updated list of entries and returns them; then function parseData dis-
plays the entries on the page.

iw3htp5_16_AJAX.fm Page 631 Wednesday, November 16, 2011 11:52 AM

632 Chapter 16 Ajax-Enabled Rich Internet Applications with XML and JSON

Summary
Section 16.1 Introduction
• Despite the tremendous technological growth of the Internet over the past decade, the usability

of web applications has lagged behind that of desktop applications.

• Rich Internet Applications (RIAs, p. 604) are web applications that approximate the look, feel
and usability of desktop applications. RIAs have two key attributes—performance and rich GUI.

• RIA performance comes from Ajax (Asynchronous JavaScript and XML, p. 604), which uses cli-
ent-side scripting to make web applications more responsive.

• Ajax applications separate client-side user interaction and server communication and run them
in parallel, making the delays of server-side processing more transparent to the user.

• “Raw” Ajax (p. 604) uses JavaScript to send asynchronous requests to the server, then updates
the page using the DOM.

• When writing “raw” Ajax you need to deal directly with cross-browser portability issues, making
it impractical for developing large-scale applications.

• Portability issues are hidden by Ajax toolkits (p. 604), which provide powerful ready-to-use con-
trols and functions that enrich web applications and simplify JavaScript coding by making it
cross-browser compatible.

• We achieve rich GUI in RIAs with Ajax toolkits and with RIA environments such as Adobe’s
Flex, Microsoft’s Silverlight and JavaServer Faces. Such toolkits and environments provide pow-
erful ready-to-use controls and functions that enrich web applications.

• The client-side of Ajax applications is written in HTML5 and CSS3 and uses JavaScript to add
functionality to the user interface.

• XML and JSON are used to structure the data passed between the server and the client.

• The Ajax component that manages interaction with the server is usually implemented with Java-
Script’s XMLHttpRequest object (p. 604)—commonly abbreviated as XHR.

• In traditional web applications, the user fills in the form’s fields, then submits the form. The
browser generates a request to the server, which receives the request and processes it. The server
generates and sends a response containing the exact page that the browser will render, which
causes the browser to load the new page and temporarily makes the browser window blank. The
client waits for the server to respond and reloads the entire page with the data from the response.

• While a synchronous request (p. 605) is being processed on the server, the user cannot interact
with the client web browser.

• The synchronous model was originally designed for a web of hypertext documents—what some
people call the “brochure web.” This model yielded “choppy” application performance.

• In an Ajax application, when the user interacts with a page, the client creates an XMLHttpRequest
object to manage a request. The XMLHttpRequest object sends the request to and awaits the re-
sponse from the server. The requests are asynchronous (p. 606), allowing the user to continue
interacting with the application while the server processes the request concurrently. When the
server responds, the XMLHttpRequest object that issued the request invokes a callback function
(p. 606), which typically uses partial page updates (p. 606) to display the returned data in the
existing web page without reloading the entire page.

• The callback function updates only a designated part of the page. Such partial page updates help
make web applications more responsive, making them feel more like desktop applications.

Section 16.2 Rich Internet Applications (RIAs) with Ajax
• A classic HTML5 registration form sends all of the data to be validated to the server when the

user clicks the Register button. While the server is validating the data, the user cannot interact

iw3htp5_16_AJAX.fm Page 632 Wednesday, November 16, 2011 11:52 AM

 Summary 633

with the page. The server finds invalid data, generates a new page identifying the errors in the
form and sends it back to the client—which renders the page in the browser. Once the user fixes
the errors and clicks the Register button, the cycle repeats until no errors are found; then the
data is stored on the server. The entire page reloads every time the user submits invalid data.

• Ajax-enabled forms are more interactive. Entries are validated dynamically as the user enters data
into the fields. If a problem is found, the server sends an error message that’s asynchronously dis-
played to inform the user of the problem. Sending each entry asynchronously allows the user to
address invalid entries quickly, rather than making edits and resubmitting the entire form repeat-
edly until all entries are valid. Asynchronous requests could also be used to fill some fields based
on previous fields’ values.

Section 16.3 History of Ajax
• The term Ajax was coined by Jesse James Garrett of Adaptive Path in February 2005, when he

was presenting the previously unnamed technology to a client.

• All of the technologies involved in Ajax (HTML5, JavaScript, CSS, dynamic HTML, the DOM
and XML) had existed for many years before the term “Ajax” was coined.

• In 1998, Microsoft introduced the XMLHttpRequest object to create and manage asynchronous
requests and responses.

• Popular applications like Flickr, Google’s Gmail and Google Maps use the XMLHttpRequest ob-
ject to update pages dynamically.

• The name Ajax immediately caught on and brought attention to its component technologies.
Ajax has quickly become one of the hottest technologies in web development, as it enables web-
top applications to challenge the dominance of established desktop applications.

Section 16.4 “Raw” Ajax Example Using the XMLHttpRequest Object
• The XMLHttpRequest object (which resides on the client) is the layer between the client and the

server that manages asynchronous requests in Ajax applications. This object is supported on most
browsers, though they may implement it differently.

• To initiate an asynchronous request, you create an instance of the XMLHttpRequest object, then
use its open method to set up the request and its send method to initiate the request.

• When an Ajax application requests a file from a server, the browser typically caches that file. Sub-
sequent requests for the same file can load it from the browser’s cache.

• For security purposes, the XMLHttpRequest object does not allow a web application to request re-
sources from servers other than the one that served the web application.

• Making a request to a different server is known as cross-site scripting (also known as XSS,
p. 610). You can implement a server-side proxy—an application on the web application’s web
server—that can make requests to other servers on the web application’s behalf.

• When the third argument to XMLHttpRequest method open is true, the request is asynchronous.

• An exception (p. 613) is an indication of a problem that occurs during a program’s execution.

• Exception handling (p. 613) enables you to create applications that can resolve (or handle) ex-
ceptions—in some cases allowing a program to continue executing as if no problem had been
encountered.

• A try block (p. 613) encloses code that might cause an exception and code that should not exe-
cute if an exception occurs. A try block consists of the keyword try followed by a block of code
enclosed in curly braces ({}).

• When an exception occurs, a try block terminates immediately and a catch block (also called a
catch clause or exception handler, p. 613) catches (i.e., receives) and handles the exception.

iw3htp5_16_AJAX.fm Page 633 Wednesday, November 16, 2011 11:52 AM

634 Chapter 16 Ajax-Enabled Rich Internet Applications with XML and JSON

• The catch block begins with the keyword catch (p. 613) and is followed by an exception param-
eter in parentheses and a block of code enclosed in curly braces.

• The exception parameter’s name enables the catch block to interact with a caught exception ob-
ject, which contains name and message properties.

• A callback function is registered as the event handler for the XMLHttpRequest object’s ready-
statechange event (p. 614). Whenever the request makes progress, the XMLHttpRequest calls the
readystatechange event handler.

• Progress is monitored by the readyState property, which has a value from 0 to 4. The value 0
indicates that the request is not initialized and the value 4 indicates that the request is complete.

Section 16.5 Using XML and the DOM
• When passing structured data between the server and the client, Ajax applications often use XML

because it consumes little bandwidth and is easy to parse.

• When the XMLHttpRequest object receives XML data, the XMLHttpRequest object parses and
stores the data as a DOM object in the responseXML property.

• The XMLHttpRequest object’s responseXML property contains the XML returned by the server.

• DOM method createElement creates an HTML5 element of the specified type.

• DOM method setAttribute adds or changes an attribute of an HTML5 element.

• DOM method appendChild inserts one HTML5 element into another.

• The innerHTML property of a DOM element can be used to obtain or change the HTML5 that’s
displayed in a particular element.

Section 16.6 Creating a Full-Scale Ajax-Enabled Application
• JSON (JavaScript Object Notation, p. 619)—a simple way to represent JavaScript objects as

strings—is an alternative way (to XML) for passing data between the client and the server.

• Each JSON object is represented as a list of property names and values contained in curly braces.

• An array is represented in JSON with square brackets containing a comma-separated list of values.

• Each value in a JSON array can be a string, a number, a JSON representation of an object, true,
false or null.

• JavaScript’s JSON.parse function can convert JSON strings into JavaScript objects.

• JSON strings are easier to create and parse than XML and require fewer bytes. For these reasons,
JSON is commonly used to communicate in client/server interaction.

• To implement type-ahead (p. 620), you can use an element’s keyup-event handler to make asyn-
chronous requests.

Self-Review Exercises
16.1 Fill in the blanks in each of the following statements:

a) Ajax applications use requests to create Rich Internet Applications.
b) In Ajax applications, the object manages asynchronous interaction with the

server.
c) The event handler called when the server responds is known as a(n) function.
d) The attribute can be accessed through the DOM to update an HTML5 el-

ement’s content without reloading the page.
e) JavaScript’s XMLHttpRequest object is commonly abbreviated as .
f) is a simple way to represent JavaScript objects as strings.
g) Making a request to a different server is known as .

iw3htp5_16_AJAX.fm Page 634 Wednesday, November 16, 2011 11:52 AM

 Answers to Self-Review Exercises 635

h) JavaScript’s function can convert JSON strings into JavaScript objects.
i) A(n) encloses code that might cause an exception and code that should not

execute if an exception occurs.
j) The XMLHttpRequest object’s contains the XML returned by the server.

16.2 State whether each of the following is true or false. If false, explain why.
a) Ajax applications must use XML for server responses.
b) The technologies that are used to develop Ajax applications have existed since the

1990s.
c) To handle an Ajax response, register for the XMLHttpRequest object’s readystate-

changed event.
d) An Ajax application can be implemented so that it never needs to reload the page on

which it runs.
e) The responseXML property of the XMLHttpRequest object stores the server’s response as

a raw XML string.
f) An exception indicates successful completion of a program’s execution.
g) When the third argument to XMLHttpRequest method open is false, the request is asyn-

chronous.
h) For security purposes, the XMLHttpRequest object does not allow a web application to

request resources from servers other than the one that served the web application.
i) The innerHTML property of a DOM element can be used to obtain or change the

HTML5 that’s displayed in a particular element.

Answers to Self-Review Exercises
16.1 a) asynchronous. b) XMLHttpRequest. c) callback. d) innerHTML. e) XHR. f) JSON.
g) cross-site scripting (or XSS). h) JSON.parse. i) try block. j) responseXML property.

16.2 a) False. Ajax applications can use any type of textual data as a response. For example, we
used JSON in this chapter.

b) True.
c) True.
d) True.
e) False. If the response data has XML format, the XMLHttpRequest object parses it and

stores it in a document object.
f) False. An exception is an indication of a problem that occurs during a program’s execu-

tion.
g) False. The third argument to XMLHttpRequest method open must be true to make an

asynchronous request.
h) True.
i) True.

Exercises
16.3 Describe the differences between client/server interactions in traditional web applications
and client/server interactions in Ajax web applications.

16.4 Consider the AddressBook application in Fig. 16.9. Describe how you could reimplement
the type-ahead capability so that it could perform the search using data previously downloaded rath-
er than making an asynchronous request to the server after every keystroke.

16.5 Describe each of the following terms in the context of Ajax:
a) type-ahead
b) edit-in-place

iw3htp5_16_AJAX.fm Page 635 Wednesday, November 16, 2011 11:52 AM

636 Chapter 16 Ajax-Enabled Rich Internet Applications with XML and JSON

c) partial page update
d) asynchronous request
e) XMLHttpRequest

f) “raw” Ajax
g) callback function
h) same origin policy
i) Ajax libraries
j) RIA

[Note to Instructors and Students: Owing to security restrictions on using XMLHttpRequest, Ajax
applications must be placed on a web server (even one on your local computer) to enable them to
work correctly, and when they need to access other resources, those must reside on the same web
server. Students: You’ll need to work closely with your instructors in order to understand your lab
setup, so that you can run your solutions to the exercises (the examples are already posted on our
web server), and in order to run many of the other server-side applications that you’ll learn later in
the book.]

16.6 The XML files used in the book-cover catalog example (Fig. 16.8) also store the titles of the
books in a title attribute of each cover node. Modify the example so that every time the mouse
hovers over an image, the book’s title is displayed below the image.

16.7 Create an Ajax-enabled version of the feedback form from Fig. 2.15. As the user moves be-
tween form fields, ensure that each field is nonempty. For the e-mail field, ensure that the e-mail
address has a valid format. In addition, create an XML file that contains a list of e-mail addresses
that are not allowed to post feedback. Each time the user enters an e-mail address, check whether
it’s on that list; if so, display an appropriate message.

16.8 Create an Ajax-based product catalog that obtains its data from JSON files located on the
server. The data should be separated into four JSON files. The first should be a summary file, con-
taining a list of products. Each product should have a title, an image filename for a thumbnail image
and a price. The second file should contain a list of descriptions for each product. The third file
should contain a list of filenames for the full-size product images. The last file should contain a list
of the thumbnail-image file names. Each item in a catalogue should have a unique ID that should
be included with the entries for that product in every file. Next, create an Ajax-enabled web page
that displays the product information in a table. The catalog should initially display a list of product
names with their associated thumbnail images and prices. When the mouse hovers over a thumbnail
image, the larger product image should be displayed. When the user moves the mouse away from
that image, the original thumbnail should be redisplayed. You should provide a button that the user
can click to display the product description.

iw3htp5_16_AJAX.fm Page 636 Wednesday, November 16, 2011 11:52 AM

17Web Servers
(Apache and IIS)

Stop abusing my verses, or
publish some of your own.
—Martial

There are three difficulties in
authorship: to write anything
worth the publishing, to find
honest men to publish it, and to
get sensible men to read it.
—Charles Caleb Colton

When your Daemon is in
charge, do not try to think
consciously. Drift, wait and
obey.
—Rudyard Kipling

O b j e c t i v e s
In this chapter you’ll:

■ Learn about a web server’s
functionality.

■ Install Apache HTTP Server
and Microsoft IIS Express.

■ Test the book’s examples
using Apache and IIS
Express.

iw3htp5_17_WebServers.fm Page 637 Wednesday, November 16, 2011 1:13 PM

638 Chapter 17 Web Servers (Apache and IIS)

17.1 Introduction
In this chapter, we discuss the specialized software—called a web server—that responds to
client requests (typically from a web browser) by providing resources such as XHTML
documents. For example, when users enter a Uniform Resource Locator (URL) address,
such as www.deitel.com, into a web browser, they’re requesting a specific document from
a web server. The web server maps the URL to a resource on the server (or to a file on the
server’s network) and returns the requested resource to the client. During this interaction,
the web server and the client communicate using the platform-independent Hypertext
Transfer Protocol (HTTP), a protocol for transferring requests and files over the Internet
or a local intranet.

We also discuss two web servers—the open source Apache HTTP Server and Micro-
soft’s Internet Information Services Express (IIS Express)—that you can install on your
own computer for testing your web pages and web applications.

Because this chapter is essentially a concise series of installation instructions to prepare
you for the server-side chapters of the book, it does not include a summary or exercises.

17.2 HTTP Transactions
In this section, we discuss the fundamentals of web-based interactions between a client
web browser and a web server. In its simplest form, a web page is nothing more than an
HTML (HyperText Markup Language) document (with the extension .html or .htm)
that describes to a web browser the document’s content and structure.

HTML documents normally contain hyperlinks that link to different pages or to
other parts of the same page. When the user clicks a hyperlink, the requested web page
loads into the user’s web browser. Similarly, the user can type the address of a page into
the browser’s address field.

URIs and URLs
URIs (Uniform Resource Identifiers) identify resources on the Internet. URIs that start with
http:// are called URLs (Uniform Resource Locators). Common URLs refer to files, direc-
tories or server-side code that performs tasks such as database lookups, Internet searches
and business-application processing. If you know the URL of a publicly available resource

17.1 Introduction
17.2 HTTP Transactions
17.3 Multitier Application Architecture
17.4 Client-Side Scripting versus Server-

Side Scripting
17.5 Accessing Web Servers
17.6 Apache, MySQL and PHP Installation

17.6.1 XAMPP Installation

17.6.2 Running XAMPP
17.6.3 Testing Your Setup
17.6.4 Running the Examples Using Apache

HTTP Server
17.7 Microsoft IIS Express and WebMatrix

17.7.1 Installing and Running IIS Express
17.7.2 Installing and Running WebMatrix
17.7.3 Running the Client-Side Examples

Using IIS Express
17.7.4 Running the PHP Examples Using IIS

Express

iw3htp5_17_WebServers.fm Page 638 Wednesday, November 16, 2011 1:13 PM

17.2 HTTP Transactions 639

anywhere on the web, you can enter that URL into a web browser’s address field and the
browser can access that resource.

Parts of a URL
A URL contains information that directs a browser to the resource that the user wishes to
access. Web servers make such resources available to web clients.

Let’s examine the components of the URL

The text http:// indicates that the HyperText Transfer Protocol (HTTP) should be used
to obtain the resource. Next in the URL is the server’s fully qualified hostname (for exam-
ple, www.deitel.com)—the name of the web-server computer on which the resource re-
sides. This computer is referred to as the host, because it houses and maintains resources.
The hostname www.deitel.com is translated into an IP (Internet Protocol) address—a
numerical value that uniquely identifies the server on the Internet. An Internet Domain
Name System (DNS) server maintains a database of hostnames and their corresponding
IP addresses and performs the translations automatically.

The remainder of the URL (/books/downloads.html) specifies the resource’s loca-
tion (/books) and name (downloads.html) on the web server. The location could repre-
sent an actual directory on the web server’s file system. For security reasons, however, the
location is typically a virtual directory. The web server translates the virtual directory into
a real location on the server, thus hiding the resource’s true location.

Making a Request and Receiving a Response
When given a web page URL, a web browser uses HTTP to request the web page found
at that address. Figure 17.1 shows a web browser sending a request to a web server.

In Fig. 17.1, the web browser sends an HTTP request to the server. The request (in
its simplest form) is

http://www.deitel.com/books/downloads.html

Fig. 17.1 | Client interacting with web server. Step 1: The GET request.

GET /books/downloads.html HTTP/1.1

After it receives
the request, the
web server
searches its
system for the
resource

b)

The request is
sent from the
web client to the
web server

a)

Web server

Internet

Web client

iw3htp5_17_WebServers.fm Page 639 Wednesday, November 16, 2011 1:13 PM

640 Chapter 17 Web Servers (Apache and IIS)

The word GET is an HTTP method indicating that the client wishes to obtain a resource
from the server. The remainder of the request provides the path name of the resource (e.g.,
an HTML5 document) and the protocol’s name and version number (HTTP/1.1). The cli-
ent’s request also contains some required and optional headers.

Any server that understands HTTP (version 1.1) can translate this request and
respond appropriately. Figure 17.2 shows the web server responding to a request.

The server first sends a line of text that indicates the HTTP version, followed by a
numeric code and a phrase describing the status of the transaction. For example,

indicates success, whereas

informs the client that the web server could not locate the requested resource. A complete
list of numeric codes indicating the status of an HTTP transaction can be found at
www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

HTTP Headers
Next, the server sends one or more HTTP headers, which provide additional information
about the data that will be sent. In this case, the server is sending an HTML5 text docu-
ment, so one HTTP header for this example would read:

The information provided in this header specifies the Multipurpose Internet Mail Exten-
sions (MIME) type of the content that the server is transmitting to the browser. The MIME
standard specifies data formats, which programs can use to interpret data correctly. For ex-
ample, the MIME type text/plain indicates that the sent information is text that can be
displayed directly. Similarly, the MIME type image/jpeg indicates that the content is a
JPEG image. When the browser receives this MIME type, it attempts to display the image.

The header or set of headers is followed by a blank line, which indicates to the client
browser that the server is finished sending HTTP headers. Finally, the server sends the
contents of the requested document (downloads.html). The client-side browser then ren-
ders (or displays) the document, which may involve additional HTTP requests to obtain
associated CSS and images.

Fig. 17.2 | Client interacting with web server. Step 2: The HTTP response.

HTTP/1.1 200 OK

HTTP/1.1 404 Not found

Content-type: text/html

The server
responds to the
request with
the resource's
contents

Web server

Internet

Web client

iw3htp5_17_WebServers.fm Page 640 Wednesday, November 16, 2011 1:13 PM

17.2 HTTP Transactions 641

HTTP get and post Requests
The two most common HTTP request types (also known as request methods) are get
and post. A get request typically gets (or retrieves) information from a server, such as an
HTML document, an image or search results based on a user-submitted search term. A
post request typically posts (or sends) data to a server. Common uses of post requests are
to send form data or documents to a server.

An HTTP request often posts data to a server-side form handler that processes the
data. For example, when a user performs a search or participates in a web-based survey, the
web server receives the information specified in the HTML form as part of the request.
Get requests and post requests can both be used to send data to a web server, but each
request type sends the information differently.

A get request appends data to the URL, e.g., www.google.com/search?q=deitel. In
this case search is the name of Google’s server-side form handler, q is the name of a variable
in Google’s search form and deitel is the search term. The ? in the preceding URL separates
the query string from the rest of the URL in a request. A name/value pair is passed to the
server with the name and the value separated by an equals sign (=). If more than one name/
value pair is submitted, each pair is separated by an ampersand (&). The server uses data
passed in a query string to retrieve an appropriate resource from the server. The server then
sends a response to the client. A get request may be initiated by submitting an HTML form
whose method attribute is set to "get", or by typing the URL (possibly containing a query
string) directly into the browser’s address bar. We discuss HTML forms in Chapters 2–3.

A post request sends form data as part of the HTTP message, not as part of the URL.
A get request typically limits the query string (i.e., everything to the right of the ?) to a spe-
cific number of characters, so it’s often necessary to send large amounts of information using
the post method. The post method is also sometimes preferred because it hides the sub-
mitted data from the user by embedding it in an HTTP message. If a form submits several
hidden input values along with user-submitted data, the post method might generate a URL
like www.searchengine.com/search. The form data still reaches the server and is processed
in a similar fashion to a get request, but the user does not see the exact information sent.

Client-Side Caching
Browsers often cache (save on disk) recently viewed web pages for quick reloading. If there
are no changes between the version stored in the cache and the current version on the web,
this speeds up your browsing experience. An HTTP response can indicate the length of
time for which the content remains “fresh.” If this amount of time has not been reached,
the browser can avoid another request to the server. If not, the browser loads the document
from the cache. Similarly, there’s also the “not modified” HTTP response, indicating that
the file content has not changed since it was last requested (which is information that’s
send in the request). Browsers typically do not cache the server’s response to a post re-
quest, because the next post might not return the same result. For example, in a survey,
many users could visit the same web page and answer a question. The survey results could
then be displayed for the user. Each new answer would change the survey results.

Software Engineering Observation 17.1
The data sent in a post request is not part of the URL, and the user can’t see the data by
default. However, tools are available that expose this data, so you should not assume that
the data is secure just because a post request is used.

iw3htp5_17_WebServers.fm Page 641 Wednesday, November 16, 2011 1:13 PM

642 Chapter 17 Web Servers (Apache and IIS)

17.3 Multitier Application Architecture
Web-based applications are often multitier applications (sometimes referred to as n-tier
applications) that divide functionality into separate tiers (i.e., logical groupings of func-
tionality). Although tiers can be located on the same computer, the tiers of web-based ap-
plications often reside on separate computers. Figure 17.3 presents the basic structure of a
three-tier web-based application.

The bottom tier (also called the data tier or the information tier) maintains the appli-
cation’s data. This tier typically stores data in a relational database management system
(RDBMS). We discuss RDBMSs in Chapter 18. For example, Amazon might have an
inventory information database containing product descriptions, prices and quantities in
stock. Another database might contain customer information, such as user names, billing
addresses and credit card numbers. These may reside on one or more computers, which
together comprise the application’s data.

The middle tier implements business logic, controller logic and presentation logic to
control interactions between the application’s clients and its data. The middle tier acts as
an intermediary between data in the information tier and the application’s clients. The
middle-tier controller logic processes client requests (such as requests to view a product
catalog) and retrieves data from the database. The middle-tier presentation logic then pro-
cesses data from the information tier and presents the content to the client. Web applica-
tions typically present data to clients as HTML documents.

Business logic in the middle tier enforces business rules and ensures that data is reliable
before the application updates a database or presents data to users. Business rules dictate how
clients access data and how applications process data. For example, a business rule in the
middle tier of a retail store’s web-based application might ensure that all product quantities
remain positive. A client request to set a negative quantity in the bottom tier’s product infor-
mation database would be rejected by the middle tier’s business logic.

The top tier, or client tier, is the application’s user interface, which gathers input and
displays output. Users interact directly with the application through the user interface, which
is typically a web browser or a mobile device. In response to user actions (e.g., clicking a
hyperlink), the client tier interacts with the middle tier to make requests and to retrieve data
from the information tier. The client tier then displays the data retrieved for the user.

Fig. 17.3 | Three-tier architecture.

Web server Database

Middle tier Bottom tierTop tier

Browser web page

also called also calledalso called
Business logic tier Data tier or

Information tier
User interface tier or

Client tier

iw3htp5_17_WebServers.fm Page 642 Wednesday, November 16, 2011 1:13 PM

17.4 Client-Side Scripting versus Server-Side Scripting 643

17.4 Client-Side Scripting versus Server-Side Scripting
Client-side scripting with JavaScript can be used to validate user input, to interact with the
browser, to enhance web pages, and to add client/server communication between a brows-
er and a web server.

Client-side scripting does have limitations, such as browser dependency; the browser
or scripting host must support the scripting language and capabilities. Scripts are
restricted from arbitrarily accessing the local hardware and file system for security reasons.
Another issue is that client-side scripts can be viewed by the client using the browser’s
source-viewing capability. Sensitive information, such as passwords or other personally
identifiable data, should not be on the client. All client-side data validation should be mir-
rored on the server. Also, placing certain operations in JavaScript on the client can open
web applications to security issues.

Programmers have more flexibility with server-side scripts, which often generate
custom responses for clients. For example, a client might connect to an airline’s web server
and request a list of flights from Boston to San Francisco between April 19 and May 5.
The server queries the database, dynamically generates an HTML document containing
the flight list and sends the document to the client. This technology allows clients to
obtain the most current flight information from the database by connecting to an airline’s
web server.

Server-side scripting languages have a wider range of programmatic capabilities than
their client-side equivalents. Server-side scripts also have access to server-side software that
extends server functionality—Microsoft web servers use ISAPI (Internet Server Applica-
tion Program Interface) extensions and Apache HTTP Servers use modules. Compo-
nents and modules range from programming-language support to counting the number of
web-page hits. We discuss some of these components and modules in subsequent chapters.

17.5 Accessing Web Servers
To request documents from web servers, users must know the hostnames on which the
web server software resides. Users can request documents from local web servers (i.e., ones
residing on users’ machines) or remote web servers (i.e., ones residing on different ma-
chines).

Local web servers can be accessed through your computer’s name or through the name
localhost—a hostname that references the local machine and normally translates to the
IP address 127.0.0.1 (known as the loopback address). We sometimes use localhost in
this book for demonstration purposes. To display the machine name in Windows, Mac
OS X or Linux, run the hostname command in a command prompt or terminal window.

A remote web server referenced by a fully qualified hostname or an IP address can also
serve documents. In the URL http://www.deitel.com/books/downloads.html, the
middle portion, www.deitel.com, is the server’s fully qualified hostname.

17.6 Apache, MySQL and PHP Installation
This section shows how to install the software you need for running web apps using PHP.
The Apache HTTP Server, maintained by the Apache Software Foundation, is the most

iw3htp5_17_WebServers.fm Page 643 Wednesday, November 16, 2011 1:13 PM

644 Chapter 17 Web Servers (Apache and IIS)

popular web server in use today because of its stability, efficiency, portability, security and
small size. It’s open source software that runs on Linux, Mac OS X, Windows and numer-
ous other platforms. MySQL (discussed in more detail in Section 18.5) is the most popu-
lar open-source database management system. It, too, runs on Linux, Mac OS X and
Windows. PHP (Chapter 19) is the most popular server-side scripting language for creat-
ing dynamic, data-driven web applications.

The Apache HTTP Server, MySQL database server and PHP can each be down-
loaded and installed separately, but this also requires additional configuration on your
part. There are many integrated installers that install and configure the Apache HTTP
Server, MySQL database server and PHP for you on various operating-system platforms.
For simplicity, we’ll use the XAMPP integrated installer provided by the Apache Friends
website (www.apachefriends.org).

17.6.1 XAMPP Installation
The XAMPP integrated installer for Apache, MySQL and PHP is available for Windows,
Mac OS X and Linux. Chapters 18 and 19 assume that you’ve used the XAMPP installer
to set up the software. Go to

then choose the installer for your platform. Carefully follow the provided installation in-
structions and be sure to read the entire installation page for your platform! We assume in
Chapters 18 and 19 that you used the default installation options here.

Microsoft Web Platform Installer
If you’d prefer to use PHP with Microsoft’s IIS Express and SQL Server Express, you can
use their Web Platform Installer to set up and configure PHP:

Please note, however, that Chapter 19 assumes you’re using PHP with MySQL and the
Apache HTTP Server.

17.6.2 Running XAMPP
Once you’ve installed XAMPP, you can start the Apache and MySQL servers for each plat-
form as described below.

Windows
Go to your c:\xampp folder (or the folder in which you installed XAMPP) and double
click xampp_start.exe. If you need to stop the servers (e.g., so you can shut down your
computer), use xampp_stop.exe in the same folder.

Mac OS X
Go to your Applications folder (or the folder in which you installed XAMPP), then open
the XAMPP folder and run XAMP Control.app. Click the Start buttons in the control panel
to start the servers. If you need to stop the servers (e.g., so you can shut down your com-
puter), you can stop them by clicking the Stop buttons.

http://www.apachefriends.org/en/xampp.html

http://www.microsoft.com/web/platform/phponwindows.aspx

iw3htp5_17_WebServers.fm Page 644 Wednesday, November 16, 2011 1:13 PM

17.6 Apache, MySQL and PHP Installation 645

Linux
Open a shell and enter the command

If you need to stop the servers (e.g., so you can shut down your computer), open a shell
and enter the command

17.6.3 Testing Your Setup
Once you’ve started the servers, you can open any web browser on your computer and en-
ter the address

to confirm that the web server is up and running. If it is, you’ll see a web page similar to
the one in Fig. 17.4. You’re now ready to go!

17.6.4 Running the Examples Using Apache HTTP Server
Now that the Apache HTTP Server is running on your computer, you can copy the book’s
examples into XAMPP’s htdocs folder. Assuming you copy the entire examples folder
into the htdocs folder, you can run the examples in Chapters 2–16 and 19 with URLs of
the form

where chapter is one of the chapter folders (e.g., ch03), figure is a folder for a particular ex-
ample (e.g., fig03_01) and filename is the page to load (e.g., NewFormInputTypes.html).
So, you can run the first example in Chapter 3 with

[Note: The ch02 examples folder does not contain any subfolders.]

/opt/lampp/lampp start

/opt/lampp/lampp stop

http://localhost/

Fig. 17.4 | default XAMPP webpage displayed on Windows.

http://localhost/examples/chapter/figure/filename

http://localhost/examples/ch03/fig03_01/NewFormInputTypes.html

iw3htp5_17_WebServers.fm Page 645 Wednesday, November 16, 2011 1:13 PM

646 Chapter 17 Web Servers (Apache and IIS)

17.7 Microsoft IIS Express and WebMatrix
Microsoft Internet Information Services Express (IIS Express) is a web server that can
be installed on computers running Microsoft Windows. Once it’s running, you can use it
to test web pages and web applications on your local computer. A key benefit of IIS Ex-
press is that it can be installed without administrator privileges on all versions of Windows
XP, Windows Vista, Windows 7 and Windows Server 2008. IIS Express can be download-
ed and installed by itself, or you can install it in a bundle with Microsoft’s WebMatrix—
a free development tool for building PHP and ASP.NET web apps. We provide links for
each below. When you use IIS Express without administrator privileges, it can serve doc-
uments only to web browsers installed on your local computer.

17.7.1 Installing and Running IIS Express
If you simply want to test your web pages on IIS Express, you can install it from:

We recommend using the default installation options. Once you’ve installed IIS Express
you can learn more about using it at:

17.7.2 Installing and Running WebMatrix
You can install the WebMatrix and IIS Express bundle from:

Again, we recommend using the default installation options. You can run WebMatrix by
opening the Start menu and selecting All Programs > Microsoft WebMatrix > Microsoft Web-
Matrix. This will also start IIS Express. Microsoft provides tutorials on how to use Web-
Matrix at:

17.7.3 Running the Client-Side Examples Using IIS Express
Once you have IIS Express installed, you can use it to test the examples in Chapters 2–16.
When you start IIS Express, you can specify the folder on your computer that contains the
documents you’d like to serve. To execute IIS Express, open a Command Prompt window
and change directories to the IIS Express folder. On 32-bit Windows versions, use the
command

On 64-bit Windows versions, use the command

Launching IIS Express
If the book’s examples are in a folder named c:\examples, you can use the command

www.microsoft.com/web/gallery/install.aspx?appid=IISExpress

learn.iis.net/page.aspx/860/iis-express/

www.microsoft.com/web/gallery/install.aspx?appid=IISExpress

www.microsoft.com/web/post/web-development-101-using-webmatrix

cd "c:\Program Files\IIS Express"

cd "c:\Program Files (x86)\IIS Express"

iisexpress /path:c:\examples

iw3htp5_17_WebServers.fm Page 646 Wednesday, November 16, 2011 1:13 PM

17.7 Microsoft IIS Express and WebMatrix 647

to start IIS. You can stop the server simply by typing Q in the Command Prompt window.

Testing a Client-Side Example
You can now run your examples with URLs of the form

where chapter is one of the chapter folders (e.g., ch03), figure is a folder for a particular ex-
ample (e.g., fig03_01) and filename is the page to load (e.g., NewFormInputTypes.html).
So, you can run the first example in Chapter 3 with

[Note: The ch02 examples folder does not contain any subfolders.]

17.7.4 Running the PHP Examples Using IIS Express
The easiest way to test Chapter 19’s PHP examples is to use WebMatrix to enable PHP
for the ch19 folder in the book’s examples. To do so, perform the following steps.

1. Run WebMatrix by opening the Start menu and selecting All Programs > Micro-
soft WebMatrix > Microsoft WebMatrix.

2. In the Quick Start - Microsoft WebMatrix window, select Site From Folder.

3. Locate and select the ch19 folder in the Select Folder window, then click the Se-
lect Folder button.

This opens the ch19 folder as a website in WebMatrix (Fig. 17.5).

http://localhost:8080/chapter/figure/filename

http://localhost:8080/ch03/fig03_01/NewFormInputTypes.html

Fig. 17.5 | The ch19 examples folder in WebMatrix.

iw3htp5_17_WebServers.fm Page 647 Wednesday, November 16, 2011 1:13 PM

648 Chapter 17 Web Servers (Apache and IIS)

Enabling PHP
To enable PHP, perform the following steps:

1. Click the Site option in the bottom-left corner of the window.

2. Click Settings and ensure that Enable PHP is checked (Fig. 17.6). [Note: The first
time you do this, WebMatrix will ask you for permission to install PHP. You
must do this to test the PHP examples.]

Running a PHP Example
You can now run the PHP examples directly from WebMatrix. To do so:

1. Click the Files option in the bottom-left corner of the window.

2. Open the folder for the example you wish to test.

3. Right-click the example’s PHP script file and select Launch in browser.

This opens your default browser and requests the selected PHP script file.

Fig. 17.6 | Enabling PHP for the ch19 examples folder in WebMatrix.

iw3htp5_17_WebServers.fm Page 648 Wednesday, November 16, 2011 1:13 PM

18Database: SQL, MySQL,
LINQ and Java DB

It is a capital mistake to
theorize before one has data.
—Arthur Conan Doyle

Now go, write it before them in
a table, and note it in a book,
that it may be for the time to
come for ever and ever.
—The Holy Bible, Isaiah 30:8

Get your facts first, and then
you can distort them as much as
you please.
—Mark Twain

I like two kinds of men:
domestic and foreign.
—Mae West

O b j e c t i v e s
In this chapter, you’ll:

■ Learn fundamental relational
database concepts.

■ Learn Structured Query
Language (SQL) capabilities
for retrieving data from and
manipulating data in a
database.

■ Configure a MySQL user
account.

■ Create MySQL databases.

■ Learn fundamental concepts
of Microsoft’s Language
Integrated Query (LINQ)

iw3htp5_18_Database.fm Page 649 Wednesday, November 16, 2011 11:52 AM

650 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

18.1 Introduction
A database is an organized collection of data. There are many different strategies for orga-
nizing data to facilitate easy access and manipulation. A database management system
(DBMS) provides mechanisms for storing, organizing, retrieving and modifying data for
many users. Database management systems allow for the access and storage of data with-
out concern for the internal representation of data.

Today’s most popular database systems are relational databases. A language called
SQL—pronounced “sequel,” or as its individual letters—is the international standard lan-
guage used almost universally with relational databases to perform queries (i.e., to request
information that satisfies given criteria) and to manipulate data. [Note: As you learn about
SQL, you’ll see some authors writing “a SQL statement” (which assumes the pronuncia-
tion “sequel”) and others writing “an SQL statement” (which assumes that the individual
letters are pronounced). In this book we pronounce SQL as “sequel.”]

Programs connect to, and interact with, a relational database via an interface—soft-
ware that facilitates communication between a database management system and a pro-
gram. For example, Java developers can use the JDBC interface to interact with databases.
Similarly, ASP.NET programmers communicate with databases and manipulate their data
through interfaces provided by .NET.

18.2 Relational Databases
A relational database is a logical representation of data that allows the data to be accessed
without consideration of its physical structure. A relational database stores data in tables.

18.1 Introduction
18.2 Relational Databases
18.3 Relational Database Overview:

A books Database
18.4 SQL

18.4.1 Basic SELECT Query
18.4.2 WHERE Clause
18.4.3 ORDER BY Clause
18.4.4 Merging Data from Multiple Tables:

INNER JOIN
18.4.5 INSERT Statement
18.4.6 UPDATE Statement
18.4.7 DELETE Statement

18.5 MySQL
18.5.1 Instructions for Setting Up a MySQL

User Account
18.5.2 Creating Databases in MySQL

18.6 (Optional) Microsoft Language
Integrate Query (LINQ)

18.6.1 Querying an Array of int Values
Using LINQ

18.6.2 Querying an Array of Employee
Objects Using LINQ

18.6.3 Querying a Generic Collection Using
LINQ

18.7 (Optional) LINQ to SQL
18.8 (Optional) Querying a Database with

LINQ
18.8.1 Creating LINQ to SQL Classes
18.8.2 Data Bindings Between Controls and

the LINQ to SQL Classes

18.9 (Optional) Dynamically Binding
LINQ to SQL Query Results

18.9.1 Creating the Display Query Results
GUI

18.9.2 Coding the Display Query Results
Application

18.10 Java DB/Apache Derby

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

iw3htp5_18_Database.fm Page 650 Wednesday, November 16, 2011 11:52 AM

18.2 Relational Databases 651

Figure 18.1 illustrates a sample table that might be used in a personnel system. The table
name is Employee, and its primary purpose is to store the attributes of employees. Tables
are composed of rows, and rows are composed of columns in which values are stored. This
table consists of six rows. The Number column of each row is the table’s primary key—a
column (or group of columns) with a unique value that cannot be duplicated in other rows.
This guarantees that each row can be identified by its primary key. Good examples of pri-
mary-key columns are a social security number, an employee ID number and a part num-
ber in an inventory system, as values in each of these columns are guaranteed to be unique.
The rows in Fig. 18.1 are displayed in order by primary key. In this case, the rows are listed
in increasing order, but we could also use decreasing order.

Rows in tables are not guaranteed to be stored in any particular order. As we’ll dem-
onstrate in an upcoming example, programs can specify ordering criteria when requesting
data from a database.

Each column represents a different data attribute. Rows are normally unique (by pri-
mary key) within a table, but particular column values may be duplicated between rows.
For example, three different rows in the Employee table’s Department column contain
number 413.

Different users of a database are often interested in different data and different rela-
tionships among the data. Most users require only subsets of the rows and columns. Que-
ries specify which subsets of the data to select from a table. You use SQL to define queries.
For example, you might select data from the Employee table to create a result that shows
where each department is located, presenting the data sorted in increasing order by depart-
ment number. This result is shown in Fig. 18.2. SQL is discussed in Section 18.4.

Fig. 18.1 | Employee table sample data.

Fig. 18.2 | Result of selecting distinct Department and Location data from table
Employee.

23603

24568

34589

35761

47132

78321

Jones

Kerwin

Larson

Myers

Neumann

Stephens

Number

Primary key

Row

Column

Name

413

413

642

611

413

611

Department

1100

2000

1800

1400

9000

8500

Salary

New Jersey

New Jersey

Los Angeles

Orlando

New Jersey

Orlando

Location

413
611
642

New Jersey
Orlando
Los Angeles

Department Location

iw3htp5_18_Database.fm Page 651 Wednesday, November 16, 2011 11:52 AM

652 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

18.3 Relational Database Overview: A books Database
We now overview relational databases in the context of a sample books database we created
for this chapter. Before we discuss SQL, we discuss the tables of the books database. We
use this database to introduce various database concepts, including how to use SQL to ob-
tain information from the database and to manipulate the data. We provide a script to cre-
ate the database. You can find the script in the examples directory for this chapter.
Section 18.5.2 explains how to use this script. The database consists of three tables:
Authors, AuthorISBN and Titles.

Authors Table
The Authors table (described in Fig. 18.3) consists of three columns that maintain each
author’s unique ID number, first name and last name. Figure 18.4 contains sample data
from the Authors table of the books database.

AuthorISBN Table
The AuthorISBN table (described in Fig. 18.5) consists of two columns that maintain each
ISBN and the corresponding author’s ID number. This table associates authors with their
books. Both columns are foreign keys that represent the relationship between the tables
Authors and Titles—one row in table Authors may be associated with many rows in ta-
ble Titles, and vice versa. The combined columns of the AuthorISBN table represent the
table’s primary key—thus, each row in this table must be a unique combination of an Au-
thorID and an ISBN. Figure 18.6 contains sample data from the AuthorISBN table of the
books database. [Note: To save space, we have split the contents of this table into two col-

Column Description

AuthorID Author’s ID number in the database. In the books database, this integer col-
umn is defined as autoincremented—for each row inserted in this table, the
AuthorID value is increased by 1 automatically to ensure that each row has a
unique AuthorID. This column represents the table’s primary key.

FirstName Author’s first name (a string).

LastName Author’s last name (a string).

Fig. 18.3 | Authors table from the books database.

AuthorID FirstName LastName

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

4 Michael Morgano

5 Eric Kern

Fig. 18.4 | Sample data from the Authors table.

iw3htp5_18_Database.fm Page 652 Wednesday, November 16, 2011 11:52 AM

18.3 Relational Database Overview: A books Database 653

umns, each containing the AuthorID and ISBN columns.] The AuthorID column is a for-
eign key—a column in this table that matches the primary-key column in another table
(i.e., AuthorID in the Authors table). Foreign keys are specified when creating a table. The
foreign key helps maintain the Rule of Referential Integrity—every foreign-key value
must appear as another table’s primary-key value. This enables the DBMS to determine
whether the AuthorID value for a particular book is valid. Foreign keys also allow related
data in multiple tables to be selected from those tables for analytic purposes—this is
known as joining the data.

Titles Table
The Titles table described in Fig. 18.7 consists of four columns that stand for the ISBN,
the title, the edition number and the copyright year. The table is in Fig. 18.8.

Column Description

AuthorID The author’s ID number, a foreign key to the Authors table.

ISBN The ISBN for a book, a foreign key to the Titles table.

Fig. 18.5 | AuthorISBN table from the books database.

AuthorID ISBN AuthorID ISBN

1 0132152134 2 0132575663

2 0132152134 1 0132662361

1 0132151421 2 0132662361

2 0132151421 1 0132404168

1 0132575663 2 0132404168

1 013705842X 1 0132121360

2 013705842X 2 0132121360

3 013705842X 3 0132121360

4 013705842X 4 0132121360

5 013705842X

Fig. 18.6 | Sample data from the AuthorISBN table of books.

Column Description

ISBN ISBN of the book (a string). The table’s primary key. ISBN is an abbre-
viation for “International Standard Book Number”—a numbering
scheme that publishers use to give every book a unique identification
number.

Title Title of the book (a string).

Fig. 18.7 | Titles table from the books database. (Part 1 of 2.)

iw3htp5_18_Database.fm Page 653 Wednesday, November 16, 2011 11:52 AM

654 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

Entity-Relationship (ER) Diagram
There’s a one-to-many relationship between a primary key and a corresponding foreign
key (e.g., one author can write many books). A foreign key can appear many times in its
own table, but only once (as the primary key) in another table. Figure 18.9 is an entity-
relationship (ER) diagram for the books database. This diagram shows the database tables
and the relationships among them. The first compartment in each box contains the table’s
name and the remaining compartments contain the table’s columns. The names in italic
are primary keys. A table’s primary key uniquely identifies each row in the table. Every row
must have a primary-key value, and that value must be unique in the table. This is known
as the Rule of Entity Integrity. Again, for the AuthorISBN table, the primary key is the
combination of both columns.

EditionNumber Edition number of the book (an integer).

Copyright Copyright year of the book (a string).

ISBN Title EditionNumber Copyright

0132152134 Visual Basic 2010 How to Program 5 2011

0132151421 Visual C# 2010 How to Program 4 2011

0132575663 Java How to Program 9 2012

0132662361 C++ How to Program 8 2012

0132404168 C How to Program 6 2010

013705842X iPhone for Programmers: An App-
Driven Approach

1 2010

0132121360 Android for Programmers: An App-
Driven Approach

1 2012

Fig. 18.8 | Sample data from the Titles table of the books database .

Fig. 18.9 | Table relationships in the books database.

Column Description

Fig. 18.7 | Titles table from the books database. (Part 2 of 2.)

1 1
Titles

Copyright

EditionNumber

Title

ISBN

AuthorISBN

ISBN

AuthorID

Authors

LastName

FirstName

AuthorID

iw3htp5_18_Database.fm Page 654 Wednesday, November 16, 2011 11:52 AM

18.4 SQL 655

The lines connecting the tables (Fig. 18.9) represent the relationships between the
tables. Consider the line between the AuthorISBN and Authors tables. On the Authors end
of the line is a 1, and on the AuthorISBN end is an infinity symbol (∞), indicating a one-
to-many relationship in which every author in the Authors table can have an arbitrary
number of books in the AuthorISBN table. The relationship line links the AuthorID
column in Authors (i.e., its primary key) to the AuthorID column in AuthorISBN (i.e., its
foreign key). The AuthorID column in the AuthorISBN table is a foreign key.

The line between Titles and AuthorISBN illustrates another one-to-many relationship;
a title can be written by any number of authors. In fact, the sole purpose of the AuthorISBN
table is to provide a many-to-many relationship between Authors and Titles—an author
can write many books and a book can have many authors.

18.4 SQL
We now overview SQL in the context of our books database. The next several subsections
discuss the SQL keywords listed in Fig. 18.10 in the context of SQL queries and state-
ments. Other SQL keywords are beyond this text’s scope. To learn other keywords, refer
to the SQL reference guide supplied by the vendor of the DBMS you’re using.

Common Programming Error 18.1
Not providing a value for every column in a primary key breaks the Rule of Entity Integ-
rity and causes the DBMS to report an error.

Common Programming Error 18.2
Providing the same primary-key value in multiple rows causes the DBMS to report an
error.

Common Programming Error 18.3
Providing a foreign-key value that does not appear as a primary-key value in another table
breaks the Rule of Referential Integrity and causes the DBMS to report an error.

SQL keyword Description

SELECT Retrieves data from one or more tables.

FROM Tables involved in the query. Required in every SELECT.

WHERE Criteria for selection that determine the rows to be retrieved,
deleted or updated. Optional in a SQL query or a SQL statement.

GROUP BY Criteria for grouping rows. Optional in a SELECT query.

ORDER BY Criteria for ordering rows. Optional in a SELECT query.

INNER JOIN Merge rows from multiple tables.

INSERT Insert rows into a specified table.

UPDATE Update rows in a specified table.

DELETE Delete rows from a specified table.

Fig. 18.10 | SQL query keywords.

iw3htp5_18_Database.fm Page 655 Wednesday, November 16, 2011 11:52 AM

656 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

18.4.1 Basic SELECT Query
Let us consider several SQL queries that extract information from database books. A SQL
query “selects” rows and columns from one or more tables in a database. Such selections
are performed by queries with the SELECT keyword. The basic form of a SELECT query is

in which the asterisk (*) wildcard character indicates that all columns from the tableName
table should be retrieved. For example, to retrieve all the data in the Authors table, use

Most programs do not require all the data in a table. To retrieve only specific columns,
replace the * with a comma-separated list of column names. For example, to retrieve only
the columns AuthorID and LastName for all rows in the Authors table, use the query

This query returns the data listed in Fig. 18.11.

18.4.2 WHERE Clause
In most cases, it’s necessary to locate rows in a database that satisfy certain selection crite-
ria. Only rows that satisfy the selection criteria (formally called predicates) are selected.
SQL uses the optional WHERE clause in a query to specify the selection criteria for the query.
The basic form of a query with selection criteria is

SELECT * FROM tableName

SELECT * FROM Authors

SELECT AuthorID, LastName FROM Authors

AuthorID LastName

1 Deitel

2 Deitel

3 Deitel

4 Morgano

5 Kern

Fig. 18.11 | Sample AuthorID and
LastName data from the Authors table.

Software Engineering Observation 18.1
In general, you process results by knowing in advance the order of the columns in the
result—for example, selecting AuthorID and LastName from table Authors ensures that
the columns will appear in the result with AuthorID as the first column and LastName as
the second. Programs typically process result columns by specifying the column number in
the result (starting from 1 for the first column). Selecting columns by name avoids
returning unneeded columns and protects against changes to the order of the columns in
the table(s) by returning the columns in the exact order specified.

Common Programming Error 18.4
If you assume that the columns are always returned in the same order from a query that
uses the asterisk (*), the program may process the results incorrectly.

iw3htp5_18_Database.fm Page 656 Wednesday, November 16, 2011 11:52 AM

18.4 SQL 657

For example, to select the Title, EditionNumber and Copyright columns from table
Titles for which the Copyright date is greater than 2010, use the query

Strings in SQL are delimited by single (') rather than double (") quotes. Figure 18.12
shows the result of the preceding query.

Pattern Matching: Zero or More Characters
The WHERE clause criteria can contain the operators <, >, <=, >=, =, <> and LIKE. Operator
LIKE is used for pattern matching with wildcard characters percent (%) and underscore
(_). Pattern matching allows SQL to search for strings that match a given pattern.

A pattern that contains a percent character (%) searches for strings that have zero or
more characters at the percent character’s position in the pattern. For example, the next
query locates the rows of all the authors whose last name starts with the letter D:

This query selects the two rows shown in Fig. 18.13—three of the five authors have a last
name starting with the letter D (followed by zero or more characters). The % symbol in the
WHERE clause’s LIKE pattern indicates that any number of characters can appear after the
letter D in the LastName. The pattern string is surrounded by single-quote characters.

SELECT columnName1, columnName2, … FROM tableName WHERE criteria

SELECT Title, EditionNumber, Copyright
 FROM Titles
 WHERE Copyright > '2010'

Title EditionNumber Copyright

Visual Basic 2010 How to Program 5 2011

Visual C# 2010 How to Program 4 2011

Java How to Program 9 2012

C++ How to Program 8 2012

Android for Programmers: An App-
Driven Approach

1 2012

Fig. 18.12 | Sampling of titles with copyrights after 2005 from table Titles.

SELECT AuthorID, FirstName, LastName
 FROM Authors
 WHERE LastName LIKE 'D%'

AuthorID FirstName LastName

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

Fig. 18.13 | Authors whose last name starts with D from the Authors table.

iw3htp5_18_Database.fm Page 657 Wednesday, November 16, 2011 11:52 AM

658 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

Pattern Matching: Any Character
An underscore (_) in the pattern string indicates a single wildcard character at that posi-
tion in the pattern. For example, the following query locates the rows of all the authors
whose last names start with any character (specified by _), followed by the letter o, followed
by any number of additional characters (specified by %):

The preceding query produces the row shown in Fig. 18.14, because only one author in
our database has a last name that contains the letter o as its second letter.

18.4.3 ORDER BY Clause
The rows in the result of a query can be sorted into ascending or descending order by using
the optional ORDER BY clause. The basic form of a query with an ORDER BY clause is

where ASC specifies ascending order (lowest to highest), DESC specifies descending order
(highest to lowest) and column specifies the column on which the sort is based. For exam-
ple, to obtain the list of authors in ascending order by last name (Fig. 18.15), use the query

Portability Tip 18.1
See the documentation for your database system to determine whether SQL is case sensitive
on your system and to determine the syntax for SQL keywords.

Portability Tip 18.2
Read your database system’s documentation carefully to determine whether it supports the
LIKE operator as discussed here.

SELECT AuthorID, FirstName, LastName
 FROM Authors
 WHERE LastName LIKE '_o%'

AuthorID FirstName LastName

4 Michael Morgano

Fig. 18.14 | The only author from the Authors table
whose last name contains o as the second letter.

SELECT columnName1, columnName2, … FROM tableName ORDER BY column ASC
SELECT columnName1, columnName2, … FROM tableName ORDER BY column DESC

SELECT AuthorID, FirstName, LastName
 FROM Authors
 ORDER BY LastName ASC

AuthorID FirstName LastName

1 Paul Deitel

Fig. 18.15 | Sample data from table Authors in ascending order by LastName.
 (Part 1 of 2.)

iw3htp5_18_Database.fm Page 658 Wednesday, November 16, 2011 11:52 AM

18.4 SQL 659

Sorting in Descending Order
The default sorting order is ascending, so ASC is optional. To obtain the same list of au-
thors in descending order by last name (Fig. 18.16), use the query

Sorting By Multiple Columns
Multiple columns can be used for sorting with an ORDER BY clause of the form

where sortingOrder is either ASC or DESC. The sortingOrder does not have to be identical for
each column. The query

sorts all the rows in ascending order by last name, then by first name. If any rows have the
same last-name value, they’re returned sorted by first name (Fig. 18.17).

Combining the WHERE and ORDER BY Clauses
The WHERE and ORDER BY clauses can be combined in one query, as in

2 Harvey Deitel

3 Abbey Deitel

5 Eric Kern

4 Michael Morgano

SELECT AuthorID, FirstName, LastName
 FROM Authors
 ORDER BY LastName DESC

AuthorID FirstName LastName

4 Michael Morgano

5 Eric Kern

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

Fig. 18.16 | Sample data from table Authors in descending order by LastName.

ORDER BY column1 sortingOrder, column2 sortingOrder, …

SELECT AuthorID, FirstName, LastName
 FROM Authors
 ORDER BY LastName, FirstName

SELECT ISBN, Title, EditionNumber, Copyright
 FROM Titles
 WHERE Title LIKE '%How to Program'
 ORDER BY Title ASC

AuthorID FirstName LastName

Fig. 18.15 | Sample data from table Authors in ascending order by LastName.
 (Part 2 of 2.)

iw3htp5_18_Database.fm Page 659 Wednesday, November 16, 2011 11:52 AM

660 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

which returns the ISBN, Title, EditionNumber and Copyright of each book in the Titles
table that has a Title ending with "How to Program" and sorts them in ascending order
by Title. The query results are shown in Fig. 18.18.

18.4.4 Merging Data from Multiple Tables: INNER JOIN
Database designers often split related data into separate tables to ensure that a database does
not store data redundantly. For example, in the books database, we use an AuthorISBN table
to store the relationship data between authors and their corresponding titles. If we did not
separate this information into individual tables, we’d need to include author information
with each entry in the Titles table. This would result in the database’s storing duplicate
author information for authors who wrote multiple books. Often, it’s necessary to merge
data from multiple tables into a single result. Referred to as joining the tables, this is speci-
fied by an INNER JOIN operator, which merges rows from two tables by matching values in
columns that are common to the tables. The basic form of an INNER JOIN is:

The ON clause of the INNER JOIN specifies the columns from each table that are com-
pared to determine which rows are merged. For example, the following query produces a
list of authors accompanied by the ISBNs for books written by each author:

AuthorID FirstName LastName

3 Abbey Deitel

2 Harvey Deitel

1 Paul Deitel

5 Eric Kern

4 Michael Morgano

Fig. 18.17 | Sample data from Authors in ascending order by LastName and FirstName.

ISBN Title

Editio
n-
Number

Copy-
right

0132404168 C How to Program 6 2010

0132662361 C++ How to Program 8 2012

0132575663 Java How to Program 9 2012

0132152134 Visual Basic 2005 How to Program 5 2011

0132151421 Visual C# 2005 How to Program 4 2011

Fig. 18.18 | Sampling of books from table Titles whose titles end with How to Program in
ascending order by Title.

SELECT columnName1, columnName2, …
FROM table1
INNER JOIN table2
 ON table1.columnName = table2.columnName

iw3htp5_18_Database.fm Page 660 Wednesday, November 16, 2011 11:52 AM

18.4 SQL 661

The query merges the FirstName and LastName columns from table Authors with the
ISBN column from table AuthorISBN, sorting the result in ascending order by LastName
and FirstName. Note the use of the syntax tableName.columnName in the ON clause. This
syntax, called a qualified name, specifies the columns from each table that should be com-
pared to join the tables. The “tableName.” syntax is required if the columns have the same
name in both tables. The same syntax can be used in any SQL statement to distinguish
columns in different tables that have the same name. In some systems, table names quali-
fied with the database name can be used to perform cross-database queries. As always, the
query can contain an ORDER BY clause. Figure 18.19 shows the results of the preceding
query, ordered by LastName and FirstName. [Note: To save space, we split the result of the
query into two parts, each containing the FirstName, LastName and ISBN columns.]

18.4.5 INSERT Statement
The INSERT statement inserts a row into a table. The basic form of this statement is

SELECT FirstName, LastName, ISBN
FROM Authors
INNER JOIN AuthorISBN
 ON Authors.AuthorID = AuthorISBN.AuthorID
ORDER BY LastName, FirstName

FirstName LastName ISBN FirstName LastName ISBN

Abbey Deitel 013705842X Paul Deitel 0132151421

Abbey Deitel 0132121360 Paul Deitel 0132575663

Harvey Deitel 0132152134 Paul Deitel 0132662361

Harvey Deitel 0132151421 Paul Deitel 0132404168

Harvey Deitel 0132575663 Paul Deitel 013705842X

Harvey Deitel 0132662361 Paul Deitel 0132121360

Harvey Deitel 0132404168 Eric Kern 013705842X

Harvey Deitel 013705842X Michael Morgano 013705842X

Harvey Deitel 0132121360 Michael Morgano 0132121360

Paul Deitel 0132152134

Fig. 18.19 | Sampling of authors and ISBNs for the books they have written in ascending
order by LastName and FirstName.

Software Engineering Observation 18.2
If a SQL statement includes columns with the same name from multiple tables, the
statement must precede those column names with their table names and a dot (e.g.,
Authors.AuthorID).

Common Programming Error 18.5
Failure to qualify names for columns that have the same name in two or more tables is an
error.

iw3htp5_18_Database.fm Page 661 Wednesday, November 16, 2011 11:52 AM

662 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

where tableName is the table in which to insert the row. The tableName is followed by a
comma-separated list of column names in parentheses (this list is not required if the IN-
SERT operation specifies a value for every column of the table in the correct order). The list
of column names is followed by the SQL keyword VALUES and a comma-separated list of
values in parentheses. The values specified here must match the columns specified after the
table name in both order and type (e.g., if columnName1 is supposed to be the FirstName
column, then value1 should be a string in single quotes representing the first name). Al-
ways explicitly list the columns when inserting rows. If the table’s column order changes
or a new column is added, using only VALUES may cause an error. The INSERT statement

inserts a row into the Authors table. The statement indicates that values are provided for
the FirstName and LastName columns. The corresponding values are 'Sue' and 'Smith'.
We do not specify an AuthorID in this example because AuthorID is an autoincremented
column in the Authors table. For every row added to this table, the DBMS assigns a
unique AuthorID value that is the next value in the autoincremented sequence (i.e., 1, 2,
3 and so on). In this case, Sue Red would be assigned AuthorID number 6. Figure 18.20
shows the Authors table after the INSERT operation. [Note: Not every database manage-
ment system supports autoincremented columns. Check the documentation for your
DBMS for alternatives to autoincremented columns.]

INSERT INTO tableName (columnName1, columnName2, …, columnNameN)
 VALUES (value1, value2, …, valueN)

INSERT INTO Authors (FirstName, LastName)
 VALUES ('Sue', 'Red')

AuthorID FirstName LastName

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

4 Michael Morgano

5 Eric Kern

6 Sue Red

Fig. 18.20 | Sample data from table Authors after an INSERT operation.

Common Programming Error 18.6
It’s normally an error to specify a value for an autoincrement column.

Common Programming Error 18.7
SQL delimits strings with single quotes ('). A string containing a single quote (e.g.,
O’Malley) must have two single quotes in the position where the single quote appears (e.g.,
'O''Malley'). The first acts as an escape character for the second. Not escaping single-
quote characters in a string that’s part of a SQL statement is a SQL syntax error.

iw3htp5_18_Database.fm Page 662 Wednesday, November 16, 2011 11:52 AM

18.4 SQL 663

18.4.6 UPDATE Statement
An UPDATE statement modifies data in a table. Its basic form is

where tableName is the table to update. The tableName is followed by keyword SET and a
comma-separated list of column name/value pairs in the format columnName = value. The
optional WHERE clause provides criteria that determine which rows to update. Though not
required, the WHERE clause is typically used, unless a change is to be made to every row.
The UPDATE statement

updates a row in the Authors table. The statement indicates that LastName will be assigned
the value Black for the row in which LastName is equal to Red and FirstName is equal to
Sue. [Note: If there are multiple rows with the first name “Sue” and the last name “Red,”
this statement will modify all such rows to have the last name “Black.”] If we know the
AuthorID in advance of the UPDATE operation (possibly because we searched for it previ-
ously), the WHERE clause can be simplified as follows:

Figure 18.21 shows the Authors table after the UPDATE operation has taken place.

18.4.7 DELETE Statement
A SQL DELETE statement removes rows from a table. Its basic form is

where tableName is the table from which to delete. The optional WHERE clause specifies the
criteria used to determine which rows to delete. If this clause is omitted, all the table’s rows
are deleted. The DELETE statement

UPDATE tableName
 SET columnName1 = value1, columnName2 = value2, …, columnNameN = valueN
 WHERE criteria

UPDATE Authors
 SET LastName = 'Black'
 WHERE LastName = 'Red' AND FirstName = 'Sue'

WHERE AuthorID = 6

AuthorID FirstName LastName

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

4 Michael Morgano

5 Eric Kern

6 Sue Black

Fig. 18.21 | Sample data from table Authors after an UPDATE operation.

DELETE FROM tableName WHERE criteria

DELETE FROM Authors
 WHERE LastName = 'Black' AND FirstName = 'Sue'

iw3htp5_18_Database.fm Page 663 Wednesday, November 16, 2011 11:52 AM

664 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

deletes the row for Sue Black in the Authors table. If we know the AuthorID in advance
of the DELETE operation, the WHERE clause can be simplified as follows:

Figure 18.22 shows the Authors table after the DELETE operation has taken place.

18.5 MySQL
In 1994, TcX, a Swedish consulting firm, needed a fast and flexible way to access its tables.
Unable to find a database server that could accomplish the required task adequately, Mi-
chael Widenius, the principal developer at TcX, decided to create his own database server.
The resulting product was called MySQL (pronounced “my sequel”), a robust and scalable
relational database management system (RDBMS).

MySQL, now owned by Oracle, is a multiuser, multithreaded (i.e., allows multiple
simultaneous connections) RDBMS server that uses SQL to interact with and manipulate
data. The MySQL Manual (www.mysql.com/why-mysql/topreasons.html) lists
numerous benefits of MySQL. A few important benefits include:

1. Scalability. You can embed it in an application or use it in massive data warehous-
ing environments.

2. Performance. You can optimize performance based on the purpose of the data-
base in your application.

3. Support for many programming languages. Later chapters demonstrate how to
access a MySQL database from PHP (Chapter 19) .

4. Implementations of MySQL for Windows, Mac OS X, Linux and UNIX.

5. Handling large databases (e.g., tens of thousands of tables with millions of rows).

For these reasons and more, MySQL is the database of choice for many businesses,
universities and individuals. MySQL is an open source software product. [Note: Under
certain situations, a commercial license is required for MySQL. See www.mysql.com/
about/legal for details]

MySQL Community Edition
MySQL Community Edition is an open-source database management system that exe-
cutes on many platforms, including Windows, Linux, and Mac OS X. Complete informa-
tion about MySQL is available from www.mysql.com. The data-driven web applications in

WHERE AuthorID = 5

AuthorID FirstName LastName

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

4 Michael Morgano

5 Eric Kern

Fig. 18.22 | Sample data from table Authors after a DELETE operation.

iw3htp5_18_Database.fm Page 664 Wednesday, November 16, 2011 11:52 AM

18.5 MySQL 665

Chapter 19 manipulate MySQL databases using the version of MySQL that you installed
with XAMPP in Chapter 17.

18.5.1 Instructions for Setting Up a MySQL User Account
For the MySQL examples to execute correctly, you need to set up a user account so you
can create, delete and modify databases. Open the XAMPP control panel and start the
MySQL server, then follow the steps below to set up a user account:

1. Next, you’ll start the MySQL monitor so you can set up a user account. (The fol-
lowing commands assume that you followed the default installation instructions
for XAMPP as discussed in Chapter 17.) In Windows, open a Command Prompt
and execute the command

In Mac OS X, open a Terminal window and execute the command

In Linux, open a shell and execute the command

The -h option indicates the host (i.e., computer) on which the MySQL server is
running—in this case your local computer (localhost). The -u option indicates
the user account that will be used to log in to the server—root is the default user
account that is created during installation to allow you to configure the server.
Once you’ve logged in, you’ll see a mysql> prompt at which you can type com-
mands to interact with the MySQL server.

2. At the mysql> prompt, type

and press Enter to select the built-in database named mysql, which stores server
information, such as user accounts and their privileges for interacting with the
server. Each command must end with a semicolon. To confirm the command,
MySQL issues the message “Database changed.”

3. Next, you’ll add the iw3htp user account to the mysql built-in database. The
mysql database contains a table called user with columns that represent the user’s
name, password and various privileges. To create the iw3htp user account with
the password password, execute the following commands from the mysql>
prompt:

This creates the user account iw3htp with the password password with and privi-
leges needed to create the databases used in Chapter 19 and manipulate them.

4. Type the command

to terminate the MySQL monitor.

mysql -h localhost -u root

/Applications/XAMPP/xamppfiles/bin/mysql -h localhost -u root

/opt/lamp/bin/mysql -h localhost -u root

USE mysql;

 create user 'iw3htp'@'localhost' identified by 'password';
 grant select, insert, update, delete, create, drop, references,
 execute on *.* to 'deitel'@'localhost';

exit;

iw3htp5_18_Database.fm Page 665 Wednesday, November 16, 2011 11:52 AM

666 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

18.5.2 Creating Databases in MySQL
For each MySQL database we use in Chapter 19, we provide a SQL script in a .sql file
that sets up the database and its tables. You can execute these scripts in the MySQL mon-
itor. In this chapter’s examples directory, you’ll find the following scripts:

• books.sql—creates the books database discussed in Section 18.3

• products.sql—creates the Products database used in Section 19.9

• mailinglist.sql—creates the MailingList database used in Section 19.11

• URLs.sql—creates the URL database used in Exercise 19.9.

Executing a SQL Script
To execute a SQL script:

1. Start the MySQL monitor using the username and password you created in
Section 18.5.1. In Windows, open a Command Prompt and execute the com-
mand

In Mac OS X, open a Terminal window and execute the command

In Linux, open a shell and execute the command

The -p option prompts you for the password for the iw3htp user account. When
prompted, enter the password password.

2. Execute the script with the source command. For example:

creates the books database.

3. Repeat Step 2 for each SQL script now, so the databases are ready for use in
Chapter 19.

4. Type the command

to terminate the MySQL monitor.

18.6 (Optional) Microsoft Language Integrate Query
(LINQ)
[Note: Sections 18.6–18.9 support the database-driven C# ASP.NET examples in
Chapters 20–22, which assume that you already know C#. Chapters 23–25 also use
LINQ to access databases from Visual Basic ASP.NET examples. Those chapters assume
that you already know Visual Basic. For more information on LINQ in VB, visit the site
msdn.microsoft.com/en-us/library/bb397910.aspx.]

mysql -h localhost -u iw3htp -p

/Applications/XAMPP/xamppfiles/bin/mysql -h localhost -u iw3htp -p

/opt/lamp/bin/mysql -h localhost -u iw3htp -p

source books.sql;

exit;

iw3htp5_18_Database.fm Page 666 Wednesday, November 16, 2011 11:52 AM

18.6 (Optional) Microsoft Language Integrate Query (LINQ) 667

The next several sections introduce C#’s LINQ (Language Integrated Query) capa-
bilities. LINQ allows you to write query expressions, similar to SQL queries, that retrieve
information from a wide variety of data sources, not just databases. We use LINQ to
Objects in this section to query arrays and Lists, selecting elements that satisfy a set of
conditions—this is known as filtering.

18.6.1 Querying an Array of int Values Using LINQ
First, we demonstrate querying an array of integers using LINQ. Repetition statements
that filter arrays focus on the process of getting the results—iterating through the elements
and checking whether they satisfy the desired criteria. LINQ specifies the conditions that
selected elements must satisfy. This is known as declarative programming—as opposed to
imperative programming (which we’ve been doing so far) in which you specify the actual
steps to perform a task. The next several statements assume that the integer array

is declared. The query

specifies that the results should consist of all the ints in the values array that are greater
than 4 (i.e., 9, 5, 7, 8 and 5). It does not specify how those results are obtained—the C#
compiler generates all the necessary code automatically, which is one of the great strengths
of LINQ. To use LINQ to Objects, you must import the System.Linq namespace (line 4).

The from Clause and Implicitly Typed Local Variables
A LINQ query begins with a from clause, which specifies a range variable (value) and the
data source to query (values). The range variable represents each item in the data source
(one at a time), much like the control variable in a foreach statement. We do not specify
the range variable’s type. Since it is assigned one element at a time from the array values,
which is an int array, the compiler determines that the range variable value should be of
type int. This is a C# feature called implicitly typed local variables, which enables the
compiler to infer a local variable’s type based on the context in which it’s used.

Introducing the range variable in the from clause at the beginning of the query allows
the IDE to provide IntelliSense while you write the rest of the query. The IDE knows the
range variable’s type, so when you enter the range variable’s name followed by a dot (.) in
the code editor, the IDE can display the range variable’s methods and properties.

The var Keyword and Implicitly Typed Local Variables
You can also declare a local variable and let the compiler infer the variable’s type based on
the variable’s initializer. To do so, the var keyword is used in place of the variable’s type
when declaring the variable. Consider the declaration

Here, the compiler infers that the variable x should be of type int, because the compiler
assumes that whole-number values, like 7, are of type int. Similarly, in the declaration

int[] values = { 2, 9, 5, 0, 3, 7, 1, 4, 8, 5 };

var filtered =
 from value in values
 where value > 4
 select value;

var x = 7;

iw3htp5_18_Database.fm Page 667 Wednesday, November 16, 2011 11:52 AM

668 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

the compiler infers that y should be of type double, because the compiler assumes that
floating-point number values, like -123.45, are of type double. Typically, implicitly typed
local variables are used for more complex types, such as the collections of data returned by
LINQ queries.

The where Clause
If the condition in the where clause evaluates to true, the element is selected—i.e., it’s in-
cluded in the results. Here, the ints in the array are included only if they’re greater than
4. An expression that takes an element of a collection and returns true or false by testing
a condition on that element is known as a predicate.

The select Clause
For each item in the data source, the select clause determines what value appears in the
results. In this case, it’s the int that the range variable currently represents. A LINQ query
typically ends with a select clause.

Iterating Through the Results of the LINQ Query
The foreach statement

displays the query results. A foreach statement can iterate through the contents of an ar-
ray, collection or the results of a LINQ query, allowing you to process each element in the
array, collection or query. The preceding foreach statement iterates over the query result
filtered, displaying each of its items.

LINQ vs. Repetition Statements
It would be simple to display the integers greater than 4 using a repetition statement that
tests each value before displaying it. However, this would intertwine the code that selects
elements and the code that displays them. With LINQ, these are kept separate, making
the code easier to understand and maintain.

The orderby Clause
The orderby clause sorts the query results in ascending order. The query

sorts the integers in array values into ascending order and assigns the results to variable
sorted. To sort in descending order, use descending in the orderby clause, as in

An ascending modifier also exists but isn’t normally used, because it’s the default. Any
value that can be compared with other values of the same type may be used with the or-
derby clause. A value of a simple type (e.g., int) can always be compared to another value
of the same type.

var y = -123.45;

foreach (var element in filtered)
 Console.Write(" {0}", element);

var sorted =
 from value in values
 orderby value
 select value;

orderby value descending

iw3htp5_18_Database.fm Page 668 Wednesday, November 16, 2011 11:52 AM

18.6 (Optional) Microsoft Language Integrate Query (LINQ) 669

The following two queries

generate the same results, but in different ways. The first query uses LINQ to sort the re-
sults of the filtered query presented earlier in this section. The second query uses both
the where and orderby clauses. Because queries can operate on the results of other queries,
it’s possible to build a query one step at a time, and pass the results of queries between
methods for further processing.

More on Implicitly Typed Local Variables
Implicitly typed local variables can also be used to initialize arrays without explicitly giving
their type. For example, the following statement creates an array of int values:

Note that there are no square brackets on the left side of the assignment operator, and that
new[] is used to specify that the variable is an array.

An Aside: Interface IEnumerable<T>
As we mentioned, the foreach statement can iterate through the contents of arrays, col-
lections and LINQ query results. Actually, foreach iterates over any so-called IEnumera-
ble<T> object, which just happens to be what a LINQ query returns. IEnumerable<T> is
an interface that describes the functionality of any object that can be iterated over and thus
offers methods to access each element.

C# arrays are IEnumerable<T> objects, so a foreach statement can iterate over an
array’s elements. Similarly, each LINQ query returns an IEnumerable<T> object. There-
fore, you can use a foreach statement to iterate over the results of any LINQ query. The
notation <T> indicates that the interface is a generic interface that can be used with any
type of data (for example, ints, strings or Employees).

18.6.2 Querying an Array of Employee Objects Using LINQ
LINQ is not limited to querying arrays of primitive types such as ints. It can be used with
most data types, including strings and user-defined classes. It cannot be used when a que-
ry does not have a defined meaning—for example, you cannot use orderby on objects that
are not comparable. Comparable types in .NET are those that implement the ICompara-
ble interface. All built-in types, such as string, int and double implement IComparable.
Figure 18.23 presents the Employee class we use in this section. Figure 18.24 uses LINQ
to query an array of Employee objects.

 var sortFilteredResults =
 from value in filtered
 orderby value descending
 select value;

 var sortAndFilter =
 from value in values
 where value > 4
 orderby value descending
 select value;

var array = new[] { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };

iw3htp5_18_Database.fm Page 669 Wednesday, November 16, 2011 11:52 AM

670 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

1 // Fig. 18.23: Employee.cs
2 // Employee class with FirstName, LastName and MonthlySalary properties.
3 public class Employee
4 {
5 private decimal monthlySalaryValue; // monthly salary of employee
6
7 // auto-implemented property FirstName
8 public string FirstName { get; set; }
9

10 // auto-implemented property LastName
11 public string LastName { get; set; }
12
13 // constructor initializes first name, last name and monthly salary
14 public Employee(string first, string last, decimal salary)
15 {
16 FirstName = first;
17 LastName = last;
18 MonthlySalary = salary;
19 } // end constructor
20
21 // property that gets and sets the employee's monthly salary
22 public decimal MonthlySalary
23 {
24 get
25 {
26 return monthlySalaryValue;
27 } // end get
28 set
29 {
30 if (value >= 0M) // if salary is nonnegative
31 {
32 monthlySalaryValue = value;
33 } // end if
34 } // end set
35 } // end property MonthlySalary
36
37 // return a string containing the employee's information
38 public override string ToString()
39 {
40 return string.Format("{0,-10} {1,-10} {2,10:C}",
41 FirstName, LastName, MonthlySalary);
42 } // end method ToString
43 } // end class Employee

Fig. 18.23 | Employee class.

1 // Fig. 18.24: LINQWithArrayOfObjects.cs
2 // LINQ to Objects using an array of Employee objects.
3 using System;
4 using System.Linq;
5

Fig. 18.24 | LINQ to Objects using an array of Employee objects. (Part 1 of 3.)

iw3htp5_18_Database.fm Page 670 Wednesday, November 16, 2011 11:52 AM

18.6 (Optional) Microsoft Language Integrate Query (LINQ) 671

6 public class LINQWithArrayOfObjects
7 {
8 public static void Main(string[] args)
9 {

10 // initialize array of employees
11 Employee[] employees = {
12 new Employee("Jason", "Red", 5000M),
13 new Employee("Ashley", "Green", 7600M),
14 new Employee("Matthew", "Indigo", 3587.5M),
15 new Employee("James", "Indigo", 4700.77M),
16 new Employee("Luke", "Indigo", 6200M),
17 new Employee("Jason", "Blue", 3200M),
18 new Employee("Wendy", "Brown", 4236.4M) }; // end init list
19
20 // display all employees
21 Console.WriteLine("Original array:");
22 foreach (var element in employees)
23 Console.WriteLine(element);
24
25 // filter a range of salaries using && in a LINQ query
26 var between4K6K =
27
28
29
30
31 // display employees making between 4000 and 6000 per month
32 Console.WriteLine(string.Format(
33 "\nEmployees earning in the range {0:C}-{1:C} per month:",
34 4000, 6000));
35 foreach (var element in between4K6K)
36 Console.WriteLine(element);
37
38 // order the employees by last name, then first name with LINQ
39 var nameSorted =
40
41
42
43
44 // header
45 Console.WriteLine("\nFirst employee when sorted by name:");
46
47 // attempt to display the first result of the above LINQ query
48 if ()
49 Console.WriteLine();
50 else
51 Console.WriteLine("not found");
52
53 // use LINQ to select employee last names
54 var lastNames =
55
56
57

Fig. 18.24 | LINQ to Objects using an array of Employee objects. (Part 2 of 3.)

from e in employees
where e.MonthlySalary >= 4000M && e.MonthlySalary <= 6000M
select e;

from e in employees
orderby e.LastName, e.FirstName
select e;

nameSorted.Any()
nameSorted.First()

from e in employees
select e.LastName;

iw3htp5_18_Database.fm Page 671 Wednesday, November 16, 2011 11:52 AM

672 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

58 // use method Distinct to select unique last names
59 Console.WriteLine("\nUnique employee last names:");
60 foreach (var element in)
61 Console.WriteLine(element);
62
63 // use LINQ to select first and last names
64 var names =
65
66
67
68 // display full names
69 Console.WriteLine("\nNames only:");
70 foreach (var element in names)
71 Console.WriteLine(element);
72
73 Console.WriteLine();
74 } // end Main
75 } // end class LINQWithArrayOfObjects

Original array:
Jason Red $5,000.00
Ashley Green $7,600.00
Matthew Indigo $3,587.50
James Indigo $4,700.77
Luke Indigo $6,200.00
Jason Blue $3,200.00
Wendy Brown $4,236.40

Employees earning in the range $4,000.00-$6,000.00 per month:
Jason Red $5,000.00
James Indigo $4,700.77
Wendy Brown $4,236.40

First employee when sorted by name:
Jason Blue $3,200.00

Unique employee last names:
Red
Green
Indigo
Blue
Brown

Names only:
{ FirstName = Jason, Last = Red }
{ FirstName = Ashley, Last = Green }
{ FirstName = Matthew, Last = Indigo }
{ FirstName = James, Last = Indigo }
{ FirstName = Luke, Last = Indigo }
{ FirstName = Jason, Last = Blue }
{ FirstName = Wendy, Last = Brown }

Fig. 18.24 | LINQ to Objects using an array of Employee objects. (Part 3 of 3.)

lastNames.Distinct()

from e in employees
select new { e.FirstName, Last = e.LastName };

iw3htp5_18_Database.fm Page 672 Wednesday, November 16, 2011 11:52 AM

18.6 (Optional) Microsoft Language Integrate Query (LINQ) 673

Accessing the Properties of a LINQ Query’s Range Variable
Line 28 of Fig. 18.24 shows a where clause that accesses the properties of the range vari-
able. In this example, the compiler infers that the range variable is of type Employee based
on its knowledge that employees was defined as an array of Employee objects (lines 11–
18). Any bool expression can be used in a where clause. Line 28 uses the conditional AND
(&&) operator to combine conditions. Here, only employees that have a salary between
$4,000 and $6,000 per month, inclusive, are included in the query result, which is dis-
played in lines 35–36.

Sorting a LINQ Query’s Results By Multiple Properties
Line 41 uses an orderby clause to sort the results according to multiple properties—spec-
ified in a comma-separated list. In this query, the employees are sorted alphabetically by
last name. Each group of Employees that have the same last name is then sorted within the
group by first name.

Any, First and Count Extension Methods
Line 48 introduces the query result’s Any method, which returns true if there’s at least one
element, and false if there are no elements. The query result’s First method (line 49)
returns the first element in the result. You should check that the query result is not empty
(line 48) before calling First.

We’ve not specified the class that defines methods First and Any. Your intuition
probably tells you they’re methods declared in the IEnumerable<T> interface, but they
aren’t. They’re actually extension methods, but they can be used as if they were methods
of IEnumerable<T>.

LINQ defines many more extension methods, such as Count, which returns the
number of elements in the results. Rather than using Any, we could have checked that
Count was nonzero, but it’s more efficient to determine whether there’s at least one ele-
ment than to count all the elements. The LINQ query syntax is actually transformed by
the compiler into extension method calls, with the results of one method call used in the
next. It’s this design that allows queries to be run on the results of previous queries, as it
simply involves passing the result of a method call to another method.

Selecting a Portion of an Object
Line 56 uses the select clause to select the range variable’s LastName property rather than
the range variable itself. This causes the results of the query to consist of only the last
names (as strings), instead of complete Employee objects. Lines 60–61 display the unique
last names. The Distinct extension method (line 60) removes duplicate elements, caus-
ing all elements in the result to be unique.

Creating New Types in the select Clause of a LINQ Query
The last LINQ query in the example (lines 65–66) selects the properties FirstName and
LastName. The syntax

creates a new object of an anonymous type (a type with no name), which the compiler
generates for you based on the properties listed in the curly braces ({}). In this case, the
anonymous type consists of properties for the first and last names of the selected Employee.
The LastName property is assigned to the property Last in the select clause. This shows

new { e.FirstName, Last = e.LastName }

iw3htp5_18_Database.fm Page 673 Wednesday, November 16, 2011 11:52 AM

674 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

how you can specify a new name for the selected property. If you don’t specify a new name,
the property’s original name is used—this is the case for FirstName in this example. The
preceding query is an example of a projection—it performs a transformation on the data.
In this case, the transformation creates new objects containing only the FirstName and
Last properties. Transformations can also manipulate the data. For example, you could
give all employees a 10% raise by multiplying their MonthlySalary properties by 1.1.

When creating a new anonymous type, you can select any number of properties by
specifying them in a comma-separated list within the curly braces ({}) that delineate the
anonymous type definition. In this example, the compiler automatically creates a new class
having properties FirstName and Last, and the values are copied from the Employee
objects. These selected properties can then be accessed when iterating over the results.
Implicitly typed local variables allow you to use anonymous types because you do not have
to explicitly state the type when declaring such variables.

When the compiler creates an anonymous type, it automatically generates a ToString
method that returns a string representation of the object. You can see this in the pro-
gram’s output—it consists of the property names and their values, enclosed in braces.

18.6.3 Querying a Generic Collection Using LINQ
You can use LINQ to Objects to query Lists just as arrays. In Fig. 18.25, a List of
strings is converted to uppercase and searched for those that begin with "R".

1 // Fig. 18.25: LINQWithListCollection.cs
2 // LINQ to Objects using a List< string >.
3 using System;
4 using System.Linq;
5 using System.Collections.Generic;
6
7 public class LINQWithListCollection
8 {
9 public static void Main(string[] args)

10 {
11 // populate a List of strings
12 List< string > items = new List< string >();
13 items.Add("aQua"); // add "aQua" to the end of the List
14 items.Add("RusT"); // add "RusT" to the end of the List
15 items.Add("yElLow"); // add "yElLow" to the end of the List
16 items.Add("rEd"); // add "rEd" to the end of the List
17
18 // convert all strings to uppercase; select those starting with "R"
19 var startsWithR =
20 from item in items
21
22
23 orderby uppercaseString
24 select uppercaseString;
25
26 // display query results
27 foreach (var item in startsWithR)
28 Console.Write("{0} ", item);

Fig. 18.25 | LINQ to Objects using a List<string>. (Part 1 of 2.)

let uppercaseString = item.ToUpper()
where uppercaseString.StartsWith("R")

iw3htp5_18_Database.fm Page 674 Wednesday, November 16, 2011 11:52 AM

18.6 (Optional) Microsoft Language Integrate Query (LINQ) 675

Line 21 uses LINQ’s let clause to create a new range variable. This is useful if you
need to store a temporary result for use later in the LINQ query. Typically, let declares a
new range variable to which you assign the result of an expression that operates on the
query’s original range variable. In this case, we use string method ToUpper to convert
each item to uppercase, then store the result in the new range variable uppercaseString.
We then use the new range variable uppercaseString in the where, orderby and select
clauses. The where clause (line 22) uses string method StartsWith to determine whether
uppercaseString starts with the character "R". Method StartsWith performs a case-
sensitive comparison to determine whether a string starts with the string received as an
argument. If uppercaseString starts with "R", method StartsWith returns true, and the
element is included in the query results. More powerful string matching can be done
using .NET’s regular-expression capabilities.

The query is created only once (lines 20–24), yet iterating over the results (lines 27–
28 and 36–37) gives two different lists of colors. This demonstrates LINQ’s deferred exe-
cution—the query executes only when you access the results—such as iterating over them
or using the Count method—not when you define the query. This allows you to create a
query once and execute it many times. Any changes to the data source are reflected in the
results each time the query executes.

There may be times when you do not want this behavior, and want to retrieve a col-
lection of the results immediately. LINQ provides extension methods ToArray and ToList
for this purpose. These methods execute the query on which they’re called and give you
the results as an array or List<T>, respectively. These methods can also improve efficiency
if you’ll be iterating over the results multiple times, as you execute the query only once.

C# has a feature called collection initializers, which provide a convenient syntax (sim-
ilar to array initializers) for initializing a collection. For example, lines 12–16 of Fig. 18.25
could be replaced with the following statement:

29
30 Console.WriteLine(); // output end of line
31
32 items.Add("rUbY"); // add "rUbY" to the end of the List
33 items.Add("SaFfRon"); // add "SaFfRon" to the end of the List
34
35 // display updated query results
36 foreach (var item in startsWithR)
37 Console.Write("{0} ", item);
38
39 Console.WriteLine(); // output end of line
40 } // end Main
41 } // end class LINQWithListCollection

RED RUST
RED RUBY RUST

List< string > items =
 new List< string > { "aQua", "RusT", "yElLow", "rEd" };

Fig. 18.25 | LINQ to Objects using a List<string>. (Part 2 of 2.)

iw3htp5_18_Database.fm Page 675 Wednesday, November 16, 2011 11:52 AM

676 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

18.7 (Optional) LINQ to SQL
[Note: This section supports Chapters 20–22.] LINQ to SQL enables you to access data
in SQL Server databases using the same LINQ syntax introduced in Section 18.6. You in-
teract with the database via classes that are automatically generated from the database sche-
ma by the IDE’s LINQ to SQL Designer. For each table in the database, the IDE creates
two classes:

• A class that represents a row of the table: This class contains properties for each
column in the table. LINQ to SQL creates objects of this class—called row ob-
jects—to store the data from individual rows of the table.

• A class that represents the table: LINQ to SQL creates an object of this class to
store a collection of row objects that correspond to all of the rows in the table.

Relationships between tables are also taken into account in the generated classes:

• In a row object’s class, an additional property is created for each foreign key. This
property returns the row object of the corresponding primary key in another ta-
ble. For example, the class that represents the rows of the Books database’s Au-
thorISBN table also contains an Author property and a Title property—from
any AuthorISBN row object, you can access the full author and title information.

• In the class for a row object, an additional property is created for the collection
of row objects with foreign-keys that reference the row object’s primary key. For
example, the LINQ to SQL class that represents the rows of the Books database’s
Authors table contains an AuthorISBNs property that you can use to get all of the
books written by that author. The IDE automatically adds the "s" to "Author-
ISBN" to indicate that this property represents a collection of AuthorISBN objects.
Similarly, the LINQ to SQL class that represents the rows of the Titles table also
contains an AuthorISBNs property that you can use to get all of the co-authors of
a particular title.

Once generated, the LINQ to SQL classes have full IntelliSense support in the IDE.

IQueryable Interface
LINQ to SQL works through the IQueryable interface, which inherits from the IEnu-
merable interface introduced in Section 18.6. When a LINQ to SQL query on an IQue-
ryable object executes against the database, the results are loaded into objects of the
corresponding LINQ to SQL classes for convenient access in your code.

DataContext Class
All LINQ to SQL queries occur via a DataContext class, which controls the flow of data
between the program and the database. A specific DataContext derived class, which inher-
its from the class System.Data.Linq.DataContext, is created when the LINQ to SQL
classes representing each row of the table are generated by the IDE. This derived class has
properties for each table in the database, which can be used as data sources in LINQ que-
ries. Any changes made to the DataContext can be saved back to the database using the
DataContext’s SubmitChanges method, so with LINQ to SQL you can modify the data-
base’s contents.

iw3htp5_18_Database.fm Page 676 Wednesday, November 16, 2011 11:52 AM

18.8 (Optional) Querying a Database with LINQ 677

18.8 (Optional) Querying a Database with LINQ
[Note: This section supports Chapters 20–22.] In this section, we demonstrate how to con-
nect to a database, query it and display the results of the query. There is little code in this
section—the IDE provides visual programming tools and wizards that simplify accessing
data in applications. These tools establish database connections and create the objects nec-
essary to view and manipulate the data through Windows Forms GUI controls—a tech-
nique known as data binding.

Our first example performs a simple query on the Books database from Section 18.3.
We retrieve the entire Authors table and use data binding to display its data in a
DataGridView—a control from namespace System.Windows.Forms that can display data
from a data source in tabular format. The basic steps we’ll perform are:

• Connect to the Books database.

• Create the LINQ to SQL classes required to use the database.

• Add the Authors table as a data source.

• Drag the Authors table data source onto the Design view to create a GUI for dis-
playing the table’s data.

• Add a few statements to the program to allow it to interact with the database.

The GUI for the program is shown in Fig. 18.26. All of the controls in this GUI are
automatically generated when we drag a data source that represents the Authors table onto
the Form in Design view. The BindingNavigator at the top of the window is a collection
of controls that allow you to navigate through the records in the DataGridView that fills
the rest of the window. The BindingNavigator controls also allow you to add records,
delete records and save your changes to the database. If you add a new record, note that
empty values are not allowed in the Books database, so attempting to save a new record
without specifying a value for each field will cause an error.

18.8.1 Creating LINQ to SQL Classes
This section presents the steps required to create LINQ to SQL classes for a database.

Fig. 18.26 | GUI for the Display Authors Table application.

GUI controls for the
BindingNavigator

DataGridView with
the Authors table’s

column names

Move first

Move previous

Current position

Move next

Move last

Add new

Delete

Save Data

You can add a new record by
typing in this row of the

DataGridView

iw3htp5_18_Database.fm Page 677 Wednesday, November 16, 2011 11:52 AM

678 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

Step 1: Creating the Project
Create a new Windows Forms Application named DisplayTable. Change the name of the
source file to DisplayAuthorsTable.cs. The IDE updates the Form’s class name to match
the source file. Set the Form’s Text property to Display Authors Table.

Step 2: Adding a Database to the Project and Connecting to the Database
To interact with a database, you must create a connection to the database. This will also
give you the option of copying the database file to your project.

1. In Visual C# 2010 Express, select View > Other Windows > Database Explorer to
display the Database Explorer window. By default, it appears on the left side of
the IDE. If you’re using a full version of Visual Studio, select View > Server Ex-
plorer to display the Server Explorer. From this point forward, we’ll refer to the
Database Explorer. If you have a full version of Visual Studio, substitute Server
Explorer for Database Explorer in the steps.

2. Click the Connect to Database icon () at the top of the Database Explorer. If
the Choose Data Source dialog appears (Fig. 18.27), select Microsoft SQL Server
Database File from the Data source: list. If you check the Always use this selection
CheckBox, the IDE will use this type of database file by default when you connect
to databases in the future. Click Continue to display the Add Connection dialog.

3. In the Add Connection dialog (Fig. 18.28), the Data source: TextBox reflects your
selection from the Choose Data Source dialog. You can click the Change… But-
ton to select a different type of database. Next, click Browse… to locate and select
the Books.mdf file in the Databases directory included with this chapter’s exam-
ples. You can click Test Connection to verify that the IDE can connect to the
database through SQL Server Express. Click OK to create the connection.

Fig. 18.27 | Choose Data Source dialog.

Error-Prevention Tip 18.1
Ensure that no other program is using the database file before you attempt to add it to the
project. Connecting to the database requires exclusive access.

iw3htp5_18_Database.fm Page 678 Wednesday, November 16, 2011 11:52 AM

18.8 (Optional) Querying a Database with LINQ 679

\Step 3: Generating the LINQ to SQL classes
After adding the database, you must select the database tables from which the LINQ to
SQL classes will be created. LINQ to SQL uses the database’s schema to help define the
classes.

1. Right click the project name in the Solution Explorer and select Add > New Item…
to display the Add New Item dialog. Select the LINQ to SQL Classes template,
name the new item Books.dbml and click the Add button. The Object Relational
Designer window will appear (Fig. 18.29). You can also double click the
Books.dbml file in the Solution Explorer to open the Object Relational Designer.

2. Expand the Books.mdf database node in the Database Explorer, then expand the
Tables node. Drag the Authors, Titles and AuthorISBN tables onto the Object
Relational Designer. The IDE prompts whether you want to copy the database to
the project directory. Select Yes. The Object Relational Designer will display the
tables that you dragged from the Database Explorer (Fig. 18.30). Notice that the

i

Fig. 18.28 | Add Connection dialog.

Fig. 18.29 | Object Relational Designer window.

Drag the database’s
tables here to generate

the LINQ to SQL classes

iw3htp5_18_Database.fm Page 679 Wednesday, November 16, 2011 11:52 AM

680 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

Object Relational Designer named the class that represents items from the Authors
table as Author, and named the class that represents the Titles table as Title.
This is because one object of the Author class represents one author—a single row
from the Authors table. Similarly, one object of the Title class represents one
book—a single row from the Titles table. Because the class name Title conflicts
with one of the column names in the Titles table, the IDE renames that col-
umn’s property in the Title class as Title1.

3. Save the Books.dbml file.

When you save Books.dbml, the IDE generates the LINQ to SQL classes that you can
use to interact with the database. These include a class for each table you selected from the
database and a derived class of DataContext named BooksDataContext that enables you
to programmatically interact with the database.

18.8.2 Data Bindings Between Controls and the LINQ to SQL Classes
The IDE’s automatic data binding capabilities simplify creating applications that can view
and modify the data in a database. You must write a small amount of code to enable the
autogenerated data-binding classes to interact with the autogenerated LINQ to SQL class-
es. You’ll now perform the steps to display the contents of the Authors table in a GUI.

Step 1: Adding the Author LINQ to SQL Class as a Data Source
To use the LINQ to SQL classes for data binding, you must first add them as a data source.

1. Select Data > Add New Data Source… to display the Data Source Configuration
Wizard.

2. The LINQ to SQL classes are used to create objects representing the tables in the
database, so we’ll use an Object data source. In the dialog, select Object and click
Next >. Expand the tree view as shown in Fig. 18.31 and ensure that Author is
checked. An object of this class will be used as the data source.

3. Click Finish.

i

Fig. 18.30 | Object Relational Designer window showing the selected tables from the
Books database and their relationships.

Error-Prevention Tip 18.2
Be sure to save the file in the Object Relational Designer before trying to use the LINQ
to SQL classes in code. The IDE does not generate the classes until you save the file.

iw3htp5_18_Database.fm Page 680 Wednesday, November 16, 2011 11:52 AM

18.8 (Optional) Querying a Database with LINQ 681

The Authors table in the database is now a data source that can be used by the bind-
ings. Open the Data Sources window (Fig. 18.32) by selecting Data > Show Data
Sources—the window is displayed at the left side of the IDE. You can see the Author class
that you added in the previous step. The columns of the database’s Authors table should
appear below it, as well as an AuthorISBNs entry representing the relationship between the
database’s Authors and AuthorISBN tables.

Step 2: Creating GUI Elements
Next, you’ll use the Design view to create a GUI control that can display the Authors ta-
ble’s data.

1. Switch to Design view for the DisplayAuthorsTable class.

2. Click the Author node in the Data Sources window—it should change to a drop-
down list. Open the drop-down by clicking the down arrow and ensure that the

Fig. 18.31 | Selecting the Author LINQ to SQL class as the data source.

Fig. 18.32 | Data Sources window showing the Author class as a data source.

iw3htp5_18_Database.fm Page 681 Wednesday, November 16, 2011 11:52 AM

682 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

DataGridView option is selected—this is the GUI control that will be used to dis-
play and interact with the data.

3. Drag the Author node from the Data Sources window onto the Form in Design
view.

The IDE creates a DataGridView (Fig. 18.33) with the correct column names and a Bind-
ingNavigator (authorBindingNavigator) that contains Buttons for moving between en-
tries, adding entries, deleting entries and saving changes to the database. The IDE also
generates a BindingSource (authorBindingSource), which handles the transfer of data
between the data source and the data-bound controls on the Form. Nonvisual components
such as the BindingSource and the non-visual aspects of the BindingNavigator appear in
the component tray—the gray region below the Form in Design view. We use the default
names for automatically generated components throughout this chapter to show exactly
what the IDE creates. To make the DataGridView occupy the entire window, select the
DataGridView, then use the Properties window to set the Dock property to Fill.

Step 3: Connecting the BooksDataContext to the authorBindingSource
The final step is to connect the BooksDataContext (created with the LINQ to SQL classes
in Section 18.8.1) to the authorBindingSource (created earlier in this section), so that the
application can interact with the database. Figure 18.34 shows the small amount of code
needed to obtain data from the database and to save any changes that the user makes to
the data back into the database.

As mentioned in Section 18.7, a DataContext object is used to interact with the data-
base. The BooksDataContext class was automatically generated by the IDE when you cre-
ated the LINQ to SQL classes to allow access to the Books database. Line 18 creates an
object of this class named database.

Fig. 18.33 | Component tray holds nonvisual components in Design view.

Objects in the component tray
(the gray area below the Form)

GUI controls for the
BindingNavigator

DataGridView with
the Authors table’s

column names

iw3htp5_18_Database.fm Page 682 Wednesday, November 16, 2011 11:52 AM

18.8 (Optional) Querying a Database with LINQ 683

Create the Form’s Load handler by double clicking the Form’s title bar in Design view.
We allow data to move between the DataContext and the BindingSource by creating a

1 // Fig. 18.34: DisplayAuthorsTable.cs
2 // Displaying data from a database table in a DataGridView.
3 using System;
4 using System.Linq;
5 using System.Windows.Forms;
6
7 namespace DisplayTable
8 {
9 public partial class DisplayAuthorsTable : Form

10 {
11 // constructor
12 public DisplayAuthorsTable()
13 {
14 InitializeComponent();
15 } // end constructor
16
17 // LINQ to SQL data context
18
19
20 // load data from database into DataGridView
21 private void DisplayAuthorsTable_Load(object sender, EventArgs e)
22 {
23 // use LINQ to order the data for display
24
25
26
27
28 } // end method DisplayAuthorsTable_Load
29
30 // click event handler for the Save Button in the
31 // BindingNavigator saves the changes made to the data
32 private void authorBindingNavigatorSaveItem_Click(
33 object sender, EventArgs e)
34 {
35
36
37
38 } // end method authorBindingNavigatorSaveItem_Click
39 } // end class DisplayAuthorsTable
40 } // end namespace DisplayTable

Fig. 18.34 | Displaying data from a database table in a DataGridView.

private BooksDataContext database = new BooksDataContext();

authorBindingSource.DataSource =
 from author in database.Authors
 orderby author.AuthorID
 select author;

Validate(); // validate input fields
authorBindingSource.EndEdit(); // indicate edits are complete
database.SubmitChanges(); // write changes to database file

iw3htp5_18_Database.fm Page 683 Wednesday, November 16, 2011 11:52 AM

684 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

LINQ query that extracts data from the BooksDataContext’s Authors property (lines 25–
27), which corresponds to the Authors table in the database. The authorBindingSource’s
DataSource property (line 24) is set to the results of this query. The authorBindingSource
uses the DataSource to extract data from the database and to populate the DataGridView.

Step 4: Saving Modifications Back to the Database
If the user modifies the data in the DataGridView, we’d also like to save the modifications
in the database. By default, the BindingNavigator’s Save Data Button () is disabled.
To enable it, right click this Button’s icon and select Enabled. Then, double click the icon
to create its Click event handler.

Saving the data entered into the DataGridView back to the database is a three-step pro-
cess (lines 35–37). First, all controls on the form are validated (line 35)—if any of the con-
trols have event handlers for the Validating event, those execute. You typically handle this
event to determine whether a control’s contents are valid. Second, line 36 calls EndEdit on
the authorBindingSource, which forces it to save any pending changes in the BooksData-
Context. Finally, line 37 calls SubmitChanges on the BooksDataContext to store the changes
in the database. For efficiency, LINQ to SQL saves only data that has changed.

Step 5: Configuring the Database File to Persist Changes
When you run the program in debug mode, the database file is overwritten with the original
database file each time you execute the program. This allows you to test your program with
the original content until it works correctly. When you run the program in release mode
(Ctrl + F5), changes you make to the database persist automatically; however, if you change
the code, the next time you run the program, the database will be restored to its original ver-
sion. To persist changes for all executions, select the database in the Solution Explorer and set
the Copy to Output Directory property in the Properties window to Copy if newer.

18.9 (Optional) Dynamically Binding LINQ to SQL
Query Results
[Note: This section supports Chapters 20–22.] Now that you’ve seen how to display an en-
tire database table in a DataGridView, we show how to perform several different queries
and display the results in a DataGridView. The Display Query Results application
(Fig. 18.35) allows the user to select a query from the ComboBox at the bottom of the win-
dow, then displays the results of the query.

18.9.1 Creating the Display Query Results GUI
Perform the following steps to build the Display Query Results application’s GUI.

Step 1: Creating the Project
First, create a new Windows Forms Application named DisplayQueryResult. Rename the
source file to TitleQueries.cs. Set the Form’s Text property to Display Query Results.

Step 2: Creating the LINQ to SQL Classes
Follow the steps in Section 18.8.1 to add the Books database to the project and generate
the LINQ to SQL classes.

iw3htp5_18_Database.fm Page 684 Wednesday, November 16, 2011 11:52 AM

18.9 (Optional) Dynamically Binding LINQ to SQL Query Results 685

Step 3: Creating a DataGridView to Display the Titles Table
Follow Steps 1 and 2 in Section 18.8.2 to create the data source and the DataGridView. In
this example, select the Title class (rather than the Author class) as the data source, and
drag the Title node from the Data Sources window onto the form.

Step 4: Adding a ComboBox to the Form
In Design view, add a ComboBox named queriesComboBox below the DataGridView on the
Form. Users will select which query to execute from this control. Set the ComboBox’s Dock
property to Bottom and the DataGridView’s Dock property to Fill.

Next, you’ll add the names of the queries to the ComboBox. Open the ComboBox’s String
Collection Editor by right clicking the ComboBox and selecting Edit Items. You can also
access the String Collection Editor from the ComboBox’s smart tag menu. A smart tag menu
provides you with quick access to common properties you might set for a control (such as
the Multiline property of a TextBox), so you can set these properties directly in Design
view, rather than in the Properties window. You can open a control’s smart tag menu by

Fig. 18.35 | Sample execution of the Display Query Results application.

a) Results of the “All
titles” query, which
shows the contents

of the Titles table
ordered by the book

titles

b) Results of the
“Titles with 2008
copyright” query

c) Results of the
“Titles ending with
’How to Program’”

query

iw3htp5_18_Database.fm Page 685 Wednesday, November 16, 2011 11:52 AM

686 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

clicking the small arrowhead () that appears in the control’s upper-right corner in Design
view when the control is selected. In the String Collection Editor, add the following three
items to queriesComboBox—one for each of the queries we’ll create:

1. All titles

2. Titles with 2008 copyright

3. Titles ending with "How to Program"

18.9.2 Coding the Display Query Results Application
Next you must write code that executes the appropriate query each time the user chooses
a different item from queriesComboBox. Double click queriesComboBox in Design view to
generate a queriesComboBox_SelectedIndexChanged event handler (Fig. 18.36, lines 44–
78) in the TitleQueries.cs file. In the event handler, add a switch statement (lines 48–
75) to change the titleBindingSource’s DataSource property to a LINQ query that re-
turns the correct set of data. The data bindings created by the IDE automatically update
the titleDataGridView each time we change its DataSource. The MoveFirst method of
the BindingSource (line 77) moves to the first row of the result each time a query executes.
The results of the queries in lines 53–55, 61–64 and 70–73 are shown in Fig. 18.35(a),
(b) and (c), respectively. [Note: As we mentioned previously, in the generated LINQ to
SQL classes, the IDE renamed the Title column of the Titles table as Title1 to avoid a
naming conflict with the class Title.]

Customizing the Form’s Load Event Handler
Create the TitleQueries_Load event handler (lines 20–28) by double clicking the title bar
in Design view. Line 23 sets the Log property of the BooksDataContext to Console.Out.
This causes the program to output to the console the SQL query that is sent to the database
for each LINQ query. When the Form loads, it should display the complete list of books
from the Titles table, sorted by title. Rather than defining the same LINQ query as in
lines 53–55, we can programmatically cause the queriesComboBox_SelectedIndex-
Changed event handler to execute simply by setting the queriesComboBox’s Selected-
Index to 0 (line 27).

1 // Fig. 18.36: TitleQueries.cs
2 // Displaying the result of a user-selected query in a DataGridView.
3 using System;
4 using System.Linq;
5 using System.Windows.Forms;
6
7 namespace DisplayQueryResult
8 {
9 public partial class TitleQueries : Form

10 {
11 public TitleQueries()
12 {
13 InitializeComponent();
14 } // end constructor

Fig. 18.36 | Displaying the result of a user-selected query in a DataGridView. (Part 1 of 3.)

iw3htp5_18_Database.fm Page 686 Wednesday, November 16, 2011 11:52 AM

18.9 (Optional) Dynamically Binding LINQ to SQL Query Results 687

15
16 // LINQ to SQL data context
17 private BooksDataContext database = new BooksDataContext();
18
19 // load data from database into DataGridView
20 private void TitleQueries_Load(object sender, EventArgs e)
21 {
22 // write SQL to standard output stream
23 database.Log = Console.Out;
24
25 // set the ComboBox to show the default query that
26 // selects all books from the Titles table
27
28 } // end method TitleQueries_Load
29
30 // Click event handler for the Save Button in the
31 // BindingNavigator saves the changes made to the data
32 private void titleBindingNavigatorSaveItem_Click(
33 object sender, EventArgs e)
34 {
35 Validate(); // validate input fields
36 titleBindingSource.EndEdit(); // indicate edits are complete
37 database.SubmitChanges(); // write changes to database file
38
39 // when saving, return to "all titles" query
40
41 } // end method titleBindingNavigatorSaveItem_Click
42
43 // loads data into titleBindingSource based on user-selected query
44 private void queriesComboBox_SelectedIndexChanged(
45 object sender, EventArgs e)
46 {
47 // set the data displayed according to what is selected
48 switch (queriesComboBox.SelectedIndex)
49 {
50 case 0: // all titles
51 // use LINQ to order the books by title
52 titleBindingSource.DataSource =
53
54
55
56 break;
57 case 1: // titles with 2008 copyright
58 // use LINQ to get titles with 2008
59 // copyright and sort them by title
60 titleBindingSource.DataSource =
61
62
63
64
65 break;

Fig. 18.36 | Displaying the result of a user-selected query in a DataGridView. (Part 2 of 3.)

queriesComboBox.SelectedIndex = 0;

queriesComboBox.SelectedIndex = 0;

from book in database.Titles
orderby book.Title1
select book;

from book in database.Titles
where book.Copyright == "2008"
orderby book.Title1
select book;

iw3htp5_18_Database.fm Page 687 Wednesday, November 16, 2011 11:52 AM

688 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

Saving Changes
Follow the instructions in the previous example to add a handler for the BindingNaviga-
tor’s Save Data Button (lines 32–41). Note that, except for changes to the names, the
three lines are identical. The last statement (line 40) displays the results of the All titles
query in the DataGridView.

18.10 Java DB/Apache Derby
The Java SE 6 and 7 Development Kits (JDKs) come bundled with the open source, pure
Java database Java DB (the Oracle branded version of Apache Derby). Chapters 27–28 use
Java DB in data-driven web applications. Similar to MySQL, Java DB has both an embed-
ded version and a network (client/server) version. The tools we use in Chapters 27–28
come with Java DB. For those examples, we use Java DB’s network version, and we pro-
vide all the information you need to configure each example’s database. You can learn
more about Apache Derby at db.apache.org/derby. You can learn more about Java DB
at www.oracle.com/technetwork/java/javadb/overview/index.html.

66 case 2: // titles ending with "How to Program"
67 // use LINQ to get titles ending with
68 // "How to Program" and sort them by title
69 titleBindingSource.DataSource =
70
71
72
73
74 break;
75 } // end switch
76
77
78 } // end method queriesComboBox_SelectedIndexChanged
79 } // end class TitleQueries
80 } // end namespace DisplayQueryResult

Fig. 18.36 | Displaying the result of a user-selected query in a DataGridView. (Part 3 of 3.)

from book in database.Titles
where book.Title1.EndsWith("How to Program")
orderby book.Title1
select book;

titleBindingSource.MoveFirst(); // move to first entry

Summary
Section 18.1 Introduction
• A database (p. 650) is an integrated collection of data. A database management system (DBMS;

p. 650) provides mechanisms for storing, organizing, retrieving and modifying data.

• Today’s most popular database management systems are relational database (p. 650) systems.

• SQL (p. 650) is the international standard language used to query (p. 650) and manipulate rela-
tional data.

iw3htp5_18_Database.fm Page 688 Wednesday, November 16, 2011 11:52 AM

 Summary 689

Section 18.2 Relational Databases
• A relational database (p. 650) stores data in tables (p. 650). Tables are composed of rows

(p. 651), and rows are composed of columns in which values are stored.

• A table’s primary key (p. 651) provides a unique value that cannot be duplicated among rows.

• Each column (p. 651) of a table represents a different attribute.

• The primary key can be composed of more than one column.

• A foreign key (p. 653) is a column in a table that must match the primary-key column in another
table. This is known as the Rule of Referential Integrity (p. 653).

• Every column in a primary key must have a value, and the value of the primary key must be
unique. This is known as the Rule of Entity Integrity (p. 654).

• A one-to-many relationship (p. 655) between tables indicates that a row in one table can have
many related rows in a separate table.

• Foreign keys enable information from multiple tables to be joined together. There’s a one-to-
many relationship between a primary key and its corresponding foreign key.

Section 18.4.1 Basic SELECT Query
• The basic form of a query (p. 656) is

SELECT * FROM tableName

where the asterisk (*; p. 656) indicates that all columns from tableName should be selected, and
tableName specifies the table in the database from which rows will be retrieved.

• To retrieve specific columns, replace the * with a comma-separated list of column names.

Section 18.4.2 WHERE Clause
• The optional WHERE clause (p. 656) in a query specifies the selection criteria for the query. The

basic form of a query with selection criteria (p. 656) is

SELECT columnName1, columnName2, … FROM tableName WHERE criteria

• The WHERE clause can contain operators <, >, <=, >=, =, <> and LIKE. LIKE (p. 657) is used for string
pattern matching (p. 657) with wildcard characters percent (%) and underscore (_).

• A percent character (%; p. 657) in a pattern indicates that a string matching the pattern can have
zero or more characters at the percent character’s location in the pattern.

• An underscore (_ ; p. 657) in the pattern string indicates a single character at that position in
the pattern.

Section 18.4.3 ORDER BY Clause
• A query’s result can be sorted with the ORDER BY clause (p. 658). The simplest form of an ORDER

BY clause is

SELECT columnName1, columnName2, … FROM tableName ORDER BY column ASC
SELECT columnName1, columnName2, … FROM tableName ORDER BY column DESC

where ASC specifies ascending order, DESC specifies descending order and column specifies the col-
umn on which the sort is based. The default sorting order is ascending, so ASC is optional.

• Multiple columns can be used for ordering purposes with an ORDER BY clause of the form

ORDER BY column1 sortingOrder, column2 sortingOrder, …

• The WHERE and ORDER BY clauses can be combined in one query. If used, ORDER BY must be the
last clause in the query.

iw3htp5_18_Database.fm Page 689 Wednesday, November 16, 2011 11:52 AM

690 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

Section 18.4.4 Merging Data from Multiple Tables: INNER JOIN
• An INNER JOIN (p. 660) merges rows from two tables by matching values in columns that are

common to the tables. The basic form for the INNER JOIN operator is:

SELECT columnName1, columnName2, …
FROM table1
INNER JOIN table2
 ON table1.columnName = table2.columnName

The ON clause (p. 660) specifies the columns from each table that are compared to determine
which rows are joined. If a SQL statement uses columns with the same name from multiple ta-
bles, the column names must be fully qualified (p. 661) by prefixing them with their table names
and a dot (.).

Section 18.4.5 INSERT Statement
• An INSERT statement (p. 661) inserts a new row into a table. The basic form of this statement is

INSERT INTO tableName (columnName1, columnName2, …, columnNameN)
 VALUES (value1, value2, …, valueN)

where tableName is the table in which to insert the row. The tableName is followed by a comma-
separated list of column names in parentheses. The list of column names is followed by the SQL
keyword VALUES (p. 662) and a comma-separated list of values in parentheses.

• SQL uses single quotes (') to delimit strings. To specify a string containing a single quote in
SQL, escape the single quote with another single quote (i.e., '').

Section 18.4.6 UPDATE Statement
• An UPDATE statement (p. 663) modifies data in a table. The basic form of an UPDATE statement is

UPDATE tableName
 SET columnName1 = value1, columnName2 = value2, …, columnNameN = valueN
 WHERE criteria

where tableName is the table to update. Keyword SET (p. 663) is followed by a comma-separated
list of columnName = value pairs. The optional WHERE clause determines which rows to update.

Section 18.4.7 DELETE Statement
• A DELETE statement (p. 663) removes rows from a table. The simplest form for a DELETE state-

ment is

DELETE FROM tableName WHERE criteria

where tableName is the table from which to delete a row (or rows). The optional WHERE criteria
determines which rows to delete. If this clause is omitted, all the table’s rows are deleted.

Section 18.5 MySQL
• MySQL (pronounced “my sequel”) is a robust and scalable relational database management sys-

tem (RDBMS) that was created by the Swedish consulting firm TcX in 1994.

• MySQL is a multiuser, multithreaded RDBMS server that uses SQL to interact with and manip-
ulate data.

• Multithreading capabilities enable MySQL database to perform multiple tasks concurrently, al-
lowing the server to process client requests efficiently.

• Implementations of MySQL are available for Windows, Mac OS X, Linux and UNIX.

iw3htp5_18_Database.fm Page 690 Wednesday, November 16, 2011 11:52 AM

 Summary 691

Section 18.6 (Optional) Microsoft Language Integrate Query (LINQ)
• .NET’s collection classes provide reusable data structures that are reliable, powerful and efficient.

• Lists automatically increase their size to accommodate additional elements.

• Large amounts of data are often stored in a database—an organized collection of data. Today’s
most popular database systems are relational databases. SQL is the international standard lan-
guage used almost universally with relational databases to perform queries (i.e., to request infor-
mation that satisfies given criteria).

• LINQ allows you to write query expressions (similar to SQL queries) that retrieve information
from a wide variety of data sources. You can query arrays and Lists, selecting elements that satisfy
a set of conditions—this is known as filtering.

• A LINQ provider is a set of classes that implement LINQ operations and enable programs to
interact with data sources to perform tasks such as sorting, grouping and filtering elements.

Section 18.6.1 Querying an Array of int Values Using LINQ
• Repetition statements focus on the process of iterating through elements and checking whether

they satisfy the desired criteria. LINQ specifies the conditions that selected elements must satisfy,
not the steps necessary to get the results.

• The System.Linq namespace contains the classes for LINQ to Objects.

• A from clause specifies a range variable and the data source to query. The range variable represents
each item in the data source (one at a time), much like the control variable in a foreach statement.

• If the condition in the where clause evaluates to true for an element, it’s included in the results.

• The select clause determines what value appears in the results.

• A C# interface describes a set of methods and properties that can be used to interact with an object.

• The IEnumerable<T> interface describes the functionality of any object that’s capable of being
iterated over and thus offers methods to access each element in some order.

• A class that implements an interface must define each method in the interface.

• Arrays and collections implement the IEnumerable<T> interface.

• A foreach statement can iterate over any object that implements the IEnumerable<T> interface.

• A LINQ query returns an object that implements the IEnumerable<T> interface.

• The orderby clause sorts query results in ascending order by default. Results can also be sorted
in descending order using the descending modifier.

• C# provides implicitly typed local variables, which enable the compiler to infer a local variable’s
type based on the variable’s initializer.

• To distinguish such an initialization from a simple assignment statement, the var keyword is
used in place of the variable’s type.

• You can use local type inference with control variables in the header of a for or foreach statement.

• Implicitly typed local variables can be used to initialize arrays without explicitly giving their type.
To do so, use new[] to specify that the variable is an array.

Section 18.6.2 Querying an Array of Employee Objects Using LINQ
• LINQ can be used with collections of most data types.

• Any boolean expression can be used in a where clause.

• An orderby clause can sort the results according to multiple properties specified in a comma-sep-
arated list.

• Method Any returns true if there’s at least one element in the result; otherwise, it returns false.

iw3htp5_18_Database.fm Page 691 Wednesday, November 16, 2011 11:52 AM

692 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

• The First method returns the first element in the query result. You should check that the query
result is not empty before calling First.

• The Count method returns the number of elements in the query result.

• The Distinct method removes duplicate values from query results.

• You can select any number of properties in a select clause by specifying them in a comma-sep-
arated list in braces after the new keyword. The compiler automatically creates a new class having
these properties—called an anonymous type.

Section 18.6.3 Querying a Generic Collection Using LINQ
• LINQ to Objects can query Lists.

• LINQ’s let clause creates a new range variable. This is useful if you need to store a temporary
result for use later in the LINQ query.

• The StartsWith method of the string class determines whether a string starts with the string
passed to it as an argument.

• A LINQ query uses deferred execution—it executes only when you access the results, not when
you create the query.

Section 18.7 (Optional) LINQ to SQL
• LINQ to SQL enables you to access data in SQL Server databases using LINQ syntax.

• You interact with LINQ to SQL via classes that are automatically generated by the IDE’s LINQ
to SQL Designer based on the database schema.

• LINQ to SQL requires every table to have a primary key to support modifying the database data.

• The IDE creates a class for each table. Objects of these classes represent the collections of rows
in the corresponding tables.

• The IDE also creates a class for a row of each table with a property for each column in the table.
Objects of these classes (row objects) hold the data from individual rows in the database’s tables.

• In the class for a row object, an additional property is created for each foreign key. This property
returns the row object of the corresponding primary key in another table.

• In the class for a row object, an additional property is created for the collection of row objects
with foreign-keys that reference the row object’s primary key.

• Once generated, the LINQ to SQL classes have full IntelliSense support in the IDE.

Section 18.8 (Optional) Querying a Database with LINQ
• The IDE provides visual programming tools and wizards that simplify accessing data in your

projects. These tools establish database connections and create the objects necessary to view and
manipulate the data through the GUI—a technique known as data binding.

• A DataGridView (namespace System.Windows.Forms) displays data from a data source in tabular
format.

• A BindingNavigator is a collection of controls that allow you to navigate through the records
displayed in a GUI. The BindingNavigator controls also allow you to add records, delete records
and save your changes to the database.

Section 18.8.1 Creating LINQ to SQL Classes
• To interact with a database, you must create a connection to the database.

• In Visual C# 2010 Express, use the Database Explorer window to connect to the database. In full
versions of Visual Studio 2010, use the Server Explorer window.

iw3htp5_18_Database.fm Page 692 Wednesday, November 16, 2011 11:52 AM

 Self-Review Exercises 693

• After connecting to the database, you can generate the LINQ to SQL classes by adding a new
LINQ to SQL Classes item to your project, then dragging the tables you wish to use from the Da-
tabase Explorer onto the Object Relational Designer. When you save the .dbml file, the IDE gen-
erates the LINQ to SQL classes.

Section 18.8.2 Data Bindings Between Controls and the LINQ to SQL Classes
• To use the LINQ to SQL classes for data binding, you must first add them as a data source.

• Select Data > Add New Data Source… to display the Data Source Configuration Wizard. Use an Ob-
ject data source. Select the LINQ to SQL object to use as a data source. Drag that data source
from the Data Sources window onto the Form to create controls that can display the table’s data.

• By default, the IDE creates a DataGridView with the correct column names and a BindingNavi-
gator that contains Buttons for moving between entries, adding entries, deleting entries and sav-
ing changes to the database.

• The IDE also generates a BindingSource, which handles the transfer of data between the data
source and the data-bound controls on the Form.

• The result of a LINQ query on the DataContext can be assigned to the BindingSource’s Data-
Source property. The BindingSource uses the DataSource to extract data from the database and
to populate the DataGridView.

• To save the user’s changes to the data in the DataGridView, enable the BindingNavigator’s Save
Data Button (). Then, double click the icon to create its Click event handler. In the event
handler, you must validate the data, call EndEdit on the BindingSource to save pending changes
in the DataContext, and call SubmitChanges on the DataContext to store the changes in the
database. For efficiency, LINQ to SQL saves only data that has changed.

Section 18.9 (Optional) Dynamically Binding LINQ to SQL Query Results
• The IDE displays smart tag menus for many GUI controls to provide you with quick access to

common properties you might set for a control, so you can set these properties directly in Design

view. You can open a control’s smart tag menu by clicking the small arrowhead () that appears
in the control’s upper-right corner in Design view.

• The MoveFirst method of the BindingSource moves to the first row of the result.

Section 18.10 Java DB/Apache Derby
• The Java SE 6 and 7 Development Kits (JDKs) come bundled with the open source, pure Java

database Java DB (the Oracle branded version of Apache Derby).

Self-Review Exercises
18.1 Fill in the blanks in each of the following statements:

a) The international standard database language is .
b) A table in a database consists of and .
c) The uniquely identifies each row in a table.
d) SQL keyword is followed by the selection criteria that specify the rows to se-

lect in a query.
e) SQL keywords specify the order in which rows are sorted in a query.
f) Merging rows from multiple database tables is called the tables.
g) A(n) is an organized collection of data.
h) A(n) is a set of columns whose values match the primary key values of an-

other table.
i) The LINQ clause is used for filtering.

iw3htp5_18_Database.fm Page 693 Wednesday, November 16, 2011 11:52 AM

694 Chapter 18 Database: SQL, MySQL, LINQ and Java DB

j) To get only unique results from a LINQ query, use the method.
k) The clause declares a new temporary variable within a LINQ query.

18.2 State whether each of the following is true or false. If false, explain why.
a) The orderby clause in a LINQ query can sort only in ascending order.
b) LINQ queries can be used on both arrays and collections.
c) The Remove method of the List class removes an element at a specific index.
d) A BindingNavigator object can extract data from a database.
e) LINQ to SQL automatically saves changes made back to the database.

Answers to Self-Review Exercises
18.1 a) SQL. b) rows, columns. c) primary key. d) WHERE. e) ORDER BY. f) joining. g) database.
h) foreign key. i) where. j) Distinct. k) let.

18.2 a) False. The descending modifier is used to make orderby sort in descending order.
b) True. c) False. Remove removes the first element equal to its argument. RemoveAt removes the el-
ement at a specific index. d) False. A BindingNavigator allows users to browse and manipulate data
displayed by another GUI control. A DataContext can extract data from a database. e) False. You
must call the SubmitChanges method of the DataContext to save the changes made back to the da-
tabase.

Exercises
18.3 Define the following terms:

a) Qualified name
b) Rule of Referential Integrity
c) Rule of Entity Integrity
d) selection criteria

18.4 State the purpose of the following SQL keywords:
a) ASC

b) FROM

c) DESC

d) INSERT

e) LIKE

f) UPDATE

g) SET

h) VALUES

i) ON

18.5 Write SQL queries for the books database (discussed in Section 18.3) that perform each of
the following tasks:

a) Select all authors from the Authors table with the columns in the order lastName,
firstName and authorID.

b) Select a specific author and list all books for that author. Include the title, year and
ISBN number. Order the information alphabetically by title.

c) Add a new author to the Authors table.
d) Add a new title for an author (remember that the book must have an entry in the

AuthorISBN table).

18.6 Fill in the blanks in each of the following statements:
a) The states that every column in a primary key must have a value, and the

value of the primary key must be unique

iw3htp5_18_Database.fm Page 694 Wednesday, November 16, 2011 11:52 AM

 Exercises 695

b) The states that every foreign-key value must appear as another table’s prima-
ry-key value.

c) A(n) in a pattern indicates that a string matching the pattern can have zero
or more characters at the percent character’s location in the pattern.

d) Java DB is the Oracle branded version of .
e) A(n) in a LIKE pattern string indicates a single character at that position in

the pattern.
f) There’s a(n) relationship between a primary key and its corresponding for-

eign key.
g) SQL uses as the delimiter for strings.

18.7 Correct each of the following SQL statements that refer to the books database.
a) SELECT firstName FROM author WHERE authorID = 3
b) SELECT isbn, title FROM Titles ORDER WITH title DESC
c) INSERT INTO Authors (authorID, firstName, lastName)

VALUES ("2", "Jane", "Doe")

iw3htp5_18_Database.fm Page 695 Wednesday, November 16, 2011 11:52 AM

19 PHP

Be careful when reading health
books; you may die of a
misprint.
—Mark Twain

Reckoners without their host
must reckon twice.
—John Heywood

There was a door to which I
found no key;
There was the veil through
which I might not see.
—Omar Khayyam

O b j e c t i v e s
In this chapter you will:

■ Manipulate data of various
types.

■ Use operators, arrays and
control statements.

■ Use regular expressions to
search for text that matches a
patterns.

■ Construct programs that
process form data.

■ Store data on the client using
cookies.

■ Create programs that interact
with MySQL databases.

iw3htp5_19_PHP.fm Page 696 Wednesday, November 16, 2011 11:52 AM

19.1 Introduction 697

19.1 Introduction
PHP, or PHP: Hypertext Preprocessor, has become the most popular server-side script-
ing language for creating dynamic web pages. PHP was created by Rasmus Lerdorf to track
users at his website. In 1995, Lerdorf released it as a package called the “Personal Home
Page Tools.” Two years later, PHP 2 featured built-in database support and form han-
dling. In 1997, PHP 3 was released after a substantial rewrite, which resulted in a large
increase in performance and led to an explosion of PHP use. The release of PHP 4 featured
the new Zend Engine from Zend, a PHP software company. This version was considerably
faster and more powerful than its predecessor, further increasing PHP’s popularity. It’s es-
timated that over 15 million domains now use PHP, accounting for more than 20 percent
of web pages.1 Currently, PHP 5 features the Zend Engine 2, which provides further speed
increases, exception handling and a new object-oriented programming model.2 More in-
formation about the Zend Engine can be found at www.zend.com.

PHP is an open-source technology that’s supported by a large community of users and
developers. PHP is platform independent—implementations exist for all major UNIX,
Linux, Mac and Windows operating systems. PHP also supports many databases,
including MySQL.

After introducing the basics of the PHP scripting language, we discuss form pro-
cessing and business logic, which are vital to e-commerce applications. Next, we build a
three-tier web application that queries a MySQL database. We also show how PHP can
use cookies to store information on the client that can be retrieved during future visits to
the website. Finally, we revisit the form-processing example to demonstrate some of PHP’s
more dynamic capabilities.

Notes Before Proceeding
To run a PHP script, PHP must first be installed on your system. We assume that you’ve
followed the XAMPP installation instructions in Chapter 17. This ensures that the
Apache web server, MySQL DBMS and PHP are configured properly so that you can test

19.1 Introduction
19.2 Simple PHP Program
19.3 Converting Between Data Types
19.4 Arithmetic Operators
19.5 Initializing and Manipulating Arrays
19.6 String Comparisons
19.7 String Processing with Regular

Expressions
19.7.1 Searching for Expressions
19.7.2 Representing Patterns

19.7.3 Finding Matches
19.7.4 Character Classes
19.7.5 Finding Multiple Instances of a

Pattern
19.8 Form Processing and Business Logic

19.8.1 Superglobal Arrays
19.8.2 Using PHP to Process HTML5 Forms

19.9 Reading from a Database
19.10 Using Cookies
19.11 Dynamic Content
19.12 Web Resources

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1. “History of PHP,” 30 June 2007, PHP <us.php.net/history>.
2. Z. Suraski, “The OO Evolution of PHP,” 16 March 2004, Zend <devzone.zend.com/node/view/

id/1717>.

iw3htp5_19_PHP.fm Page 697 Wednesday, November 16, 2011 11:52 AM

698 Chapter 19 PHP

PHP web applications on your local computer. For the examples that access a database,
this chapter also assumes that you’ve followed the instructions in Chapter 18 for setting
up a MySQL user account and for creating the databases we use in this chapter. All exam-
ples and exercises in this chapter have been verified using PHP 5.3.5—the version installed
by XAMPP at the time of publication.

Before continuing, take the examples folder for this chapter (ch19) and copy it into
the XAMPP installation folder’s htdocs subfolder. This is the folder from which XAMPP
serves documents, images and scripts.

19.2 Simple PHP Program
The power of the web resides not only in serving content to users, but also in responding
to requests from users and generating web pages with dynamic content. Interactivity be-
tween the user and the server has become a crucial part of web functionality, making
PHP—a language written specifically for handling client requests—a valuable tool.

PHP code is embedded directly into text-based documents, such as HTML, though
these script segments are interpreted by the server before being delivered to the client. PHP
script file names end with .php.

Figure 19.1 presents a simple PHP script that displays a welcome message. PHP code is
inserted between the delimiters <?php and ?> and can be placed anywhere in HTML
markup. Line 7 declares variable $name and assigns it the string "Paul". All variables are pre-
ceded by a $ and are created the first time they’re encountered by the PHP interpreter. PHP
statements terminate with a semicolon (;).

Common Programming Error 19.1
Variable names in PHP are case sensitive. Failure to use the proper mixture of cases to
refer to a variable will result in a logic error, since the script will create a new variable
for any name it doesn’t recognize as a previously used variable.

Common Programming Error 19.2
Forgetting to terminate a statement with a semicolon (;) is a syntax error.

1 <!DOCTYPE html>
2
3 <!-- Fig. 19.1: first.php -->
4 <!-- Simple PHP program. -->
5 <html>
6
7
8
9 <head>

10 <meta charset = "utf-8">
11 <title>Simple PHP document</title>
12 </head>
13 <body>
14 <!-- print variable name’s value -->
15 <h1><?php print("Welcome to PHP, $name!"); ?></h1>

Fig. 19.1 | Simple PHP program. (Part 1 of 2.)

<?php
 $name = "Paul"; // declaration and initialization
?><!-- end PHP script -->

iw3htp5_19_PHP.fm Page 698 Wednesday, November 16, 2011 11:52 AM

19.3 Converting Between Data Types 699

Line 7 also contains a single-line comment, which begins with two slashes (//). Text
to the right of the slashes is ignored by the interpreter. Multiline comments begin with
delimiter /* on the first line of the comment and end with delimiter */ at the end of the
last line of the comment.

Line 15 outputs the value of variable $name by calling function print. The value of
$name is printed, not the string "$name". When a variable is encountered inside a double-
quoted ("") string, PHP interpolates the variable. In other words, PHP inserts the vari-
able’s value where the variable name appears in the string. Thus, variable $name is replaced
by Paul for printing purposes. All operations of this type execute on the server before the
HTML5 document is sent to the client. You can see by viewing the source of a PHP doc-
ument that the code sent to the client does not contain any PHP code.

PHP variables are loosely typed—they can contain different types of data (e.g., inte-
gers, doubles or strings) at different times. Figure 19.2 introduces PHP’s data types.

19.3 Converting Between Data Types
Converting between different data types may be necessary when performing arithmetic
operations with variables. Type conversions can be performed using function settype.
Figure 19.3 demonstrates type conversion of some types introduced in Fig. 19.2.

16 </body>
17 </html>

Type Description

int, integer Whole numbers (i.e., numbers without a decimal point).

float, double, real Real numbers (i.e., numbers containing a decimal point).

string Text enclosed in either single ('') or double ("") quotes. [Note: Using
double quotes allows PHP to recognize more escape sequences.]

bool, boolean true or false.

array Group of elements.

object Group of associated data and methods.

resource An external source—usually information from a database.

NULL No value.

Fig. 19.2 | PHP types.

Fig. 19.1 | Simple PHP program. (Part 2 of 2.)

iw3htp5_19_PHP.fm Page 699 Wednesday, November 16, 2011 11:52 AM

700 Chapter 19 PHP

1 <!DOCTYPE html>
2
3 <!-- Fig. 19.3: data.php -->
4 <!-- Data type conversion. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Data type conversion</title>
9 <style type = "text/css">

10 p { margin: 0; }
11 .head { margin-top: 10px; font-weight: bold; }
12 .space { margin-top: 10px; }
13 </style>
14 </head>
15 <body>
16 <?php
17 // declare a string, double and integer
18
19
20
21 ?><!-- end PHP script -->
22
23 <!-- print each variable’s value and type -->
24 <p class = "head">Original values:</p>
25 <?php
26 print("<p>$testString is a(n) " .
27 . "</p>");
28 print("<p>$testDouble is a(n) " .
29 . "</p>");
30 print("<p>$testInteger is a(n) " .
31 . "</p>");
32 ?><!-- end PHP script -->
33 <p class = "head">Converting to other data types:</p>
34 <?php
35 // call function settype to convert variable
36 // testString to different data types
37
38
39 print(" as a double is $testString</p>");
40 print("<p>$testString ");
41
42 print(" as an integer is $testString</p>");
43
44 print("<p class = 'space'>Converting back to a string results in
45 $testString</p>");
46
47 // use type casting to cast variables to a different type
48
49 print("<p class = 'space'>Before casting: $data is a " .
50 . "</p>");
51 print("<p class = 'space'>Using type casting instead:</p>
52 <p>as a double: " . . "</p>" .
53 "<p>as an integer: " . . "</p>";

Fig. 19.3 | Data type conversion. (Part 1 of 2.)

$testString = "3.5 seconds";
$testDouble = 79.2;
$testInteger = 12;

gettype($testString)

gettype($testDouble)

gettype($testInteger)

print("<p>$testString ");
settype($testString, "double");

settype($testString, "integer");

settype($testString, "string");

$data = "98.6 degrees";

gettype($data)

(double) $data
(integer) $data

iw3htp5_19_PHP.fm Page 700 Wednesday, November 16, 2011 11:52 AM

19.3 Converting Between Data Types 701

Functions gettype and settype
Lines 18–20 assign a string to variable $testString, a floating-point number to variable
$testDouble and an integer to variable $testInteger. Variables are typed based on the
values assigned to them. For example, variable $testString becomes a string when as-
signed the value "3.5 seconds". Lines 26–31 print the value of each variable and its type
using function gettype, which returns the current type of its argument. When a variable
is in a print statement but not part of a string, enclosing the variable name in double
quotes is unnecessary. Lines 38, 41 and 43 call settype to modify the type of each vari-
able. Function settype takes two arguments—the variable whose type is to be changed
and the variable’s new type.

Calling function settype can result in loss of data. For example, doubles are truncated
when they’re converted to integers. When converting from a string to a number, PHP uses
the value of the number that appears at the beginning of the string. If no number appears
at the beginning, the string evaluates to 0. In line 38, the string "3.5 seconds" is converted
to a double, storing 3.5 in variable $testString. In line 41, double 3.5 is converted to
integer 3. When we convert this variable to a string (line 43), the variable’s value becomes
"3"—much of the original content from the variable’s declaration in line 14 is lost.

Casting
Another option for conversion between types is casting (or type casting). Unlike settype,
casting does not change a variable’s content—it creates a temporary copy of a variable’s value
in memory. Lines 52–53 cast variable $data’s value (declared in line 48) from a string to a

54 print("<p class = 'space'>After casting: $data is a " .
55 . "</p>");
56 ?><!-- end PHP script -->
57 </body>
58 </html>

Fig. 19.3 | Data type conversion. (Part 2 of 2.)

gettype($data)

iw3htp5_19_PHP.fm Page 701 Wednesday, November 16, 2011 11:52 AM

702 Chapter 19 PHP

double and an integer. Casting is useful when a different type is required in a specific op-
eration but you would like to retain the variable’s original value and type. Lines 49–55 show
that the type and value of $data remain unchanged even after it has been cast several times.

String Concatenation
The concatenation operator (.) combines multiple strings in the same print statement,
as demonstrated in lines 49–55. A print statement may be split over multiple lines—all
data that’s enclosed in the parentheses and terminated by a semicolon is printed to the
XHTML document.

19.4 Arithmetic Operators
PHP provides several arithmetic operators, which we demonstrate in Fig. 19.4. Line 15
declares variable $a and assigns to it the value 5. Line 19 calls function define to create a
named constant. Function define takes two arguments—the name and value of the con-
stant. An optional third argument accepts a bool value that specifies whether the constant
is case insensitive—constants are case sensitive by default.

Line 22 adds constant VALUE to variable $a. Line 26 uses the multiplication assign-
ment operator *= to yield an expression equivalent to $a = $a * 2 (thus assigning $a the
value 20). Arithmetic assignment operators—like the ones described in Chapter 6—are
syntactical shortcuts. Line 34 adds 40 to the value of variable $a.

Uninitialized variables have undefined values that evaluate differently, depending on
the context. For example, when an undefined value is used in a numeric context (e.g., $num
in line 51), it evaluates to 0. In contrast, when an undefined value is interpreted in a string
context (e.g., $nothing in line 48), it evaluates to the string "undef". When you run a
PHP script that uses an undefined variable, the PHP interpreter outputs warning messages
in the web page. You can adjust the level of error and warning messages in the PHP con-
figuration files for your platform (e.g., the php.ini file on Windows). For more informa-
tion, see the online documentation for PHP at php.net.

Error-Prevention Tip 19.1
Function print can be used to display the value of a variable at a particular point during
a program’s execution. This is often helpful in debugging a script.

Common Programming Error 19.3
Assigning a value to a constant after it’s declared is a syntax error.

1 <!DOCTYPE html>
2
3 <!-- Fig. 19.4: operators.php -->
4 <!-- Using arithmetic operators. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <style type = "text/css">

Fig. 19.4 | Using arithmetic operators. (Part 1 of 3.)

iw3htp5_19_PHP.fm Page 702 Wednesday, November 16, 2011 11:52 AM

19.4 Arithmetic Operators 703

9 p { margin: 0; }
10 </style>
11 <title>Using arithmetic operators</title>
12 </head>
13 <body>
14 <?php
15 $a = 5;
16 print("<p>The value of variable a is $a</p>");
17
18 // define constant VALUE
19
20
21 // add constant VALUE to variable $a
22
23 print("<p>Variable a after adding constant VALUE is $a</p>");
24
25 // multiply variable $a by 2
26
27 print("<p>Multiplying variable a by 2 yields $a</p>");
28
29 // test if variable $a is less than 50
30
31 print("<p>Variable a is less than 50</p>");
32
33 // add 40 to variable $a
34
35 print("<p>Variable a after adding 40 is $a</p>");
36
37 // test if variable $a is 50 or less
38
39 print("<p>Variable a is still 50 or less</p>");
40 // $a >= 51 and <= 100
41 print("<p>Variable a is now between 50 and 100,
42 inclusive</p>");
43 else // $a > 100
44 print("<p>Variable a is now greater than 100</p>");
45
46 // print an uninitialized variable
47 print("<p>Using a variable before initializing:
48 $nothing</p>"); // nothing evaluates to ""
49
50 // add constant VALUE to an uninitialized variable
51 // num evaluates to 0
52 print("<p>An uninitialized variable plus constant
53 VALUE yields $test</p>");
54
55 // add a string to an integer
56
57
58 print("<p>Adding a string to variable a yields $a</p>");
59 ?><!-- end PHP script -->
60 </body>
61 </html>

Fig. 19.4 | Using arithmetic operators. (Part 2 of 3.)

define("VALUE", 5);

$a = $a + VALUE;

$a *= 2;

if ($a < 50)

$a += 40;

if ($a < 51)

elseif ($a < 101)

$test = $num + VALUE;

$str = "3 dollars";
$a += $str;

iw3htp5_19_PHP.fm Page 703 Wednesday, November 16, 2011 11:52 AM

704 Chapter 19 PHP

Strings are converted to integers or doubles when they’re used in arithmetic opera-
tions. In line 57, a copy of the value of variable str, "3 dollars", is converted to the
integer 3 for use in the calculation. The type and value of variable $str are left unchanged.

Keywords
Keywords (examples from Fig. 19.4 include if, elseif and else) may not be used as
function, method, class or namespace names. Figure 19.5 lists the PHP keywords.

Error-Prevention Tip 19.2
Initialize variables before they’re used to avoid subtle errors. For example, multiplying a
number by an uninitialized variable results in 0.

PHP keywords

abstract and array as break

case catch class clone const
continue declare default do else

elseif enddeclare endfor endforeach endif

endswitch endwhile extends final for
foreach function global goto if

implements interface instanceof namespace new

or private protected public static
switch throw try use var

while xor

Fig. 19.5 | PHP keywords.

Fig. 19.4 | Using arithmetic operators. (Part 3 of 3.)

iw3htp5_19_PHP.fm Page 704 Wednesday, November 16, 2011 11:52 AM

19.4 Arithmetic Operators 705

Keywords
Figure 19.6 contains the operator precedence chart for PHP. The operators are shown
from top to bottom in decreasing order of precedence.

Operator Type Associativity

new
clone

constructor
copy an object

none

[] subscript left to right

++
--

increment
decrement

none

~
-
@
(type)

bitwise not
unary negative
error control
cast

right to left

instanceof none

! not right to left

*
/
%

multiplication
division
modulus

left to right

+
-
.

addition
subtraction
concatenation

left to right

<<
>>

bitwise shift left
bitwise shift right

left to right

<
>
<=
>=

less than
greater than
less than or equal
greater than or equal

none

==
!=
===
!==

equal
not equal
identical
not identical

none

& bitwise AND left to right

^ bitwise XOR left to right

| bitwise OR left to right

&& logical AND left to right

|| logical OR left to right

?: ternary conditional left to right

Fig. 19.6 | PHP operator precedence and associativity. (Part 1 of 2.)

iw3htp5_19_PHP.fm Page 705 Wednesday, November 16, 2011 11:52 AM

706 Chapter 19 PHP

19.5 Initializing and Manipulating Arrays
PHP provides the capability to store data in arrays. Arrays are divided into elements that
behave as individual variables. Array names, like other variables, begin with the $ symbol.
Figure 19.7 demonstrates initializing and manipulating arrays. Individual array elements
are accessed by following the array’s variable name with an index enclosed in square brack-
ets ([]). If a value is assigned to an array element of an array that does not exist, then the array
is created (line 18). Likewise, assigning a value to an element where the index is omitted
appends a new element to the end of the array (line 21). The for statement (lines 24–25)
prints each element’s value. Function count returns the total number of elements in the
array. In this example, the for statement terminates when the counter ($i) is equal to the
number of array elements.

=
+=
-=
*=
/=
%=
&=
|=
^=
.=
<<=
>>=
=>

assignment
addition assignment
subtraction assignment
multiplication assignment
division assignment
modulus assignment
bitwise AND assignment
bitwise OR assignment
bitwise exclusive OR assignment
concatenation assignment
bitwise shift left assignment
bitwise shift right assignment
assign value to a named key

right to left

and logical AND left to right

xor exclusive OR left to right

or logical OR left to right

, list left to right

1 <!DOCTYPE html>
2
3 <!-- Fig. 19.7: arrays.php -->
4 <!-- Array manipulation. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Array manipulation</title>
9 <style type = "text/css">

10 p { margin: 0; }
11 .head { margin-top: 10px; font-weight: bold; }

Fig. 19.7 | Array manipulation. (Part 1 of 3.)

Operator Type Associativity

Fig. 19.6 | PHP operator precedence and associativity. (Part 2 of 2.)

iw3htp5_19_PHP.fm Page 706 Wednesday, November 16, 2011 11:52 AM

19.5 Initializing and Manipulating Arrays 707

12 </style>
13 </head>
14 <body>
15 <?php
16 // create array first
17 print("<p class = 'head'>Creating the first array</p>");
18
19
20
21
22
23 // print each element’s index and value
24
25
26
27 print("<p class = 'head'>Creating the second array</p>");
28
29 // call function array to create array second
30
31
32
33
34
35 print("<p class = 'head'>Creating the third array</p>");
36
37 // assign values to entries using nonnumeric indices
38
39
40
41
42 // iterate through the array elements and print each
43 // element’s name and value
44
45
46
47 print("<p class = 'head'>Creating the fourth array</p>");
48
49 // call function array to create array fourth using
50 // string indices
51
52
53
54
55
56
57
58
59 // print each element’s name and value
60
61
62 ?><!-- end PHP script -->
63 </body>
64 </html>

Fig. 19.7 | Array manipulation. (Part 2 of 3.)

$first[0] = "zero";
$first[1] = "one";
$first[2] = "two";
$first[] = "three";

for ($i = 0; $i < count($first); ++$i)
 print("Element $i is $first[$i]</p>");

$second = array("zero", "one", "two", "three");

for ($i = 0; $i < count($second); ++$i)
 print("Element $i is $second[$i]</p>");

$third["Amy"] = 21;
$third["Bob"] = 18;
$third["Carol"] = 23;

for (reset($third); $element = key($third); next($third))
 print("<p>$element is $third[$element]</p>");

$fourth = array(
 "January" => "first", "February" => "second",
 "March" => "third", "April" => "fourth",
 "May" => "fifth", "June" => "sixth",
 "July" => "seventh", "August" => "eighth",
 "September" => "ninth", "October" => "tenth",
 "November" => "eleventh","December" => "twelfth");

foreach ($fourth as $element => $value)
 print("<p>$element is the $value month</p>");

iw3htp5_19_PHP.fm Page 707 Wednesday, November 16, 2011 11:52 AM

708 Chapter 19 PHP

Line 30 demonstrates a second method of initializing arrays. Function array creates
an array that contains the arguments passed to it. The first item in the argument list is
stored as the first array element (recall that the first element’s index is 0), the second item
is stored as the second array element and so on. Lines 32–33 display the array’s contents.

In addition to integer indices, arrays can have float or nonnumeric indices (lines 38–
40). An array with noninteger indices is called an associative array. For example, indices
Amy, Bob and Carol are assigned the values 21, 18 and 23, respectively.

PHP provides functions for iterating through the elements of an array (line 44). Each
array has a built-in internal pointer, which points to the array element currently being ref-
erenced. Function reset sets the internal pointer to the first array element. Function key
returns the index of the element currently referenced by the internal pointer, and function
next moves the internal pointer to the next element and returns the element. In our script,
the for statement continues to execute as long as function key returns an index. Function
next returns false when there are no more elements in the array. When this occurs, func-
tion key cannot return an index, $element is set to false and the for statement termi-
nates. Line 45 prints the index and value of each element.

Fig. 19.7 | Array manipulation. (Part 3 of 3.)

iw3htp5_19_PHP.fm Page 708 Wednesday, November 16, 2011 11:52 AM

19.6 String Comparisons 709

The array $fourth is also associative. To override the automatic numeric indexing
performed by function array, you can use operator =>, as demonstrated in lines 51–57.
The value to the left of the operator is the array index and the value to the right is the ele-
ment’s value.

The foreach control statement (lines 60–61) is specifically designed for iterating
through arrays, especially associative arrays, because it does not assume that the array has
consecutive integer indices that start at 0. The foreach statement starts with the array to
iterate through, followed by the keyword as, followed by two variables—the first is
assigned the index of the element, and the second is assigned the value of that index. (If
there’s only one variable listed after as, it’s assigned the value of the array element.) We
use the foreach statement to print the index and value of each element in array $fourth.

19.6 String Comparisons
Many string-processing tasks can be accomplished by using the equality and comparison
operators, demonstrated in Fig. 19.8. Line 16 declares and initializes array $fruits. Lines
19–38 iterate through each element in the $fruits array.

Lines 23 and 25 call function strcmp to compare two strings. The function returns
-1 if the first string alphabetically precedes the second string, 0 if the strings are equal, and
1 if the first string alphabetically follows the second. Lines 23–28 compare each element
in the $fruits array to the string "banana", printing whether each is greater than, less than
or equal to the string.

Relational operators (==, !=, <, <=, > and >=) can also be used to compare strings. Lines
32–37 use relational operators to compare each element of the array to the string "apple".

1 <!DOCTYPE html>
2
3 <!-- Fig. 19.8: compare.php -->
4 <!-- Using the string-comparison operators. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>String Comparison</title>
9 <style type = "text/css">

10 p { margin: 0; }
11 </style>
12 </head>
13 <body>
14 <?php
15 // create array fruits
16 $fruits = array("apple", "orange", "banana");
17
18 // iterate through each array element
19 for ($i = 0; $i < count($fruits); ++$i)
20 {
21 // call function strcmp to compare the array element
22 // to string "banana"
23 if ()
24 print("<p>" . $fruits[$i] . " is less than banana ");

Fig. 19.8 | Using the string-comparison operators. (Part 1 of 2.)

strcmp($fruits[$i], "banana") < 0

iw3htp5_19_PHP.fm Page 709 Wednesday, November 16, 2011 11:52 AM

710 Chapter 19 PHP

19.7 String Processing with Regular Expressions
PHP can process text easily and efficiently, enabling straightforward searching, substitu-
tion, extraction and concatenation of strings. Text manipulation is usually done with reg-
ular expressions—a series of characters that serve as pattern-matching templates (or search
criteria) in strings, text files and databases. Function preg_match uses regular expressions
to search a string for a specified pattern using Perl-compatible regular expressions
(PCRE). Figure 19.9 demonstrates regular expressions.

25 elseif (strcmp($fruits[$i], "banana") > 0)
26 print("<p>" . $fruits[$i] . " is greater than banana ");
27 else
28 print("<p>" . $fruits[$i] . " is equal to banana ");
29
30 // use relational operators to compare each element
31 // to string "apple"
32 if ($fruits[$i] < "apple")
33 print("and less than apple!</p>");
34 elseif ($fruits[$i] > "apple")
35 print("and greater than apple!</p>");
36 elseif ($fruits[$i] == "apple")
37 print("and equal to apple!</p>");
38 } // end for
39 ?><!-- end PHP script -->
40 </body>
41 </html>

1 <!DOCTYPE html>
2
3 <!-- Fig. 19.9: expression.php -->
4 <!-- Regular expressions. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Regular expressions</title>
9 <style type = "text/css">

10 p { margin: 0; }
11 </style>
12 </head>

Fig. 19.9 | Regular expressions. (Part 1 of 2.)

Fig. 19.8 | Using the string-comparison operators. (Part 2 of 2.)

iw3htp5_19_PHP.fm Page 710 Wednesday, November 16, 2011 11:52 AM

19.7 String Processing with Regular Expressions 711

13 <body>
14 <?php
15 $search = "Now is the time";
16 print("<p>Test string is: '$search'</p>");
17
18 // call preg_match to search for pattern 'Now' in variable search
19 if ()
20 print("<p>'Now' was found.</p>");
21
22 // search for pattern 'Now' in the beginning of the string
23 if ()
24 print("<p>'Now' found at beginning of the line.</p>");
25
26 // search for pattern 'Now' at the end of the string
27 if ()
28 print("<p>'Now' was not found at the end of the line.</p>");
29
30 // search for any word ending in 'ow'
31 if ()
32 print("<p>Word found ending in 'ow': " .
33 . "</p>");
34
35 // search for any words beginning with 't'
36 print("<p>Words beginning with 't' found: ");
37
38 while ()
39 {
40 print(. " ");
41
42 // remove the first occurrence of a word beginning
43 // with 't' to find other instances in the string
44
45 } // end while
46
47 print("</p>");
48 ?><!-- end PHP script -->
49 </body>
50 </html>

Fig. 19.9 | Regular expressions. (Part 2 of 2.)

preg_match("/Now/", $search)

preg_match("/^Now/", $search)

!preg_match("/Now$/", $search)

preg_match("/\b([a-zA-Z]*ow)\b/i", $search, $match)

$match[1]

preg_match("/\b(t[[:alpha:]]+)\b/", $search, $match)

$match[1]

$search = preg_replace("/" . $match[1] . "/", "", $search);

iw3htp5_19_PHP.fm Page 711 Wednesday, November 16, 2011 11:52 AM

712 Chapter 19 PHP

19.7.1 Searching for Expressions
Line 15 assigns the string "Now is the time" to variable $search. The condition in line 19
calls function preg_match to search for the literal characters "Now" inside variable
$search. If the pattern is found, preg_match returns the length of the matched string—
which evaluates to true in a boolean context—and line 20 prints a message indicating
that the pattern was found. We use single quotes ('') inside the string in the print state-
ment to emphasize the search pattern. Anything enclosed in single quotes is not interpolated,
unless the single quotes are nested in a double-quoted string literal, as in line 16). For example,
'$name' in a print statement would output $name, not variable $name’s value.

Function preg_match takes two arguments—a regular-expression pattern to search
for and the string to search. The regular expression must be enclosed in delimiters—typi-
cally a forward slash (/) is placed at the beginning and end of the regular-expression pat-
tern. By default, preg_match performs a case-sensitive pattern matches. To perform case-
insensitive pattern matches you simply place the letter i after the regular-expression pattern’s
closing delimiter, as in "/\b([a-zA-Z]*ow)\b/i" (line 31).

19.7.2 Representing Patterns
In addition to literal characters, regular expressions can include metacharacters, such as ^,
$ and ., that specify patterns. The caret (^) metacharacter matches the beginning of a
string (line 23), while the dollar sign ($) matches the end of a string (line 27). The period
(.) metacharacter matches any single character except newlines, but can be made to match
newlines with the s modifier. Line 23 searches for the pattern "Now" at the beginning of
$search. Line 27 searches for "Now" at the end of $search. Note that Now$ is not a vari-
able—it’s a pattern that uses $ to search for the characters "Now" at the end of a string.

Line 31, which contains a bracket expression, searches (from left to right) for the first
word ending with the letters ow. Bracket expressions are lists of characters enclosed in
square brackets ([]) that match any single character from the list. Ranges can be specified
by supplying the beginning and the end of the range separated by a dash (-). For instance,
the bracket expression [a-z] matches any lowercase letter and [A-Z] matches any uppercase
letter. In this example, we combine the two to create an expression that matches any letter.
The \b before and after the parentheses indicates the beginning and end of a word, respec-
tively—in other words, we’re attempting to match whole words.

The expression [a-zA-Z]*ow inside the parentheses (line 31) represents any word
ending in ow. The quantifier * matches the preceding pattern zero or more times. Thus,
[a-zA-Z]*ow matches any number of letters followed by the literal characters ow. Quanti-
fiers are used in regular expressions to denote how often a particular character or set of
characters can appear in a match. Some PHP quantifiers are listed in Fig. 19.10.

Quantifier Matches

{n} Exactly n times

{m,n} Between m and n times, inclusive

{n,} n or more times

Fig. 19.10 | Some regular expression quantifiers. (Part 1 of 2.)

iw3htp5_19_PHP.fm Page 712 Wednesday, November 16, 2011 11:52 AM

19.7 String Processing with Regular Expressions 713

19.7.3 Finding Matches
The optional third argument to function preg_match is an array that stores matches to the
regular expression. When the expression is broken down into parenthetical sub-expres-
sions, preg_match stores the first encountered instance of each expression in this array,
starting from the leftmost parenthesis. The first element (i.e., index 0) stores the string
matched for the entire pattern. The match to the first parenthetical pattern is stored in the
second array element, the second in the third array element and so on. If the parenthetical
pattern is not encountered, the value of the array element remains uninitialized. Because
the statement in line 31 is the first parenthetical pattern, Now is stored in variable
$match[1] (and, because it’s the only parenthetical statement in this case, it’s also stored
in $match[0]).

Searching for multiple instances of a single pattern in a string is slightly more compli-
cated, because the preg_match function returns only the first instance it encounters. To
find multiple instances of a given pattern, we must make multiple calls to preg_match, and
remove any matched instances before calling the function again. Lines 38–45 use a while
statement and the preg_replace function to find all the words in the string that begin
with t. We’ll say more about this function momentarily.

19.7.4 Character Classes
The pattern in line 38, /\b(t[[:alpha:]]+)\b/i, matches any word beginning with the
character t followed by one or more letters. The pattern uses the character class [[:al-
pha:]] to recognize any letter—this is equivalent to the [a-zA-Z]. Figure 19.11 lists some
character classes that can be matched with regular expressions.

+ One or more times (same as {1,})

* Zero or more times (same as {0,})

? Zero or one time (same as {0,1})

Character class Description

alnum Alphanumeric characters (i.e., letters [a-zA-Z] or digits [0-9])

alpha Word characters (i.e., letters [a-zA-Z])

digit Digits

space White space

lower Lowercase letters

upper Uppercase letters

Fig. 19.11 | Some regular expression character classes.

Quantifier Matches

Fig. 19.10 | Some regular expression quantifiers. (Part 2 of 2.)

iw3htp5_19_PHP.fm Page 713 Wednesday, November 16, 2011 11:52 AM

714 Chapter 19 PHP

Character classes are enclosed by the delimiters [: and :]. When this expression is
placed in another set of brackets, such as [[:alpha:]] in line 38, it’s a regular expression
matching a single character that’s a member of the class. A bracketed expression containing
two or more adjacent character classes in the class delimiters represents those character sets
combined. For example, the expression [[:upper:][:lower:]]* represents all strings of
uppercase and lowercase letters in any order, while [[:upper:]][[:lower:]]* matches
strings with a single uppercase letter followed by any number of lowercase characters. The
expression ([[:upper:]][[:lower:]])* represents all strings that alternate between
uppercase and lowercase characters (starting with uppercase and ending with lowercase).

19.7.5 Finding Multiple Instances of a Pattern
The quantifier + matches one or more consecutive instances of the preceding expression.
The result of the match is stored in $match[1]. Once a match is found, we print it in line
40. We then remove it from the string in line 44, using function preg_replace. This func-
tion takes three arguments—the pattern to match, a string to replace the matched string
and the string to search. The modified string is returned. Here, we search for the word that
we matched with the regular expression, replace the word with an empty string, then as-
sign the result back to $search. This allows us to match any other words beginning with
the character t in the string and print them to the screen.

19.8 Form Processing and Business Logic

19.8.1 Superglobal Arrays
Knowledge of a client’s execution environment is useful to system administrators who
want to access client-specific information such as the client’s web browser, the server name
or the data sent to the server by the client. One way to obtain this data is by using a
superglobal array. Superglobal arrays are associative arrays predefined by PHP that hold
variables acquired from user input, the environment or the web server, and are accessible in
any variable scope. Some of PHP’s superglobal arrays are listed in Fig. 19.12.

Superglobal arrays are useful for verifying user input. The arrays $_GET and $_POST
retrieve information sent to the server by HTTP get and post requests, respectively,
making it possible for a script to have access to this data when it loads another page. For

Variable name Description

$_SERVER Data about the currently running server.

$_ENV Data about the client’s environment.

$_GET Data sent to the server by a get request.

$_POST Data sent to the server by a post request.

$_COOKIE Data contained in cookies on the client’s computer.

$GLOBALS Array containing all global variables.

Fig. 19.12 | Some useful superglobal arrays.

iw3htp5_19_PHP.fm Page 714 Wednesday, November 16, 2011 11:52 AM

19.8 Form Processing and Business Logic 715

example, if data entered by a user into a form is posted to a script, the $_POST array will
contain all of this information in the new script. Thus, any information entered into the
form can be accessed easily from a confirmation page, or a page that verifies whether fields
have been entered correctly.

19.8.2 Using PHP to Process HTML5 Forms
Forms enable web pages to collect data from users and send it to a web server for process-
ing. Such capabilities allow users to purchase products, request information, send and re-
ceive web-based e-mail, create profiles in online networking services and take advantage of
various other online services. The HTML5 form in Fig. 19.13 gathers information to add
a user to a mailing list.

1 <!DOCTYPE html>
2
3 <!-- Fig. 19.13: form.html -->
4 <!-- HTML form for gathering user input. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Sample Form</title>
9 <style type = "text/css">

10 label { width: 5em; float: left; }
11 </style>
12 </head>
13 <body>
14 <h1>Registration Form</h1>
15 <p>Please fill in all fields and click Register.</p>
16
17 <!-- post form data to form.php -->
18
19 <h2>User Information</h2>
20
21 <!-- create four text boxes for user input -->
22 <div><label>First name:</label>
23 <input type = "text" name = "fname"></div>
24 <div><label>Last name:</label>
25 <input type = "text" name = "lname"></div>
26 <div><label>Email:</label>
27 <input type = "text" name = "email"></div>
28 <div><label>Phone:</label>
29 <input type = "text" name = "phone"
30 placeholder = "(555) 555-5555"></div>
31 </div>
32
33 <h2>Publications</h2>
34 <p>Which book would you like information about?</p>
35
36 <!-- create drop-down list containing book names -->
37 <select name = "book">
38 <option>Internet and WWW How to Program</option>

Fig. 19.13 | HTML5 form for gathering user input. (Part 1 of 2.)

<form method = "post" action = "form.php">

iw3htp5_19_PHP.fm Page 715 Wednesday, November 16, 2011 11:52 AM

716 Chapter 19 PHP

39 <option>C++ How to Program</option>
40 <option>Java How to Program</option>
41 <option>Visual Basic How to Program</option>
42 </select>
43
44 <h2>Operating System</h2>
45 <p>Which operating system do you use?</p>
46
47 <!-- create five radio buttons -->
48 <p><input type = "radio" name = "os" value = "Windows"
49 checked>Windows
50 <input type = "radio" name = "os" value = "Mac OS X">Mac OS X
51 <input type = "radio" name = "os" value = "Linux">Linux
52 <input type = "radio" name = "os" value = "Other">Other</p>
53
54 <!-- create a submit button -->
55 <p><input type = "submit" name = "submit" value = "Register"></p>
56 </form>
57 </body>
58 </html>

Fig. 19.13 | HTML5 form for gathering user input. (Part 2 of 2.)

The form is filled out
with an incorrect

phone number

iw3htp5_19_PHP.fm Page 716 Wednesday, November 16, 2011 11:52 AM

19.8 Form Processing and Business Logic 717

The form’s action attribute (line 18) indicates that when the user clicks the Register
button, the form data will be posted to form.php (Fig. 19.14) for processing. Using
method = "post" appends form data to the browser request that contains the protocol (i.e.,
HTTP) and the URL of the requested resource (specified by the action attribute). Scripts
located on the web server’s machine can access the form data sent as part of the request.

We assign a unique name (e.g., email) to each of the form’s controls. When Register
is clicked, each field’s name and value are sent to the web server. Script form.php accesses
the value for each field through the superglobal array $_POST, which contains key/value
pairs corresponding to name–value pairs for variables submitted through the form. [Note:
The superglobal array $_GET would contain these key–value pairs if the form had been sub-
mitted using the HTTP get method. In general, get is not as secure as post, because it
appends the information directly to the URL, which is visible to the user.] Figure 19.14
processes the data posted by form.html and sends HTML5 back to the client.

Good Programming Practice 19.1
Use meaningful HTML5 object names for input fields. This makes PHP scripts that re-
trieve form data easier to understand.

1 <!DOCTYPE html>
2
3 <!-- Fig. 19.14: form.php -->
4 <!-- Process information sent from form.html. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Form Validation</title>
9 <style type = "text/css">

10 p { margin: 0px; }
11 .error { color: red }
12 p.head { font-weight: bold; margin-top: 10px; }
13 </style>
14 </head>
15 <body>
16 <?php
17 // determine whether phone number is valid and print
18 // an error message if not
19
20
21 {
22 print("<p class = 'error'>Invalid phone number</p>
23 <p>A valid phone number must be in the form
24 (555) 555-5555</p><p>Click the Back button,
25 enter a valid phone number and resubmit.</p>
26 <p>Thank You.</p></body></html>");
27
28 }
29 ?><!-- end PHP script -->
30 <p>Hi <?php print($_POST["fname"]); ?>. Thank you for
31 completing the survey. You have been added to the

Fig. 19.14 | Process information sent from form.html. (Part 1 of 2.)

if (!preg_match("/^\([0-9]{3}\) [0-9]{3}-[0-9]{4}$/",
 $_POST["phone"]))

die(); // terminate script execution

iw3htp5_19_PHP.fm Page 717 Wednesday, November 16, 2011 11:52 AM

718 Chapter 19 PHP

Lines 19–20 determine whether the phone number entered by the user is valid. We
get the phone number from the $_POST array using the expression $_POST["phone"],
where "phone" is the name of the corresponding input field in the form. The validation
in this example requires the phone number to begin with an opening parenthesis, followed
by an area code, a closing parenthesis, a space, an exchange, a hyphen and a line number.
It’s crucial to validate information that will be entered into databases or used in mailing
lists. For example, validation can be used to ensure that credit card numbers contain the
proper number of digits before the numbers are encrypted and sent to a merchant. This
script implements the business logic, or business rules, of our application.

32 <?php print($_POST["book"]); ?>mailing list.</p>
33 <p class = "head">The following information has been saved
34 in our database:</p>
35 <p>Name: <?php print($_POST["fname"]);
36 print($_POST["lname"]); ?></p>
37 <p>Email: <?php print("$email"); ?></p>
38 <p>Phone: <?php print("$phone"); ?></p>
39 <p>OS: <?php print($_POST["os"]); ?></p>
40 <p class = "head">This is only a sample form.
41 You have not been added to a mailing list.</p>
42 </body>
43 </html>

Software Engineering Observation 19.1
Use business logic to ensure that invalid information is not stored in databases. Validate
important or sensitive form data on the server, since JavaScript may be disabled by the
client. Some data, such as passwords, must always be validated on the server side.

Fig. 19.14 | Process information sent from form.html. (Part 2 of 2.)

a) Submitting the form in
Fig. 19.13 redirects the user
to form.php, which gives

appropriate instructions if
the phone number is in an

incorrect format

b) The results of form.php
after the user submits the
form in Fig. 19.13 with a
phone number in a valid

format

iw3htp5_19_PHP.fm Page 718 Wednesday, November 16, 2011 11:52 AM

19.9 Reading from a Database 719

In lines 19–20, the expression \(matches the opening parenthesis of the phone
number. We want to match the literal character (, so we escape its normal meaning by pre-
ceding it with the backslash character (\). This parenthesis in the expression must be fol-
lowed by three digits ([0-9]{3}), a closing parenthesis, three more digits, a literal hyphen
and four additional digits. Note that we use the ^ and $ symbols to ensure that no extra
characters appear at either end of the string.

If the regular expression is matched, the phone number has a valid format, and an
HTML5 document is sent to the client that thanks the user for completing the form. We
extract each input element’s value from the $_POST array in lines (30–39). Otherwise, the
body of the if statement executes and displays an error message.

Function die (line 27) terminates script execution. This function is called if the user
did not enter a correct telephone number, since we do not want to continue executing the
rest of the script. The function’s optional argument is a string or an integer. If it’s a string,
it’s printed as the script exits. If it’s an integer, it’s used as a return status code (typically in
command-line PHP shell scripts).

19.9 Reading from a Database
PHP offers built-in support for many databases. Our database examples use MySQL. We
assume that you’ve followed the XAMPP installation instructions in Chapter 17 (XAMPP
includes MySQL) and that you’ve followed the Chapter 18 instructions for setting up a
MySQL user account and for creating the databases we use in this chapter.

The example in this section uses a Products database. The user selects the name of a
column in the database and submits the form. A PHP script then builds a SQL SELECT
query, queries the database to obtain the column’s data and outputs the data in an
HTML5 document that’s displayed in the user’s web browser. Chapter 18 discusses how
to build SQL queries.

Figure 19.15 is a web page that posts form data consisting of a selected database
column to the server. The script in Fig. 19.16 processes the form data.

HTML5 Document
Line 12 of Fig. 19.15 begins an HTML5 form, specifying that the data submitted from the
form will be sent to the script database.php (Fig. 19.16) in a post request. Lines 16–22
add a select box to the form, set the name of the select box to select and set its default
selection to *. Submitting * specifies that all rows and columns are to be retrieved from the
database. Each of the database’s column names is set as an option in the select box.

1 <!DOCTYPE html>
2
3 <!-- Fig. 19.15: data.html -->
4 <!-- Form to query a MySQL database. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Sample Database Query</title>
9 </head>

Fig. 19.15 | Form to query a MySQL database. (Part 1 of 2.)

iw3htp5_19_PHP.fm Page 719 Wednesday, November 16, 2011 11:52 AM

720 Chapter 19 PHP

database.php
Script database.php (Fig. 19.16) builds a SQL query with the posted field name then
queries the MySQL database. Line 25 concatenates the posted field name to a SELECT que-
ry. Lines 28–29 call function mysql_connect to connect to the MySQL database. We pass
three arguments—the server’s hostname, a username and a password. The host name lo-
calhost is your computer. The username and password specified here were created in
Chapter 18. Function mysql_connect returns a database handle—a representation of
PHP’s connection to the database—which we assign to variable $database. If the connec-
tion to MySQL fails, the function returns false and we call die to output an error mes-
sage and terminate the script. Line 33 calls function mysql_select_db to select and open
the database to be queried (in this case, products). The function returns true on success
or false on failure. We call die if the database cannot be opened.

10 <body>
11 <h1>Querying a MySQL database.</h1>
12
13 <p>Select a field to display:
14 <!-- add a select box containing options -->
15 <!-- for SELECT query -->
16
17 <option selected>*</option>
18 <option>ID</option>
19 <option>Title</option>
20 <option>Category</option>
21 <option>ISBN</option>
22 </select></p>
23 <p><input type = "submit" value = "Send Query"></p>
24 </form>
25 </body>
26 </html>

1 <!DOCTYPE html>
2
3 <!-- Fig. 19.16: database.php -->

Fig. 19.16 | Querying a database and displaying the results. (Part 1 of 3.)

Fig. 19.15 | Form to query a MySQL database. (Part 2 of 2.)

<form method = "post" action = "database.php">

<select name = "select">

Selecting this option
results in all columns
being displayed

iw3htp5_19_PHP.fm Page 720 Wednesday, November 16, 2011 11:52 AM

19.9 Reading from a Database 721

4 <!-- Querying a database and displaying the results. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Search Results</title>
9 <style type = "text/css">

10 body { font-family: sans-serif;
11 background-color: lightyellow; }
12 table { background-color: lightblue;
13 border-collapse: collapse;
14 border: 1px solid gray; }
15 td { padding: 5px; }
16 tr:nth-child(odd) {
17 background-color: white; }
18 </style>
19 </head>
20 <body>
21 <?php
22 $select = $_POST["select"]; // creates variable $select
23
24 // build SELECT query
25 $query = "SELECT " . $select . " FROM books";
26
27 // Connect to MySQL
28
29
30 die("Could not connect to database </body></html>");
31
32 // open Products database
33
34 die("Could not open products database </body></html>");
35
36 // query Products database
37
38 {
39 print("<p>Could not execute query!</p>");
40 die(mysql_error() . "</body></html>");
41 } // end if
42
43
44 ?><!-- end PHP script -->
45 <table>
46 <caption>Results of "SELECT <?php print("$select") ?>
47 FROM books"</caption>
48 <?php
49 // fetch each record in result set
50 while ()
51 {
52 // build table to display results
53 print("<tr>");
54
55
56

Fig. 19.16 | Querying a database and displaying the results. (Part 2 of 3.)

if (!($database = mysql_connect("localhost",
 "iw3htp", "password")))

if (!mysql_select_db("products", $database))

if (!($result = mysql_query($query, $database)))

mysql_close($database);

$row = mysql_fetch_row($result)

foreach ($row as $key => $value)
 print("<td>$value</td>");

iw3htp5_19_PHP.fm Page 721 Wednesday, November 16, 2011 11:52 AM

722 Chapter 19 PHP

To query the database, line 37 calls function mysql_query, specifying the query string
and the database to query. If the query fails, the function returns false. Function die is
then called with a call to function mysql_error as an argument. Function mysql_error
returns any error strings from the database. If the query succeeds, mysql_query returns a
resource containing the query result, which we assign to variable $result. Once we’ve
stored the data in $result, we call mysql_close in line 43 to close the connection to the
database. Function mysql_query can also execute SQL statements such as INSERT or
DELETE that do not return results.

Lines 50–59 iterate through each record in the result set and construct an HTML5
table containing the results. The loop’s condition calls the mysql_fetch_row function to
return an array containing the values for each column in the current row of the query result
($result). The array is stored in variable $row. Lines 55–56 construct individual cells for
each column in the row. The foreach statement takes the name of the array ($row), iter-
ates through each index value of the array and stores the value in variable $value. Each
element of the array is then printed as an individual cell. When the result has no more
rows, false is returned by function mysql_fetch_row, which terminates the loop.

After all the rows in the result have been displayed, the table’s closing tag is written (line
61). Lines 62–63 display the number of rows in $result by calling mysql_num_rows with
$result as an argument.

57
58 print("</tr>");
59 } // end while
60 ?><!-- end PHP script -->
61 </table>
62 <p>Your search yielded
63 <?php print() ?> results.</p>
64 <p>Please email comments to
65 Deitel and Associates, Inc.</p>
66 </body>
67 </html>

Fig. 19.16 | Querying a database and displaying the results. (Part 3 of 3.)

mysql_num_rows($result)

iw3htp5_19_PHP.fm Page 722 Wednesday, November 16, 2011 11:52 AM

19.10 Using Cookies 723

19.10 Using Cookies
A cookie is a piece of information that’s stored by a server in a text file on a client’s com-
puter to maintain information about the client during and between browsing sessions. A
website can store a cookie on a client’s computer to record user preferences and other in-
formation that the website can retrieve during the client’s subsequent visits. For example,
a website can use cookies to store clients’ zip codes, so that it can provide weather reports
and news updates tailored to the user’s region. Websites also can use cookies to track in-
formation about client activity. Analysis of information collected via cookies can reveal the
popularity of websites or products. Marketers can use cookies to determine the effective-
ness of advertising campaigns.

Websites store cookies on users’ hard drives, which raises issues regarding security and
privacy. Websites should not store critical information, such as credit card numbers or
passwords, in cookies, because cookies are typically stored in text files that any program
can read. Several cookie features address security and privacy concerns. A server can access
only the cookies that it has placed on the client. For example, a web application running on
www.deitel.com cannot access cookies that the website www.pearson.com has placed on
the client’s computer. A cookie also has an expiration date, after which the web browser
deletes it. Users who are concerned about the privacy and security implications of cookies
can disable cookies in their browsers. But, disabling cookies can make it difficult or impos-
sible for the user to interact with websites that rely on cookies to function properly.

The information stored in a cookie is sent back to the web server from which it orig-
inated whenever the user requests a web page from that particular server. The web server
can send the client HTML5 output that reflects the preferences or information that’s
stored in the cookie.

HTML5 Document
Figure 19.17 presents an HTML5 document containing a form in which the user specifies
a name, height and favorite color. When the user clicks the Write Cookie button, the cook-
ies.php script (Fig. 19.18) executes.

Writing Cookies: cookies.php
Script cookies.php (Fig. 19.18) calls function setcookie (lines 8–10) to set the cookies
to the values posted from cookies.html. The cookies defined in function setcookie are
sent to the client at the same time as the information in the HTTP header; therefore, set-
cookie needs to be called before any other output. Function setcookie takes the name of
the cookie to be set as the first argument, followed by the value to be stored in the cookie.
For example, line 8 sets the name of the cookie to "Name" and the value to variable $Name,
which is passed to the script from cookies.html. The optional third argument indicates
the expiration date of the cookie. In this example, we set the cookies to expire in five days
by taking the current time, which is returned by function time, and adding the constant
FIVE_DAYS—the number of seconds after which the cookie is to expire (60 seconds per
minute * 60 minutes per hour * 24 hours per day * 5 = 5 days). If no expiration date is spec-
ified, the cookie lasts only until the end of the current session—that is, when the user closes
the browser. This type of cookie is known as a session cookie, while one with an expiration
date is a persistent cookie. If only the name argument is passed to function setcookie, the
cookie is deleted from the client’s computer. Lines 13–35 send a web page to the client

iw3htp5_19_PHP.fm Page 723 Wednesday, November 16, 2011 11:52 AM

724 Chapter 19 PHP

indicating that the cookie has been written and listing the values that are stored in the
cookie.

1 <!DOCTYPE html>
2
3 <!-- Fig. 19.17: cookies.html -->
4 <!-- Gathering data to be written as a cookie. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Writing a cookie to the client computer</title>
9 <style type = "text/css">

10 label { width: 7em; float: left; }
11 </style>
12 </head>
13 <body>
14 <h2>Click Write Cookie to save your cookie data.</h2>
15 <form method = "post" action = "cookies.php">
16 <div><label>Name:</label>
17 <input type = "text" name = "name"><div>
18 <div><label>Height:</label>
19 <input type = "text" name = "height"></div>
20 <div><label>Favorite Color:</label>
21 <input type = "text" name = "Color"></div>
22 <p><input type = "submit" value = "Write Cookie">
23 </form>
24 </body>
25 </html>

Fig. 19.17 | Gathering data to be written as a cookie.

Software Engineering Observation 19.2
Some clients do not accept cookies. When a client declines a cookie, the browser application
normally informs the user that the site may not function correctly without cookies enabled.

Software Engineering Observation 19.3
Cookies should not be used to store e-mail addresses, passwords or private data on a client’s
computer.

iw3htp5_19_PHP.fm Page 724 Wednesday, November 16, 2011 11:52 AM

19.10 Using Cookies 725

Reading an Existing Cookie
Figure 19.19 reads the cookie that was written in Fig. 19.18 and displays the cookie’s in-
formation in a table. PHP creates the superglobal array $_COOKIE, which contains all the

1 <!-- Fig. 19.18: cookies.php -->
2 <!-- Writing a cookie to the client. -->
3 <?php
4 define("FIVE_DAYS", 60 * 60 * 24 * 5); // define constant
5
6 // write each form field’s value to a cookie and set the
7 // cookie’s expiration date
8 setcookie("name", $_POST["name"], time() + FIVE_DAYS);
9 setcookie("height", $_POST["height"], time() + FIVE_DAYS);

10 setcookie("color", $_POST["color"], time() + FIVE_DAYS);
11 ?><!-- end PHP script -->
12
13 <!DOCTYPE html>
14
15 <html>
16 <head>
17 <meta charset = "utf-8">
18 <title>Cookie Saved</title>
19 <style type = "text/css">
20 p { margin: 0px; }
21 </style>
22 </head>
23 <body>
24 <p>The cookie has been set with the following data:</p>
25
26 <!-- print each form field’s value -->
27 <p>Name: <?php print($Name) ?></p>
28 <p>Height: <?php print($Height) ?></p>
29 <p>Favorite Color:
30 <span style = "color: <?php print("$Color") ?> ">
31 <?php print("$Color") ?></p>
32 <p>Click here
33 to read the saved cookie.</p>
34 </body>
35 </html>

Fig. 19.18 | Writing a cookie to the client.

iw3htp5_19_PHP.fm Page 725 Wednesday, November 16, 2011 11:52 AM

726 Chapter 19 PHP

cookie values indexed by their names, similar to the values stored in array $_POST when an
HTML5 form is posted (see Section 19.8).

Lines 18–19 of Fig. 19.19 iterate through the $_COOKIE array using a foreach state-
ment, printing out the name and value of each cookie in a paragraph. The foreach statement
takes the name of the array ($_COOKIE) and iterates through each index value of the array
($key). In this case, the index values are the names of the cookies. Each element is then stored
in variable $value, and these values become the individual cells of the table. Try closing your
browser and revisiting readCookies.php to confirm that the cookie has persisted.

19.11 Dynamic Content
PHP can dynamically change the HTML5 it outputs based on a user’s input. We now
build on Section 19.8’s example by combining the HTML5 form of Fig. 19.13 and the
PHP script of Fig. 19.14 into one dynamic document. The form in Fig. 19.20 is created
using a series of loops, arrays and conditionals. We add error checking to each of the text
input fields and inform the user of invalid entries on the form itself, rather than on an error
page. If an error exists, the script maintains the previously submitted values in each form

1 <!DOCTYPE html>
2
3 <!-- Fig. 19.19: readCookies.php -->
4 <!-- Displaying the cookie’s contents. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Read Cookies</title>
9 <style type = "text/css">

10 p { margin: 0px; }
11 </style>
12 </head>
13 <body>
14 <p>The following data is saved in a cookie on your computer.</p>
15 <?php
16 // iterate through array $_COOKIE and print
17 // name and value of each cookie
18
19
20 ?><!-- end PHP script -->
21 </body>
22 </html>

Fig. 19.19 | Displaying the cookie’s contents.

foreach ($_COOKIE as $key => $value)
 print("<p>$key: $value</p>");

iw3htp5_19_PHP.fm Page 726 Wednesday, November 16, 2011 11:52 AM

19.11 Dynamic Content 727

element. Finally, after the form has been successfully completed, we store the input from
the user in a MySQL database. Once again, we assume that you’ve followed the XAMPP
installation instructions in Chapter 17 (XAMPP includes MySQL) and that you’ve fol-
lowed the Chapter 18 instructions for setting up a MySQL user account and for creating
the database MailingList that we use in this example.

Variables
Lines 19–28 create variables that are used throughout the script to fill in form fields and
check for errors. Lines 19–24 use the isset function to determine whether the $_POST array
contains keys representing the various form fields. These keys exist only after the form is sub-
mitted. If function isset returns true, then the form has been submitted and we assign the
value for each key to a variable. Otherwise, we assign the empty string to each variable.

Arrays
Lines 31–41 create three arrays, $booklist, $systemlist and $inputlist, that are used
to dynamically create the form’s input fields. We specify that the form created in this doc-
ument is self-submitting (i.e., it posts to itself) by setting the action to the script
'dynamicForm.php' in line 125. [Note: We enclose HTML5 attribute values in the string
argument of a print statement in single quotes so that they do not interfere with the dou-
ble quotes that delimit the string. We could alternatively have used the escape sequence \"
to print double quotes instead of single quotes.] Line 44 uses function isset to determine
whether the Register button has been pressed, in which case the $_POST array will contain
the key "submit" (the name of the button in the form). If it has, each of the text input
fields’ values is validated. If an error is detected (e.g., a text field is blank or the phone num-
ber is improperly formatted), the corresponding entry in array $formerrors is set to true
and variable $iserror is set to true. If the Register button has not been pressed, we skip
ahead to line 115.

1 <!DOCTYPE html>
2
3 <!-- Fig. 19.20: dynamicForm.php -->
4 <!-- Dynamic form. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Registration Form</title>
9 <style type = "text/css">

10 p { margin: 0px; }
11 .error { color: red }
12 p.head { font-weight: bold; margin-top: 10px; }
13 label { width: 5em; float: left; }
14 </style>
15 </head>
16 <body>
17 <?php
18 // variables used in script
19
20

Fig. 19.20 | Dynamic form. (Part 1 of 5.)

$fname = isset($_POST["fname"]) ? $_POST["fname"] : "";
$lname = isset($_POST["lname"]) ? $_POST["lname"] : "";

iw3htp5_19_PHP.fm Page 727 Wednesday, November 16, 2011 11:52 AM

728 Chapter 19 PHP

21
22
23
24
25 $iserror = false;
26 $formerrors =
27 array("fnameerror" => false, "lnameerror" => false,
28 "emailerror" => false, "phoneerror" => false);
29
30 // array of book titles
31 $booklist = array("Internet and WWW How to Program",
32 "C++ How to Program", "Java How to Program",
33 "Visual Basic How to Program");
34
35 // array of possible operating systems
36 $systemlist = array("Windows", "Mac OS X", "Linux", "Other");
37
38 // array of name values for the text input fields
39 $inputlist = array("fname" => "First Name",
40 "lname" => "Last Name", "email" => "Email",
41 "phone" => "Phone");
42
43 // ensure that all fields have been filled in correctly
44 if ()
45 {
46 if ($fname == "")
47 {
48 $formerrors["fnameerror"] = true;
49 $iserror = true;
50 } // end if
51
52 if ($lname == "")
53 {
54 $formerrors["lnameerror"] = true;
55 $iserror = true;
56 } // end if
57
58 if ($email == "")
59 {
60 $formerrors["emailerror"] = true;
61 $iserror = true;
62 } // end if
63
64 if (!preg_match("/^\([0-9]{3}\) [0-9]{3}-[0-9]{4}$/",
65 $phone))
66 {
67 $formerrors["phoneerror"] = true;
68 $iserror = true;
69 } // end if
70
71 if (!$iserror)
72 {

Fig. 19.20 | Dynamic form. (Part 2 of 5.)

$email = isset($_POST["email"]) ? $_POST["email"] : "";
$phone = isset($_POST["phone"]) ? $_POST["phone"] : "";
$book = isset($_POST["book"]) ? $_POST["book"] : "";
$os = isset($_POST["os"]) ? $_POST["os"] : "";

isset($_POST["submit"])

iw3htp5_19_PHP.fm Page 728 Wednesday, November 16, 2011 11:52 AM

19.11 Dynamic Content 729

73 // build INSERT query
74
75
76
77
78
79
80 // Connect to MySQL
81 if (!($database = mysql_connect("localhost",
82 "iw3htp", "password")))
83 die("<p>Could not connect to database</p>");
84
85 // open MailingList database
86 if ()
87 die("<p>Could not open MailingList database</p>");
88
89 // execute query in MailingList database
90 if (!($result = mysql_query($query, $database)))
91 {
92 print("<p>Could not execute query!</p>");
93 die(mysql_error());
94 } // end if
95
96 mysql_close($database);
97
98 print("<p>Hi $fname. Thank you for completing the survey.
99 You have been added to the $book mailing list.</p>
100 <p class = 'head'>The following information has been
101 saved in our database:</p>
102 <p>Name: $fname $lname</p>
103 <p>Email: $email</p>
104 <p>Phone: $phone</p>
105 <p>OS: $os</p>
106 <p>Click here to view
107 entire database.</p>
108 <p class = 'head'>This is only a sample form.
109 You have not been added to a mailing list.</p>
110 </body></html>");
111 die(); // finish the page
112 } // end if
113 } // end if
114
115 print("<h1>Sample Registration Form</h1>
116 <p>Please fill in all fields and click Register.</p>");
117
118 if ($iserror)
119 {
120 print("<p class = 'error'>Fields with * need to be filled
121 in properly.</p>");
122 } // end if
123

Fig. 19.20 | Dynamic form. (Part 3 of 5.)

$query = "INSERT INTO contacts " .
 "(LastName, FirstName, Email, Phone, Book, OS) " .
 "VALUES ('$lname', '$fname', '$email', " .
 "'" . mysql_real_escape_string($phone) .
 "', '$book', '$os')";

!mysql_select_db("MailingList", $database)

iw3htp5_19_PHP.fm Page 729 Wednesday, November 16, 2011 11:52 AM

730 Chapter 19 PHP

124 print("<!-- post form data to dynamicForm.php -->
125 <form method = 'post' action = 'dynamicForm.php'>
126 <h2>User Information</h2>
127
128 <!-- create four text boxes for user input -->");
129
130 {
131 print("<div><label>$inputalt:</label><input type = 'text'
132 name = '$inputname' value = '" . . "'>");
133
134
135
136
137 print("</div>");
138 } // end foreach
139
140 if ($formerrors["phoneerror"])
141 print("<p class = 'error'>Must be in the form
142 (555)555-5555");
143
144 print("<h2>Publications</h2>
145 <p>Which book would you like information about?</p>
146
147 <!-- create drop-down list containing book names -->
148 <select name = 'book'>");
149
150 foreach ($booklist as $currbook)
151 {
152 print("<option" .
153 .
154 $currbook . "</option>");
155 } // end foreach
156
157 print("</select>
158 <h2>Operating System</h2>
159 <p>Which operating system do you use?</p>
160
161 <!-- create five radio buttons -->");
162
163 $counter = 0;
164
165 foreach ($systemlist as $currsystem)
166 {
167 print("<input type = 'radio' name = 'os'
168 value = '$currsystem' ");
169
170
171
172
173 print(">$currsystem");
174 ++$counter;
175 } // end foreach
176

Fig. 19.20 | Dynamic form. (Part 4 of 5.)

foreach ($inputlist as $inputname => $inputalt)

$$inputname

if ($formerrors[($inputname)."error"] == true)
 print("*");

($currbook == $book ? " selected>" : ">")

if ((!$os && $counter == 0) || ($currsystem == $os))
 print("checked");

iw3htp5_19_PHP.fm Page 730 Wednesday, November 16, 2011 11:52 AM

19.11 Dynamic Content 731

177 print("<!-- create a submit button -->
178 <p class = 'head'><input type = 'submit' name = 'submit'
179 value = 'Register'></p></form></body></html>");
180 ?><!-- end PHP script -->

Fig. 19.20 | Dynamic form. (Part 5 of 5.)

a) Registration form after
it was submitted with a

missing field and an
incorrectly formatted

phone number

b) Confirmation page
displayed after the

user properly fills in
the form and the

information is stored
in the database

iw3htp5_19_PHP.fm Page 731 Wednesday, November 16, 2011 11:52 AM

732 Chapter 19 PHP

Dynamically Creating the Form
Line 71 determines whether any errors were detected. If $iserror is false (i.e., there were
no input errors), lines 74–111 display the page indicating that the form was submitted suc-
cessfully—we’ll say more about these lines later. If $iserror is true, lines 74–111 are
skipped, and the code from lines 115–179 executes. These lines include a series of print
statements and conditionals to output the form, as seen in Fig. 19.20(a).

Lines 129–138 iterate through each element in the $inputlist array. In line 132 the
value of $$inputname is assigned to the text field’s value attribute. If the form has not yet
been submitted, this will be the empty string "". The notation $$variable specifies a
variable variable, which allows the code to reference variables dynamically. You can use
this expression to obtain the value of the variable whose name is equal to the value of $vari-
able. PHP first determines the value of $variable, then appends this value to the leading $
to form the identifier of the variable you wish to reference dynamically. (The expression
$$variable can also be written as ${$variable} to convey this procedure.) For example, in
lines 129–138, we use $$inputname to reference the value of each form-field variable.
During the iteration of the loop, $inputname contains the name of one of the text input
elements, such as "email". PHP replaces $inputname in the expression $$inputname with
the string representing that element’s name forming the expression ${"email"}. The
entire expression then evaluates to the value of the variable $email. Thus, the variable
$email, which stores the value of the e-mail text field after the form has been submitted,
is dynamically referenced. This dynamic variable reference is added to the string as the
value of the input field (using the concatenation operator) to maintain data over multiple
submissions of the form.

Lines 134–135 add a red asterisk next to the text input fields that were filled out incor-
rectly. Lines 140–142 display the phone number format instructions in red if the user
entered an invalid phone number.

Lines 150–155 and 165–175 generate options for the book drop-down list and oper-
ating-system radio buttons, respectively. In both cases, we ensure that the previously
selected or checked element (if one exists) remains selected or checked over multiple
attempts to correctly fill out the form. If any book was previously selected, line 153 adds
selected to its option tag. Lines 170–171 select an operating system radio button under
two conditions. If the form is begin displayed for the first time, the first radio button is
selected. Otherwise, if the $currsystem variable’s value matches what’s stored in the $os
variable (i.e., what was submitted as part of the form), that specific radio button is selected.

Inserting Data into the Database
If the form has been filled out correctly, lines 74–95 place the form information in the
MySQL database MailingList using an INSERT statement. Line 77 uses the function
mysql_real_escape_string to insert a backslash (\) before any special characters in the
passed string. We must use this function so that MySQL does not interpret the parenthe-
ses in the phone number as having a special meaning aside from being part of a value to
insert into the database. Lines 98–110 generate the web page indicating a successful form
submission, which also provides a link to formDatabase.php (Fig. 19.21).

Displaying the Database’s Contents
The script in Fig. 19.21 displays the contents of the MailingList database using the same
techniques that we showed in Fig. 19.16.

iw3htp5_19_PHP.fm Page 732 Wednesday, November 16, 2011 11:52 AM

19.11 Dynamic Content 733

1 <!DOCTYPE html>
2
3 <!-- Fig. 19.21: formDatabase.php -->
4 <!-- Displaying the MailingList database. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Search Results</title>
9 <style type = "text/css">

10 table { background-color: lightblue;
11 border: 1px solid gray;
12 border-collapse: collapse; }
13 th, td { padding: 5px; border: 1px solid gray; }
14 tr:nth-child(even) { background-color: white; }
15 tr:first-child { background-color: lightgreen; }
16 </style>
17 </head>
18 <body>
19 <?php
20 // build SELECT query
21 $query = "SELECT * FROM contacts";
22
23 // Connect to MySQL
24 if (!($database = mysql_connect("localhost",
25 "iw3htp", "password")))
26 die("<p>Could not connect to database</p></body></html>");
27
28 // open MailingList database
29 if (!mysql_select_db("MailingList", $database))
30 die("<p>Could not open MailingList database</p>
31 </body></html>");
32
33 // query MailingList database
34 if (!($result = mysql_query($query, $database)))
35 {
36 print("<p>Could not execute query!</p>");
37 die(mysql_error() . "</body></html>");
38 } // end if
39 ?><!-- end PHP script -->
40
41 <h1>Mailing List Contacts</h1>
42 <table>
43 <caption>Contacts stored in the database</caption>
44 <tr>
45 <th>ID</th>
46 <th>Last Name</th>
47 <th>First Name</th>
48 <th>E-mail Address</th>
49 <th>Phone Number</th>
50 <th>Book</th>
51 <th>Operating System</th>
52 </tr>

Fig. 19.21 | Displaying the MailingList database. (Part 1 of 2.)

iw3htp5_19_PHP.fm Page 733 Wednesday, November 16, 2011 11:52 AM

734 Chapter 19 PHP

19.12 Web Resources
www.deitel.com/PHP/

The Deitel PHP Resource Center contains links to some of the best PHP information on the web.
There you’ll find categorized links to PHP tools, code generators, forums, books, libraries, frame-
works and more. Also check out the tutorials for all skill levels, from introductory to advanced. Be
sure to visit the related Resource Centers on HTML5 (www.deitel.com/html5/) and CSS 3
(www.deitel.com/css3/).

53 <?php
54 // fetch each record in result set
55 for ($counter = 0; $row = mysql_fetch_row($result);
56 ++$counter)
57 {
58 // build table to display results
59 print("<tr>");
60
61 foreach ($row as $key => $value)
62 print("<td>$value</td>");
63
64 print("</tr>");
65 } // end for
66
67 mysql_close($database);
68 ?><!-- end PHP script -->
69 </table>
70 </body>
71 </html>

Fig. 19.21 | Displaying the MailingList database. (Part 2 of 2.)

Summary
Section 19.1 Introduction
• PHP (p. 697), or PHP: Hypertext Preprocessor, has become one of the most popular server-side

scripting languages for creating dynamic web pages.

• PHP is open source and platform independent—implementations exist for all major UNIX, Li-
nux, Mac and Windows operating systems. PHP also supports a large number of databases.

iw3htp5_19_PHP.fm Page 734 Wednesday, November 16, 2011 11:52 AM

 Summary 735

Section 19.2 Simple PHP Program
• PHP code is embedded directly into HTML5 documents and interpreted on the server.

• PHP script file names end with .php.

• In PHP, code is inserted between the scripting delimiters <?php and ?> (p. 698). PHP code can
be placed anywhere in HTML5 markup, as long as the code is enclosed in these delimiters.

• Variables are preceded by a $ (p. 698) and are created the first time they’re encountered.

• PHP statements terminate with a semicolon (;, p. 698).

• Single-line comments (p. 699) which begin with two forward slashes (//). Text to the right of
the delimiter is ignored by the interpreter. Multiline comments begin with delimiter /* and end
with delimiter */.

• When a variable is encountered inside a double-quoted ("") string, PHP interpolates (p. 699) the
variable—it inserts the variable’s value where the variable name appears in the string.

• All operations requiring PHP interpolation execute on the server before the HTML5 document
is sent to the client.

Section 19.3 Converting Between Data Types
• PHP variables are loosely typed—they can contain different types of data at different times.

• Type conversions can be performed using function settype (p. 699). This function takes two
arguments—a variable whose type is to be changed and the variable’s new type.

• Variables are automatically converted to the type of the value they’re assigned.

• Function gettype (p. 701) returns the current type of its argument.

• Calling function settype can result in loss of data. For example, doubles are truncated when
they’re converted to integers.

• When converting from a string to a number, PHP uses the value of the number that appears at
the beginning of the string. If no number appears at the beginning, the string evaluates to 0.

• Another option for conversion between types is casting (or type casting, p. 701). Casting does
not change a variable’s content—it creates a temporary copy of a variable’s value in memory.

• The concatenation operator (., p. 702) combines multiple strings.

• A print statement split over multiple lines prints all the data that’s enclosed in its parentheses.

Section 19.4 Arithmetic Operators
• Function define (p. 702) creates a named constant. It takes two arguments—the name and value

of the constant. An optional third argument accepts a boolean value that specifies whether the
constant is case insensitive—constants are case sensitive by default.

• Uninitialized variables have undefined values. In a numeric context, an undefined value evaluates
to 0. In a string context, it evaluates to "undef").

• Keywords may not be used as function, method, class or namespace names.

Section 19.5 Initializing and Manipulating Arrays
• PHP provides the capability to store data in arrays. Arrays are divided into elements that behave

as individual variables. Array names, like other variables, begin with the $ symbol.

• Individual array elements are accessed by following the array’s variable name with an index en-
closed in square brackets ([]).

• If a value is assigned to an array that does not exist, then the array is created. Likewise, assigning
a value to an element where the index is omitted appends a new element to the end of the array.

iw3htp5_19_PHP.fm Page 735 Wednesday, November 16, 2011 11:52 AM

736 Chapter 19 PHP

• Function count (p. 706) returns the total number of elements in the array.

• Function array (p. 708) creates an array that contains the arguments passed to it. The first item
in the argument list is stored as the first array element (index 0), the second item is stored as the
second array element and so on.

• Arrays with nonnumeric indices are called associative arrays (p. 708). You can create an associa-
tive array using the operator =>, where the value to the left of the operator is the array index and
the value to the right is the element’s value.

• PHP provides functions for iterating through the elements of an array. Each array has a built-in
internal pointer (p. 708), which points to the array element currently being referenced. Function
reset (p. 708) sets the internal pointer to the first array element. Function key (p. 708) returns
the index of the element currently referenced by the internal pointer, and function next (p. 708)
moves the internal pointer to the next element.

• The foreach statement (p. 709), designed for iterating through arrays, starts with the array to
iterate through, followed by the keyword as (p. 709), followed by two variables—the first is as-
signed the index of the element and the second is assigned the value of that index. (If only one
variable is listed after as, it’s assigned the value of the array element.)

Section 19.6 String Comparisons
• Many string-processing tasks can be accomplished using the equality and relational operators.

• Function strcmp (p. 709) compares two strings. The function returns -1 if the first string alpha-
betically precedes the second string, 0 if the strings are equal, and 1 if the first string alphabetically
follows the second.

Section 19.7 String Processing with Regular Expressions
• A regular expression (p. 710) is a series of characters used for pattern-matching templates in

strings, text files and databases.

• Function preg_match (p. 710) uses regular expressions to search a string for a specified pattern.
If a pattern is found, it returns the length of the matched string.

• Anything enclosed in single quotes in a print statement is not interpolated (unless the single
quotes are nested in a double-quoted string literal).

• Function preg_match receives a regular expression pattern to search for and the string to search.

• Regular expressions can include metacharacters (p. 712) that specify patterns. For example, the
caret (^) metacharacter matches the beginning of a string, while the dollar sign ($) matches the
end of a string. The period (.) metacharacter matches any single character except newlines.

• Bracket expressions (p. 712) are lists of characters enclosed in square brackets ([]) that match any
single character from the list. Ranges can be specified by supplying the beginning and the end of
the range separated by a dash (-).

• Quantifiers (p. 712) are used in regular expressions to denote how often a particular character or
set of characters can appear in a match.

• The optional third argument to function preg_match is an array that stores matches to each par-
enthetical statement of the regular expression. The first element stores the string matched for the
entire pattern, and the remaining elements are indexed from left to right.

• To find multiple instances of a pattern, multiple calls to preg_match, and remove matched in-
stances before calling the function again by using a function such as preg_replace (p. 713).

• Character classes (p. 713), or sets of specific characters, are enclosed by the delimiters [: and :].
When this expression is placed in another set of brackets, it’s a regular expression matching all of
the characters in the class.

iw3htp5_19_PHP.fm Page 736 Wednesday, November 16, 2011 11:52 AM

 Summary 737

• A bracketed expression containing two or more adjacent character classes in the class delimiters
represents those character sets combined.

• Function preg_replace (p. 713) takes three arguments—the pattern to match, a string to replace
the matched string and the string to search. The modified string is returned.

Section 19.8 Form Processing and Business Logic
• Superglobal arrays (p. 714) are associative arrays predefined by PHP that hold variables acquired

from user input, the environment or the web server and are accessible in any variable scope.

• The arrays $_GET and $_POST (p. 714) retrieve information sent to the server by HTTP get and
post requests, respectively.

• A script located on a web server can access the form data posted to the script as part of a request.

• Function die (p. 719) terminates script execution. The function’s optional argument is a string
to display or an integer to return as the script exits.

Section 19.9 Reading from a Database
• Function mysql_connect (p. 720) connects to the MySQL database. It takes three arguments—

the server’s hostname, a username and a password, and returns a database handle (p. 720)—a
representation of PHP’s connection to the database, or false if the connection fails.

• Function mysql_select_db (p. 720) specifies the database to be queried, and returns a bool in-
dicating whether or not it was successful.

• To query the database, we call function mysql_query (p. 722), specifying the query string and the
database to query. This returns a resource containing the result of the query, or false if the query
fails. It can also execute SQL statements such as INSERT or DELETE that do not return results.

• Function mysql_error returns any error strings from the database.

Section 19.10 Using Cookies
• A cookie (p. 723) is a text file that a website stores on a client’s computer to maintain information

about the client during and between browsing sessions.

• A server can access only the cookies that it has placed on the client.

• Function setcookie (p. 723) takes the name of the cookie to be set as the first argument, fol-
lowed by the value to be stored in the cookie. The optional third argument indicates the expira-
tion date of the cookie. A cookie without a third argument is known as a session cookie, while
one with an expiration date is a persistent cookie. If only the name argument is passed to function
setcookie, the cookie is deleted from the client’s computer.

• Cookies defined in function setcookie are sent to the client at the same time as the information
in the HTTP header; therefore, it needs to be called before any HTML5 is printed.

• The current time is returned by function time (p. 723).

• When using Internet Explorer, cookies are stored in a Cookies directory on the client’s machine.
In Firefox, cookies are stored in a file named cookies.txt.

• The superglobal array $_COOKIE (p. 725) contains all the cookie values indexed by their names.

Section 19.11 Dynamic Content
• Function isset (p. 727) allows you to find out if a variable has a value.

• A variable variable ($$variable, p. 732) allows the code to reference variables dynamically. You can
use this expression to obtain the value of the variable whose name is equal to the value of $variable.

• The mysql_real_escape_string function (p. 732) inserts a backslash (\) before any special char-
acters in the passed string.

iw3htp5_19_PHP.fm Page 737 Wednesday, November 16, 2011 11:52 AM

738 Chapter 19 PHP

Self-Review Exercises
19.1 State whether each of the following is true or false. If false, explain why.

a) PHP is open source and platform dependent.
b) PHP supports only a few databases.
c) PHP script file names end with .php.
d) PHP code can be placed anywhere in HTML5 markup, as long as the code is enclosed

in the scripting delimiters <? and ?>.
e) PHP variables are loosely typed.
f) Function define creates a named variable.
g) Function preg_replace takes two arguments—the pattern to match and the string to search.
h) Keywords may be used as identifiers.
i) Function mysql_connect connects to the MySQL database.
j) Function strcmp compares two strings.

19.2 Fill in the blanks in each of the following statements:
a) Type conversions can be performed using function
b) A variable allows the code to reference variables dynamically.
c) The current time is returned by function .
d) A server can access only the cookies that it has placed on the .
e) Function mysql_error returns any error strings from the .
f) The arrays retrieve information sent to the server by HTTP get requests,
g) Function preg_replace takes arguments.
h) The metacharacter matches any single character.
i) PHP statements terminate with a
j) Function allows you to find out if a variable has a value.

Answers to Self-Review Exercises
19.1 a) False. PHP is open source and platform independent. b) False. PHP supports a large number of
databases. c) True. d) False. PHP code can be placed anywhere in HTML5 markup, as long as the code is
enclosed in the scripting delimiters <?php and ?>. e) True. f) False. Function define creates a named con-
stant. g) False. Function preg_replace takes three arguments—the pattern to match, a string to replace the
matched string and the string to search. h) False. Keywords may not be used as identifiers. i) True. j) True.

19.2 a) settype. b) variable ($$variable). c) time. d) client. e) database. f) $_GET. g) three.
h) period (.). i) semicolon. j) isset.

Exercises
19.3 Identify and correct the error in each of the following PHP code examples:

a) <?php print("Hello World"); >
b) <?phps

 $name = "Paul";

 print("$Name");

?><!-- end PHP script -->

19.4 Write a PHP regular expression pattern that matches a string that satisfies the following de-
scription: The string must begin with the (uppercase) letter A. Any three alphanumeric characters
must follow. After these, the letter B (uppercase or lowercase) must be repeated one or more times,
and the string must end with two digits.

19.5 Describe how input from an HTML5 form is retrieved in a PHP program.

19.6 Describe how cookies can be used to store information on a computer and how the infor-
mation can be retrieved by a PHP script. Assume that cookies are not disabled on the client.

iw3htp5_19_PHP.fm Page 738 Wednesday, November 16, 2011 11:52 AM

 Exercises 739

19.7 Write a PHP script named states.php that creates a variable $states with the value "Mis-
sissippi Alabama Texas Massachusetts Kansas". The script should perform the following tasks:

a) Search for a word in $states that ends in xas. Store this word in element 0 of an array
named $statesArray.

b) Search for a word in $states that begins with k and ends in s. Perform a case-insensitive
comparison. Store this word in element 1 of $statesArray.

c) Search for a word in $states that begins with M and ends in s. Store this element in
element 2 of the array.

d) Search for a word in $states that ends in a. Store this word in element 3 of the array.
e) Search for a word in $states at the beginning of the string that starts with M. Store this

word in element 4 of the array.
f) Output the array $statesArray to the screen.

19.8 Write a PHP script that tests whether an e-mail address is input correctly. Verify that the
input begins with series of characters, followed by the @ character, another series of characters, a pe-
riod (.) and a final series of characters. Test your program, using both valid and invalid e-mail ad-
dresses.

19.9 Write a PHP script that obtains a URL and its description from a user and stores the infor-
mation into a database using MySQL. Create and run a SQL script with a database named URL and a
table named Urltable. The first field of the table should contain an actual URL, and the second,
which is named Description, should contain a description of the URL. Use www.deitel.com as the
first URL, and input Cool site! as its description. The second URL should be www.php.net, and
the description should be The official PHP site. After each new URL is submitted, print the con-
tents of the database in a table. [Note: Follow the instructions in Section 18.5.2 to create the Url
database by using the URLs.sql script that’s provided with this chapter’s examples in the dbscripts
folder.]

iw3htp5_19_PHP.fm Page 739 Wednesday, November 16, 2011 11:52 AM

20 Web App Development with
ASP.NET in C#

… the challenges are for the
designers of these applications:
to forget what we think we
know about the limitations of
the Web, and begin to imagine a
wider, richer range of
possibilities. It’s going to be fun.
—Jesse James Garrett

If any man will draw up his
case, and put his name at the
foot of the first page, I will give
him an immediate reply. Where
he compels me to turn over the
sheet, he must wait my leisure.
—Lord Sandwich

O b j e c t i v e s
In this chapter you’ll learn:

■ Web application
development using ASP.NET.

■ To handle the events from a
Web Form’s controls.

■ To use validation controls to
ensure that data is in the
correct format before it’s sent
from a client to the server.

■ To maintain user-specific
information.

■ To create a data-driven web
application using ASP.NET
and LINQ to SQL.

iw3htp5_20_ASP.NET.fm Page 740 Wednesday, November 16, 2011 11:52 AM

20.1 Introduction 741

20.1 Introduction
In this chapter, we introduce web-application development with Microsoft’s ASP.NET
technology. Web-based applications create web content for web-browser clients.

We present several examples that demonstrate web-application development using
Web Forms, web controls (also called ASP.NET server controls) and Visual C# program-
ming. Web Form files have the file-name extension .aspx and contain the web page’s
GUI. You customize Web Forms by adding web controls including labels, textboxes,
images, buttons and other GUI components. The Web Form file represents the web page
that is sent to the client browser. We often refer to Web Form files as ASPX files.

An ASPX file created in Visual Studio has a corresponding class written in a .NET
language—we use Visual C# in this book. This class contains event handlers, initialization
code, utility methods and other supporting code. The file that contains this class is called
the code-behind file and provides the ASPX file’s programmatic implementation.

To develop the code and GUIs in this chapter, we used Microsoft’s Visual Web
Developer 2010 Express—a free IDE designed for developing ASP.NET web applica-
tions. The full version of Visual Studio 2010 includes the functionality of Visual Web
Developer, so the instructions we present for Visual Web Developer also apply to Visual
Studio 2010. The database example (Section 20.8) also requires SQL Server 2008 Express.
You can download and install these tools from www.microsoft.com/express.

In the next chapter, we present several additional web-application development
topics, including:

• master pages to maintain a uniform look-and-feel across the Web Forms in a web
application

• creating password-protected websites with registration and login capabilities

• using the Web Site Administration Tool to specify which parts of a website are pass-
word protected

20.1 Introduction

20.2 Web Basics

20.3 Multitier Application Architecture

20.4 Your First ASP.NET Application
20.4.1 Building the WebTime Application
20.4.2 Examining WebTime.aspx’s Code-

Behind File

20.5 Standard Web Controls: Designing a
Form

20.6 Validation Controls

20.7 Session Tracking
20.7.1 Cookies
20.7.2 Session Tracking with

HttpSessionState

20.7.3 Options.aspx: Selecting a
Programming Language

20.7.4 Recommendations.aspx:
Displaying Recommendations Based
on Session Values

20.8 Case Study: Database-Driven
ASP.NET Guestbook

20.8.1 Building a Web Form that Displays
Data from a Database

20.8.2 Modifying the Code-Behind File for
the Guestbook Application

20.9 Case Study Introduction: ASP.NET
AJAX

20.10 Case Study Introduction: Password-
Protected Books Database
Application

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

iw3htp5_20_ASP.NET.fm Page 741 Wednesday, November 16, 2011 11:52 AM

742 Chapter 20 Web App Development with ASP.NET in C#

• using ASP.NET AJAX to quickly and easily improve the user experience for your
web applications, giving them responsiveness comparable to that of desktop ap-
plications.

20.2 Web Basics
In this section, we discuss what occurs when a user requests a web page in a browser. In its
simplest form, a web page is nothing more than an HTML (HyperText Markup Language)
document (with the extension .html or .htm) that describes to a web browser the docu-
ment’s content and how to format it.

HTML documents normally contain hyperlinks that link to different pages or to other
parts of the same page. When the user clicks a hyperlink, a web server locates the requested
web page and sends it to the user’s web browser. Similarly, the user can type the address of
a web page into the browser’s address field and press Enter to view the specified page.

Web development tools like Visual Web Developer typically use a “stricter” version
of HTML called XHTML (Extensible HyperText Markup Language), which is based on
XML. ASP.NET produces web pages as XHTML documents.

URIs and URLs
URIs (Uniform Resource Identifiers) identify resources on the Internet. URIs that start with
http:// are called URLs (Uniform Resource Locators). Common URLs refer to files, direc-
tories or server-side code that performs tasks such as database lookups, Internet searches
and business application processing. If you know the URL of a publicly available resource
anywhere on the web, you can enter that URL into a web browser’s address field and the
browser can access that resource.

Parts of a URL
A URL contains information that directs a browser to the resource that the user wishes to
access. Web servers make such resources available to web clients.

Let’s examine the components of the URL

The http:// indicates that the HyperText Transfer Protocol (HTTP) should be used to
obtain the resource. HTTP is the web protocol that enables clients and servers to commu-
nicate. Next in the URL is the server’s fully qualified hostname (www.deitel.com)—the
name of the web server computer on which the resource resides. This computer is referred
to as the host, because it houses and maintains resources. The hostname www.deitel.com
is translated into an IP (Internet Protocol) address—a numerical value that uniquely
identifies the server on the Internet. A Domain Name System (DNS) server maintains a
database of hostnames and their corresponding IP addresses, and performs the translations
automatically.

The remainder of the URL (/books/downloads.html) specifies the resource’s loca-
tion (/books) and name (downloads.html) on the web server. The location could repre-
sent an actual directory on the web server’s file system. For security reasons, however, the
location is typically a virtual directory. The web server translates the virtual directory into
a real location on the server, thus hiding the resource’s true location.

http://www.deitel.com/books/downloads.html

iw3htp5_20_ASP.NET.fm Page 742 Wednesday, November 16, 2011 11:52 AM

20.3 Multitier Application Architecture 743

Making a Request and Receiving a Response
When given a URL, a web browser uses HTTP to retrieve the web page found at that ad-
dress. Figure 20.1 shows a web browser sending a request to a web server. Figure 20.2
shows the web server responding to that request.

20.3 Multitier Application Architecture
Web-based applications are multitier applications (sometimes referred to as n-tier appli-
cations). Multitier applications divide functionality into separate tiers (that is, logical
groupings of functionality). Although tiers can be located on the same computer, the tiers
of web-based applications commonly reside on separate computers for security and scal-
ability. Figure 20.3 presents the basic architecture of a three-tier web-based application.

Information Tier
The information tier (also called the bottom tier) maintains the application’s data. This
tier typically stores data in a relational database management system. For example, a retail
store might have a database for storing product information, such as descriptions, prices
and quantities in stock. The same database also might contain customer information, such
as user names, billing addresses and credit card numbers. This tier can contain multiple
databases, which together comprise the data needed for an application.

Fig. 20.1 | Client requesting a resource from a web server.

Fig. 20.2 | Client receiving a response from the web server.

After it receives
the request, the
web server
searches its
system for the
resource

b)

The request is
sent from the
web client to the
web server

a)

Web server

Internet

Web client

The server
responds to the
request with
the resource's
contents

Web server

Internet

Web client

iw3htp5_20_ASP.NET.fm Page 743 Wednesday, November 16, 2011 11:52 AM

744 Chapter 20 Web App Development with ASP.NET in C#

Business Logic
The middle tier implements business logic, controller logic and presentation logic to
control interactions between the application’s clients and its data. The middle tier acts as
an intermediary between data in the information tier and the application’s clients. The
middle-tier controller logic processes client requests (such as requests to view a product
catalog) and retrieves data from the database. The middle-tier presentation logic then pro-
cesses data from the information tier and presents the content to the client. Web applica-
tions typically present data to clients as web pages.

Business logic in the middle tier enforces business rules and ensures that data is reliable
before the server application updates the database or presents the data to users. Business
rules dictate how clients can and cannot access application data, and how applications pro-
cess data. For example, a business rule in the middle tier of a retail store’s web-based appli-
cation might ensure that all product quantities remain positive. A client request to set a
negative quantity in the bottom tier’s product information database would be rejected by
the middle tier’s business logic.

Client Tier
The client tier, or top tier, is the application’s user interface, which gathers input and dis-
plays output. Users interact directly with the application through the user interface (typi-
cally viewed in a web browser), keyboard and mouse. In response to user actions (for
example, clicking a hyperlink), the client tier interacts with the middle tier to make re-
quests and to retrieve data from the information tier. The client tier then displays to the
user the data retrieved from the middle tier. The client tier never directly interacts with
the information tier.

Fig. 20.3 | Three-tier architecture.

Web server
Middle tier

(Business logic tier)

Bottom tier
(Information tier)

Top tier
(Client tier)

Browser

XHTML

LINQ

Business logic
implemented in
ASP.NET

User interface

DBMS
Database

iw3htp5_20_ASP.NET.fm Page 744 Wednesday, November 16, 2011 11:52 AM

20.4 Your First ASP.NET Application 745

20.4 Your First ASP.NET Application
Our first example displays the web server’s time of day in a browser window (Fig. 20.4).
When this application executes—that is, a web browser requests the application’s web
page—the web server executes the application’s code, which gets the current time and dis-
plays it in a Label. The web server then returns the result to the web browser that made
the request, and the web browser renders the web page containing the time. We show this
application executing in the Internet Explorer and Firefox web browsers to show you that
the web page renders identically across browsers.

Testing the Application in Your Default Web Browser
To test this application in your default web browser, perform the following steps:

1. Open Visual Web Developer.

2. Select Open Web Site… from the File menu.

3. In the Open Web Site dialog (Fig. 20.5), ensure that File System is selected, then
navigate to this chapter’s examples, select the WebTime folder and click the Open
Button.

4. Select WebTime.aspx in the Solution Explorer, then type Ctrl + F5 to execute the
web application.

Testing the Application in a Selected Web Browser
If you wish to execute the application in another web browser, you can copy the web page’s
address from your default browser’s address field and paste it into another browser’s ad-
dress field, or you can perform the following steps:

Fig. 20.4 | WebTime web application running in Internet Explorer and Firefox.

iw3htp5_20_ASP.NET.fm Page 745 Wednesday, November 16, 2011 11:52 AM

746 Chapter 20 Web App Development with ASP.NET in C#

1. In the Solution Explorer, right click WebTime.aspx and select Browse With… to
display the Browse With dialog (Fig. 20.6).

2. From the Browsers list, select the browser in which you’d like to test the web ap-
plication and click the Browse Button.

If the browser you wish to use is not listed, you can use the Browse With dialog to add items
to or remove items from the list of web browsers.

Fig. 20.5 | Open Web Site dialog.

Fig. 20.6 | Selecting another web browser to execute the web application.

iw3htp5_20_ASP.NET.fm Page 746 Wednesday, November 16, 2011 11:52 AM

20.4 Your First ASP.NET Application 747

20.4.1 Building the WebTime Application
Now that you’ve tested the application, let’s create it in Visual Web Developer.

Step 1: Creating the Web Site Project
Select File > New Web Site... to display the New Web Site dialog (Fig. 20.7). In the left col-
umn of this dialog, ensure that Visual C# is selected, then select ASP.NET Empty Web Site
in the middle column. At the bottom of the dialog you can specify the location and name
of the web application.

The Web location: ComboBox provides the following options:

• File System: Creates a new website for testing on your local computer. Such web-
sites execute in Visual Web Developer’s built-in ASP.NET Development Server
and can be accessed only by web browsers running on the same computer. You
can later “publish” your website to a production web server for access via a local
network or the Internet. Each example in this chapter uses the File System option,
so select it now.

• HTTP: Creates a new website on an IIS web server and uses HTTP to allow you
to put your website’s files on the server. IIS is Microsoft’s software that is used to
run production websites. If you own a website and have your own web server, you
might use this to build a new website directly on that server computer. You must
be an Administrator on the computer running IIS to use this option.

• FTP: Uses File Transfer Protocol (FTP) to allow you to put your website’s files
on the server. The server administrator must first create the website on the server
for you. FTP is commonly used by so-called “hosting providers” to allow website
owners to share a server computer that runs many websites.

Change the name of the web application from WebSite1 to WebTime, then click OK to cre-
ate the website.

Fig. 20.7 | Creating an ASP.NET Web Site in Visual Web Developer.

iw3htp5_20_ASP.NET.fm Page 747 Wednesday, November 16, 2011 11:52 AM

748 Chapter 20 Web App Development with ASP.NET in C#

Step 2: Adding a Web Form to the Website and Examining the Solution Explorer
A Web Form represents one page in a web application—we’ll often use the terms “page”
and “Web Form” interchangeably. A Web Form contains a web application’s GUI. To
create the WebTime.aspx Web Form:

1. Right click the project name in the Solution Explorer and select Add New Item...
to display the Add New Item dialog (Fig. 20.8).

2. In the left column, ensure that Visual C# is selected, then select Web Form in the
middle column.

3. In the Name: TextBox, change the file name to WebTime.aspx, then click the Add
Button.

After you add the Web Form, the IDE opens it in Source view by default (Fig. 20.9).
This view displays the markup for the Web Form. As you become more familiar with
ASP.NET and building web sites in general, you might use Source view to perform high
precision adjustments to your design or to program in the JavaScript language that exe-
cutes in web browsers. For the purposes of this chapter, we’ll keep things simple by
working exclusively in Design mode. To switch to Design mode, you can click the Design
Button at the bottom of the code editor window.

The Solution Explorer
The Solution Explorer (Fig. 20.10) shows the contents of the website. We expanded the node
for WebTime.aspx to show you its code-behind file WebTime.aspx.cs. Visual Web Develop-
er’s Solution Explorer contains several buttons that differ from Visual C# Express. The Copy
Web Site button opens a dialog that allows you to move the files in this project to another
location, such as a remote web server. This is useful if you’re developing the application on
your local computer but want to make it available to the public from a different location.
The ASP.NET Configuration button takes you to a web page called the Web Site Administra-

Fig. 20.8 | Adding a new Web Form to the website with the Add New Item dialog.

iw3htp5_20_ASP.NET.fm Page 748 Wednesday, November 16, 2011 11:52 AM

20.4 Your First ASP.NET Application 749

tion Tool, where you can manipulate various settings and security options for your applica-
tion. The Nest Related Files button organizes each Web Form and its code-behind file.

If the ASPX file is not open in the IDE, you can open it in Design mode three ways:

• double click it in the Solution Explorer then select the Design tab

• select it in the Solution Explorer and click the View Designer () Button

• right click it in the Solution Explorer and select View Designer

To open the code-behind file in the code editor, you can

• double click it in the Solution Explorer

• select the ASPX file in the Solution Explorer, then click the View Code () Button

• right click the code-behind file in the Solution Explorer and select Open

The Toolbox
Figure 20.11 shows the Toolbox displayed in the IDE when the project loads. Part (a) dis-
plays the beginning of the Standard list of web controls, and part (b) displays the remain-

Fig. 20.9 | Web Form in Source view.

Fig. 20.10 | Solution Explorer window for an Empty Web Site project after adding the
Web Form WebTime.aspx.

Source mode shows only
the Web Form’s markup

Split mode allows you to
view the Web Form’s markup

and design at the same time

Design mode allows you to
build a Web Form using

similar techniques to building
a Windows Form

Properties

Refresh

Nest Related Files

ASP.NET Configuration

Copy Web Site

View Code View Designer

ASPX page represents the
application’s user interface

Code-behind file that
contains the application’s

business logic

iw3htp5_20_ASP.NET.fm Page 749 Wednesday, November 16, 2011 11:52 AM

750 Chapter 20 Web App Development with ASP.NET in C#

ing web controls and the list of other control groups. We discuss specific controls listed in
Fig. 20.11 as they’re used throughout the chapter. Many of the controls have similar or
identical names to the Windows Forms controls used in desktop applications.

The Web Forms Designer
Figure 20.12 shows the initial Web Form in Design mode. You can drag and drop controls
from the Toolbox onto the Web Form. You can also type at the current cursor location to
add so-called static text to the web page. In response to such actions, the IDE generates
the appropriate markup in the ASPX file.

Step 3: Changing the Title of the Page
Before designing the Web Form’s content, you’ll change its title to A Simple Web Form Ex-
ample. This title will be displayed in the web browser’s title bar (see Fig. 20.4). It’s typi-

Fig. 20.11 | Toolbox in Visual Web Developer.

Fig. 20.12 | Design mode of the Web Forms Designer.

a) b)

Cursor’s current location in the Web FormCursor appears here by default

iw3htp5_20_ASP.NET.fm Page 750 Wednesday, November 16, 2011 11:52 AM

20.4 Your First ASP.NET Application 751

cally also used by search engines like Google and Bing when they index real websites for
searching. Every page should have a title. To change the title:

1. Ensure that the ASPX file is open in Design view.

2. View the Web Form’s properties by selecting DOCUMENT, which represents the
Web Form, from the drop-down list in the Properties window.

3. Modify the Title property in the Properties window by setting it to A Simple Web
Form Example.

Designing a Page
Designing a Web Form is similar to designing a Windows Form. To add controls to the
page, drag-and-drop them from the Toolbox onto the Web Form in Design view. The Web
Form and each control are objects that have properties, methods and events. You can set
these properties visually using the Properties window or programmatically in the code-be-
hind file. You can also type text directly on a Web Form at the cursor location.

Controls and other elements are placed sequentially on a Web Form one after another
in the order in which you drag-and-drop them onto the Web Form. The cursor indicates
the insertion point in the page. If you want to position a control between existing text or
controls, you can drop the control at a specific position between existing page elements.
You can also rearrange controls with drag-and-drop actions in Design view. The positions
of controls and other elements are relative to the Web Form’s upper-left corner. This type
of layout is known as relative positioning and it allows the browser to move elements and
resize them based on the size of the browser window. Relative positioning is the default,
and we’ll use it throughout this chapter.

For precise control over the location and size of elements, you can use absolute posi-
tioning in which controls are located exactly where you drop them on the Web Form. If
you wish to use absolute positioning:

1. Select Tools > Options…., to display the Options dialog.

2. If it isn’t checked already, check the Show all settings checkbox.

3. Next, expand the HTML Designer > CSS Styling node and ensure that the check-
box labeled Change positioning to absolute for controls added using Toolbox, paste
or drag and drop is selected.

Step 4: Adding Text and a Label
You’ll now add some text and a Label to the Web Form. Perform the following steps to
add the text:

1. Ensure that the Web Form is open in Design mode.

2. Type the following text at the current cursor location:

3. Select the text you just typed, then select Heading 2 from the Block Format Combo-
Box (Fig. 20.13) to format this text as a heading that will appear in a larger bold
font. In more complex pages, headings help you specify the relative importance
of parts of that content—like sections in a book chapter.

 Current time on the Web server:

iw3htp5_20_ASP.NET.fm Page 751 Wednesday, November 16, 2011 11:52 AM

752 Chapter 20 Web App Development with ASP.NET in C#

4. Click to the right of the text you just typed and press the Enter key to start a new
paragraph in the page. The Web Form should now appear as in Fig. 20.14.

5. Next, drag a Label control from the Toolbox into the new paragraph or double
click the Label control in the Toolbox to insert the Label at the current cursor
position.

6. Using the Properties window, set the Label’s (ID) property to timeLabel. This
specifies the variable name that will be used to programmatically change the
Label’s Text.

7. Because, the Label’s Text will be set programmatically, delete the current value
of the Label’s Text property. When a Label does not contain text, its name is
displayed in square brackets in Design view (Fig. 20.15) as a placeholder for de-
sign and layout purposes. This text is not displayed at execution time.

Fig. 20.13 | Changing the text to Heading 2 heading.

Fig. 20.14 | WebTime.aspx after inserting text and a new paragraph.

Block Format ComboBox

The cursor is
positioned here after

inserting a new
paragraph by

pressing Enter

iw3htp5_20_ASP.NET.fm Page 752 Wednesday, November 16, 2011 11:52 AM

20.4 Your First ASP.NET Application 753

Step 5: Formatting the Label
Formatting in a web page is performed with CSS (Cascading Style Sheets). It’s easy to use
CSS to format text and elements in a Web Form via the tools built into Visual Web De-
veloper. In this example, we’d like to change the Label’s background color to black, its
foreground color yellow and make its text size larger. To format the Label, perform the
following steps:

1. Click the Label in Design view to ensure that it’s selected.

2. Select View > Other Windows > CSS Properties to display the CSS Properties win-
dow at the left side of the IDE (Fig. 20.16).

3. Right click in the Applied Rules box and select New Style… to display the New
Style dialog (Fig. 20.17).

4. Type the new style’s name—.timeStyle—in the Selector: ComboBox. Styles that
apply to specific elements must be named with a dot (.) preceding the name.
Such a style is called a CSS class.

5. Each item you can set in the New Style dialog is known as a CSS attribute. To
change timeLabel’s foreground color, select the Font category from the Category
list, then select the yellow color swatch for the color attribute.

6. Next, change the font-size attribute to xx-large.

7. To change timeLabel’s background color, select the Background category, then
select the black color swatch for the background-color attribute.

Fig. 20.15 | WebTime.aspx after adding a Label.

Fig. 20.16 | CSS Properties window.

Label control

iw3htp5_20_ASP.NET.fm Page 753 Wednesday, November 16, 2011 11:52 AM

754 Chapter 20 Web App Development with ASP.NET in C#

The New Style dialog should now appear as shown in Fig. 20.18. Click the OK Button to
apply the style to the timeLabel so that it appears as shown in Fig. 20.19. Also, notice that
the Label’s CssClass property is now set to timeStyle in the Properties window.

Fig. 20.17 | New Style dialog.

Fig. 20.18 | New Style dialog after changing the Label’s style.

Font category allows you to
style an element’s font

Background category allows
you to specify an element’s

background color or
background image

New style’s name

The new style will be
applied to the currently

selected element in the page

Preview of what the
style will look like

Bold category
names indicate the
categories in which

CSS attribute
values have been

changed

iw3htp5_20_ASP.NET.fm Page 754 Wednesday, November 16, 2011 11:52 AM

20.4 Your First ASP.NET Application 755

Step 6: Adding Page Logic
Now that you’ve designed the GUI, you’ll write code in the code-behind file to obtain the
server’s time and display it on the Label. Open WebTime.aspx.cs by double clicking it in
the Solution Explorer. In this example, you’ll add an event handler to the code-behind file
to handle the Web Form’s Init event, which occurs when the page is requested by a web
browser. The event handler for this event—named Page_Init—initialize the page. The
only initialization required for this example is to set the timeLabel’s Text property to the
time on the web server computer. The code-behind file initally contains a Page_Load event
handler. To create the Page_Init event handler, simply rename Page_Load as Page_Init.
Then complete the event handler by inserting the following code in its body:

Step 7: Setting the Start Page and Running the Program
To ensure that WebTime.aspx loads when you execute this application, right click it in the
Solution Explorer and select Set As Start Page. You can now run the program in one of sev-
eral ways. At the beginning of Fig. 20.4, you learned how to view the Web Form by typing
Ctrl + F5. You can also right click an ASPX file in the Solution Explorer and select View in
Browser. Both of these techniques execute the ASP.NET Development Server, open your
default web browser and load the page into the browser, thus running the web application.
The development server stops when you exit Visual Web Developer.

If problems occur when running your application, you can run it in debug mode by
selecting Debug > Start Debugging, by clicking the Start Debugging Button () or by
typing F5 to view the web page in a web browser with debugging enabled. You cannot
debug a web application unless debugging is explicitly enabled in the application’s
Web.config file—a file that is generated when you create an ASP.NET web application.
This file stores the application’s configuration settings. You’ll rarely need to manually
modify Web.config. The first time you select Debug > Start Debugging in a project, a
dialog appears and asks whether you want the IDE to modify the Web.config file to enable
debugging. After you click OK, the IDE executes the application. You can stop debugging
by selecting Debug > Stop Debugging.

Regardless of how you execute the web application, the IDE will compile the project
before it executes. In fact, ASP.NET compiles your web page whenever it changes between
HTTP requests. For example, suppose you browse the page, then modify the ASPX file or
add code to the code-behind file. When you reload the page, ASP.NET recompiles the

Fig. 20.19 | Design view after changing the Label’s style.

// display the server's current time in timeLabel
timeLabel.Text = DateTime.Now.ToString("hh:mm:ss");

iw3htp5_20_ASP.NET.fm Page 755 Wednesday, November 16, 2011 11:52 AM

756 Chapter 20 Web App Development with ASP.NET in C#

page on the server before returning the response to the browser. This important behavior
ensures that clients always see the latest version of the page. You can manually compile an
entire website by selecting Build Web Site from the Debug menu in Visual Web Developer.

20.4.2 Examining WebTime.aspx’s Code-Behind File
Figure 20.20 presents the code-behind file WebTime.aspx.cs. Line 5 begins the declara-
tion of class WebTime. In Visual C#, a class declaration can span multiple source-code
files—the separate portions of the class declaration in each file are known as partial classes.
The partial modifier indicates that the code-behind file is part of a larger class. Like Win-
dows Forms applications, the rest of the class’s code is generated for you based on your vi-
sual interactions to create the application’s GUI in Design mode. That code is stored in
other source code files as partial classes with the same name. The compiler assembles all
the partial classes that have the same into a single class declaration.

Line 5 indicates that WebTime inherits from class Page in namespace System.Web.UI.
This namespace contains classes and controls for building web-based applications. Class
Page represents the default capabilities of each page in a web application—all pages inherit
directly or indirectly from this class.

Lines 8–12 define the Page_Init event handler, which initializes the page in response
to the page’s Init event. The only initialization required for this page is to set the time-
Label’s Text property to the time on the web server computer. The statement in line 11
retrieves the current time (DateTime.Now) and formats it as hh:mm:ss. For example, 9 AM
is formatted as 09:00:00, and 2:30 PM is formatted as 02:30:00. As you’ll see, variable
timeLabel represents an ASP.NET Label control. The ASP.NET controls are defined in
namespace System.Web.UI.WebControls.

20.5 Standard Web Controls: Designing a Form
This section introduces some of the web controls located in the Standard section of the
Toolbox (Fig. 20.11). Figure 20.21 summarizes the controls used in the next example.

A Form Gathering User Input
Figure 20.22 depicts a form for gathering user input. This example does not perform any
tasks—that is, no action occurs when the user clicks Register. As an exercise, we ask you

1 // Fig. 20.20: WebTime.aspx.cs
2 // Code-behind file for a page that displays the web server’s time.
3 using System;
4
5 public partial class WebTime : System.Web.UI.Page
6 {
7 // initializes the contents of the page
8
9 {

10 // display the server's current time in timeLabel
11 timeLabel.Text =
12 } // end method Page_Init
13 } // end class WebTime

Fig. 20.20 | Code-behind file for a page that displays the web server’s time.

protected void Page_Init(object sender, EventArgs e)

DateTime.Now.ToString("hh:mm:ss");

iw3htp5_20_ASP.NET.fm Page 756 Wednesday, November 16, 2011 11:52 AM

20.5 Standard Web Controls: Designing a Form 757

to provide the functionality. Here we focus on the steps for adding these controls to a Web
Form and for setting their properties. Subsequent examples demonstrate how to handle
the events of many of these controls. To execute this application:

Web control Description

TextBox Gathers user input and displays text.
Button Triggers an event when clicked.
HyperLink Displays a hyperlink.
DropDownList Displays a drop-down list of choices from which a user can select an item.
RadioButtonList Groups radio buttons.
Image Displays images (for example, PNG, GIF and JPG).

Fig. 20.21 | Commonly used web controls.

Fig. 20.22 | Web Form that demonstrates web controls.

Image control

TextBox control

DropDownList control

HyperLink control

RadioButtonList control

Button control

Heading 3 paragraph

Paragraph of plain text

A table containing four
Images and four TextBoxes

iw3htp5_20_ASP.NET.fm Page 757 Wednesday, November 16, 2011 11:52 AM

758 Chapter 20 Web App Development with ASP.NET in C#

1. Select Open Web Site… from the File menu.

2. In the Open Web Site dialog, ensure that File System is selected, then navigate to
this chapter’s examples, select the WebControls folder and click the Open Button.

3. Select WebControls.aspx in the Solution Explorer, then type Ctrl + F5 to execute
the web application in your default web browser.

Creating the Web Site
To begin, follow the steps in Section 20.4.1 to create an Empty Web Site named WebCon-
trols, then add a Web Form named WebControls.aspx to the project. Set the docu-
ment’s Title property to "Web Controls Demonstration". To ensure that
WebControls.aspx loads when you execute this application, right click it in the Solution
Explorer and select Set As Start Page.

Adding the Images to the Project
The images used in this example are located in the images folder with this chapter’s exam-
ples. Before you can display images in the Web Form, they must be added to your project.
To add the images folder to your project:

1. Open Windows Explorer.

2. Locate and open this chapter’s examples folder (ch20).

3. Drag the images folder from Windows Explorer into Visual Web Developer’s
Solution Explorer window and drop the folder on the name of your project.

The IDE will automatically copy the folder and its contents into your project.

Adding Text and an Image to the Form
Next, you’ll begin creating the page. Perform the following steps:

1. First create the page’s heading. At the current cursor position on the page, type
the text "Registration Form", then use the Block Format ComboBox in the IDE’s
toolbar to change the text to Heading 3 format.

2. Press Enter to start a new paragraph, then type the text "Please fill in all
fields and click the Register button".

3. Press Enter to start a new paragraph, then double click the Image control in the
Toolbox. This control inserts an image into a web page, at the current cursor po-
sition. Set the Image’s (ID) property to userInformationImage. The ImageUrl
property specifies the location of the image to display. In the Properties window,
click the ellipsis for the ImageUrl property to display the Select Image dialog. Se-
lect the images folder under Project folders: to display the list of images. Then
select the image user.png.

4. Click OK to display the image in Design view, then click to the right of the Image
and press Enter to start a new paragraph.

Adding a Table to the Form
Form elements are often placed in tables for layout purposes—like the elements that rep-
resent the first name, last name, e-mail and phone information in Fig. 20.22. Next, you’ll
create a table with two rows and two columns in Design mode.

iw3htp5_20_ASP.NET.fm Page 758 Wednesday, November 16, 2011 11:52 AM

20.5 Standard Web Controls: Designing a Form 759

1. Select Table > Insert Table to display the Insert Table dialog (Fig. 20.23). This di-
alog allows you to configure the table’s options.

2. Under Size, ensure that the values of Rows and Columns are both 2—these are
the default values.

3. Click OK to close the Insert Table dialog and create the table.

By default, the contents of a table cell are aligned vertically in the middle of the cell.
We changed the vertical alignment of all cells in the table by setting the valign property
to top in the Properties window. This causes the content in each table cell to align with
the top of the cell. You can set the valign property for each table cell individually or by
selecting all the cells in the table at once, then changing the valign property’s value.

After creating the table, controls and text can be added to particular cells to create a
neatly organized layout. Next, add Image and TextBox controls to each the four table cells
as follows:

1. Click the table cell in the first row and first column of the table, then double click
the Image control in the Toolbox. Set its (ID) property to firstNameImage and
set its ImageUrl property to the image fname.png.

2. Next, double click the TextBox control in the Toolbox. Set its (ID) property to
firstNameTextBox. As in Windows Forms, a TextBox control allows you to ob-
tain text from the user and display text to the user

Fig. 20.23 | Insert Table dialog.

iw3htp5_20_ASP.NET.fm Page 759 Wednesday, November 16, 2011 11:52 AM

760 Chapter 20 Web App Development with ASP.NET in C#

3. Repeat this process in the first row and second column, but set the Image’s (ID)
property to lastNameImage and its ImageUrl property to the image lname.png,
and set the TextBox’s (ID) property to lastNameTextBox.

4. Repeat Steps 1 and 2 in the second row and first column, but set the Image’s (ID)
property to emailImage and its ImageUrl property to the image email.png, and
set the TextBox’s (ID) property to emailTextBox.

5. Repeat Steps 1 and 2 in the second row and second column, but set the Image’s
(ID) property to phoneImage and its ImageUrl property to the image phone.png,
and set the TextBox’s (ID) property to phoneTextBox.

Creating the Publications Section of the Page
This section contains an Image, some text, a DropDownList control and a HyperLink con-
trol. Perform the following steps to create this section:

1. Click below the table, then use the techniques you’ve already learned in this sec-
tion to add an Image named publicationsImage that displays the publica-
tions.png image.

2. Click to the right of the Image, then press Enter and type the text "Which book
would you like information about?" in the new paragraph.

3. Hold the Shift key and press Enter to create a new line in the current paragraph,
then double click the DropDownList control in the Toolbox. Set its (ID) property
to booksDropDownList. This control is similar to the Windows Forms ComboBox
control, but doesn’t allow users to type text. When a user clicks the drop-down
list, it expands and displays a list from which the user can make a selection.

4. You can add items to the DropDownList using the ListItem Collection Editor,
which you can access by clicking the ellipsis next to the DropDownList’s Items
property in the Properties window, or by using the DropDownList Tasks smart-
tag menu. To open this menu, click the small arrowhead that appears in the up-
per-right corner of the control in Design mode (Fig. 20.24). Visual Web Devel-
oper displays smart-tag menus for many ASP.NET controls to facilitate common
tasks. Clicking Edit Items... in the DropDownList Tasks menu opens the ListItem
Collection Editor, which allows you to add ListItem elements to the DropDown-
List. Add items for "Visual Basic 2010 How to Program", "Visual C# 2010 How
to Program", "Java How to Program" and "C++ How to Program" by clicking the
Add Button four times. For each item, select it, then set its Text property to one
of the four book titles.

5. Click to the right of the DropDownList and press Enter to start a new paragraph,
then double click the HyperLink control in the Toolbox to add a hyperlink to the

Fig. 20.24 | DropDownList Tasks smart-tag menu.

iw3htp5_20_ASP.NET.fm Page 760 Wednesday, November 16, 2011 11:52 AM

20.6 Validation Controls 761

web page. Set its (ID) property to booksHyperLink and its Text property to
"Click here to view more information about our books". Set the NavigateUrl
property to http://www.deitel.com. This specifies the resource or web page that
will be requested when the user clicks the HyperLink. Setting the Target property
to _blank specifies that the requested web page should open in a new browser
window. By default, HyperLink controls cause pages to open in the same browser
window.

Completing the Page
Next you’ll create the Operating System section of the page and the Register Button. This
section contains a RadioButtonList control, which provides a series of radio buttons from
which the user can select only one. The RadioButtonList Tasks smart-tag menu provides
an Edit Items… link to open the ListItem Collection Editor so that you can create the items
in the list. Perform the following steps:

1. Click to the right of the HyperLink control and press Enter to create a new para-
graph, then add an Image named osImage that displays the os.png image.

2. Click to the right of the Image and press Enter to create a new paragraph, then
add a RadioButtonList. Set its (ID) property to osRadioButtonList. Use the
ListItem Collection Editor to add the items shown in Fig. 20.22.

3. Finally, click to the right of the RadioButtonList and press Enter to create a new
paragraph, then add a Button. A Button web control represents a button that
triggers an action when clicked. Set its (ID) property to registerButton and its
Text property to Register. As stated earlier, clicking the Register button in this
example does not do anything.

You can now execute the application (Ctrl + F5) to see the Web Form in your browser.

20.6 Validation Controls
This section introduces a different type of web control, called a validation control or val-
idator, which determines whether the data in another web control is in the proper format.
For example, validators can determine whether a user has provided information in a re-
quired field or whether a zip-code field contains exactly five digits. Validators provide a
mechanism for validating user input on the client. When the page is sent to the client, the
validator is converted into JavaScript that performs the validation in the client web brows-
er. JavaScript is a scripting language that enhances the functionality of web pages and is
typically executed on the client. Unfortunately, some client browsers might not support
scripting or the user might disable it. For this reason, you should always perform validation
on the server. ASP.NET validation controls can function on the client, on the server or
both.

Validating Input in a Web Form
The Web Form in Fig. 20.25 prompts the user to enter a name, e-mail address and phone
number. A website could use a form like this to collect contact information from visitors.
After the user enters any data, but before the data is sent to the web server, validators en-
sure that the user entered a value in each field and that the e-mail address and phone-num-

iw3htp5_20_ASP.NET.fm Page 761 Wednesday, November 16, 2011 11:52 AM

762 Chapter 20 Web App Development with ASP.NET in C#

ber values are in an acceptable format. In this example, (555) 123-4567, 555-123-4567
and 123-4567 are all considered valid phone numbers. Once the data is submitted, the
web server responds by displaying a message that repeats the submitted information. A real
business application would typically store the submitted data in a database or in a file on
the server. We simply send the data back to the client to demonstrate that the server re-
ceived the data. To execute this application:

1. Select Open Web Site… from the File menu.

2. In the Open Web Site dialog, ensure that File System is selected, then navigate to
this chapter’s examples, select the Validation folder and click the Open Button.

3. Select Validation.aspx in the Solution Explorer, then type Ctrl + F5 to execute
the web application in your default web browser.

Fig. 20.25 | Validators in a Web Form that retrieves user contact information. (Part 1 of 2.)

a) Initial Web Form

b) Web Form after the user
presses the Submit Button

without having entered any data
in the TextBoxes; each

TextBox is followed by an error
message that was displayed by a

validation control

RequiredFieldValidator
controls

iw3htp5_20_ASP.NET.fm Page 762 Wednesday, November 16, 2011 11:52 AM

20.6 Validation Controls 763

In the sample output:

• Fig. 20.25(a) shows the initial Web Form

• Fig. 20.25(b) shows the result of submitting the form before typing any data in
the TextBoxes

• Fig. 20.25(c) shows the results after entering data in each TextBox, but specifying
an invalid e-mail address and invalid phone number

• Fig. 20.25(d) shows the results after entering valid values for all three TextBoxes
and submitting the form.

Fig. 20.25 | Validators in a Web Form that retrieves user contact information. (Part 2 of 2.)

c) Web Form after the user enters a
name, an invalid e-mail address and an

invalid phone number in the
TextBoxes, then presses the Submit
Button; the validation controls display
error messages in response to the invalid

e-mail and phone number values

RegularExpressionValidator
controls

d) The Web Form
after the user enters

valid values for all
three TextBoxes and

presses the Submit
Button

iw3htp5_20_ASP.NET.fm Page 763 Wednesday, November 16, 2011 11:52 AM

764 Chapter 20 Web App Development with ASP.NET in C#

Creating the Web Site
To begin, follow the steps in Section 20.4.1 to create an Empty Web Site named Valida-
tion, then add a Web Form named Validation.aspx to the project. Set the document’s
Title property to "Demonstrating Validation Controls". To ensure that Valida-
tion.aspx loads when you execute this application, right click it in the Solution Explorer
and select Set As Start Page.

Creating the GUI
To create the page, perform the following steps:

1. Type "Please fill out all the fields in the following form:", then use the
Block Format ComboBox in the IDE’s toolbar to change the text to Heading 3 for-
mat and press Enter to create a new paragraph.

2. Insert a three row and two column table. You’ll add elements to the table mo-
mentarily.

3. Click below the table and add a Button. Set its (ID) property to submitButton
and its Text property to Submit. Press Enter to create a new paragraph. By de-
fault, a Button control in a Web Form sends the contents of the form back to the
server for processing.

4. Add a Label. Set its (ID) property to outputLabel and clear its Text property—
you’ll set it programmatically when the user clicks the submitButton. Set the
outputLabel’s Visible property to false, so the Label does not appear in the
client’s browser when the page loads for the first time. You’ll programmatically
display this Label after the user submits valid data.

Next you’ll add text and controls to the table you created in Step 2 above. Perform the
following steps:

1. In the left column, type the text "Name:" in the first row, "E-mail:" in the second
row and "Phone:" in the third row.

2. In the right column of the first row, add a TextBox and set its (ID) property to
nameTextBox.

3. In the right column of the second row, add a TextBox and set its (ID) property
to emailTextBox. Then type the text "e.g., email@domain.com" to the right of
the TextBox.

4. In the right column of the third row, add a TextBox and set its (ID) property to
phoneTextBox. Then type the text "e.g., (555) 555-1234" to the right of the
TextBox.

Using RequiredFieldValidator Controls
We use three RequiredFieldValidator controls (found in the Validation section of the
Toolbox) to ensure that the name, e-mail address and phone number TextBoxes are not
empty when the form is submitted. A RequiredFieldValidator makes an input control
a required field. If such a field is empty, validation fails. Add a RequiredFieldValidator
as follows:

1. Click to the right of the nameTextBox in the table and press Enter to move to the
next line.

iw3htp5_20_ASP.NET.fm Page 764 Wednesday, November 16, 2011 11:52 AM

20.6 Validation Controls 765

2. Add a RequiredFieldValidator, set its (ID) to nameRequiredFieldValidator
and set the ForeColor property to Red.

3. Set the validator’s ControlToValidate property to nameTextBox to indicate that
this validator verifies the nameTextBox’s contents.

4. Set the validator’s ErrorMessage property to "Please enter your name". This is
displayed on the Web Form only if the validation fails.

5. Set the validator’s Display property to Dynamic, so the validator occupies space
on the Web Form only when validation fails. When this occurs, space is allocated
dynamically, causing the controls below the validator to shift downward to ac-
commodate the ErrorMessage, as seen in Fig. 20.25(a)–(c).

Repeat these steps to add two more RequiredFieldValidators in the second and third
rows of the table. Set their (ID) properties to emailRequiredFieldValidator and phone-
RequiredFieldValidator, respectively, and set their ErrorMessage properties to "Please
enter your email address" and "Please enter your phone number", respectively.

Using RegularExpressionValidator Controls
This example also uses two RegularExpressionValidator controls to ensure that the e-mail
address and phone number entered by the user are in a valid format. Visual Web Developer
provides several predefined regular expressions that you can simply select to take advantage of
this powerful validation control. Add a RegularExpressionValidator as follows:

1. Click to the right of the emailRequiredFieldValidator in the second row of the
table and add a RegularExpressionValidator, then set its (ID) to emailRegu-
larExpressionValidator and its ForeColor property to Red.

2. Set the ControlToValidate property to emailTextBox to indicate that this vali-
dator verifies the emailTextBox’s contents.

3. Set the validator’s ErrorMessage property to "Please enter an e-mail address
in a valid format".

4. Set the validator’s Display property to Dynamic, so the validator occupies space
on the Web Form only when validation fails.

Repeat the preceding steps to add another RegularExpressionValidator in the third row
of the table. Set its (ID) property to phoneRegularExpressionValidator and its Er-
rorMessage property to "Please enter a phone number in a valid format", respectively.

A RegularExpressionValidator’s ValidationExpression property specifies the reg-
ular expression that validates the ControlToValidate’s contents. Clicking the ellipsis next
to property ValidationExpression in the Properties window displays the Regular Expres-
sion Editor dialog, which contains a list of Standard expressions for phone numbers, zip
codes and other formatted information. For the emailRegularExpressionValidator, we
selected the standard expression Internet e-mail address. If the user enters text in the
emailTextBox that does not have the correct format and either clicks in a different text
box or attempts to submit the form, the ErrorMessage text is displayed in red.

For the phoneRegularExpressionValidator, we selected U.S. phone number to
ensure that a phone number contains an optional three-digit area code either in paren-
theses and followed by an optional space or without parentheses and followed by a
required hyphen. After an optional area code, a phone number must contain three digits,

iw3htp5_20_ASP.NET.fm Page 765 Wednesday, November 16, 2011 11:52 AM

766 Chapter 20 Web App Development with ASP.NET in C#

a hyphen and another four digits. For example, (555) 123-4567, 555-123-4567 and 123-
4567 are all valid phone numbers.

Submitting the Web Form’s Contents to the Server
If all five validators are successful (that is, each TextBox is filled in, and the e-mail address
and phone number provided are valid), clicking the Submit button sends the form’s data
to the server. As shown in Fig. 20.25(d), the server then responds by displaying the sub-
mitted data in the outputLabel.

Examining the Code-Behind File for a Web Form That Receives User Input
Figure 20.26 shows the code-behind file for this application. Notice that this code-behind
file does not contain any implementation related to the validators. We say more about this
soon. In this example, we respond to the page’s Load event to process the data submitted
by the user. Like the Init event, the Load event occurs each time the page loads into a web
browser—the difference is that on a postback, you cannot access the posted data in the
controls. The event handler for this event is Page_Load (lines 8–33). The event handler
for the Load event is created for you when you add a new Web Form. To complete the
event handler, insert the code from Fig. 20.26.

1 // Fig. 20.26: Validation.aspx.cs
2 // Code-behind file for the form demonstrating validation controls.
3 using System;
4
5 public partial class Validation : System.Web.UI.Page
6 {
7 // Page_Load event handler executes when the page is loaded
8 protected void Page_Load(object sender, EventArgs e)
9 {

10 // if this is not the first time the page is loading
11 // (i.e., the user has already submitted form data)
12 if ()
13 {
14
15
16 // if the form is valid
17 if ()
18 {
19 // retrieve the values submitted by the user
20 string name = nameTextBox.Text;
21 string email = emailTextBox.Text;
22 string phone = phoneTextBox.Text;
23
24 // show the the submitted values
25 outputLabel.Text = "Thank you for your submission
" +
26 "We received the following information:
";
27 outputLabel.Text +=
28 String.Format("Name: {0}{1}E-mail:{2}{1}Phone:{3}",
29 name, "
", email, phone);

Fig. 20.26 | Code-behind file for the form demonstrating validation controls. (Part 1 of 2.)

IsPostBack

Validate(); // validate the form

IsValid

iw3htp5_20_ASP.NET.fm Page 766 Wednesday, November 16, 2011 11:52 AM

20.7 Session Tracking 767

Differentiating Between the First Request to a Page and a Postback
Web programmers using ASP.NET often design their web pages so that the current page
reloads when the user submits the form; this enables the program to receive input, process
it as necessary and display the results in the same page when it’s loaded the second time.
These pages usually contain a form that, when submitted, sends the values of all the con-
trols to the server and causes the current page to be requested again. This event is known
as a postback. Line 12 uses the IsPostBack property of class Page to determine whether
the page is being loaded due to a postback. The first time that the web page is requested,
IsPostBack is false, and the page displays only the form for user input. When the post-
back occurs (from the user clicking Submit), IsPostBack is true.

Server-Side Web Form Validation
Server-side Web Form validation must be implemented programmatically. Line 14 calls
the current Page’s Validate method to validate the information in the request. This vali-
dates the information as specified by the validation controls in the Web Form. Line 17
uses the IsValid property of class Page to check whether the validation succeeded. If this
property is set to true (that is, validation succeeded and the Web Form is valid), then we
display the Web Form’s information. Otherwise, the web page loads without any changes,
except any validator that failed now displays its ErrorMessage.

Processing the Data Entered by the User
Lines 20–22 retrieve the values of nameTextBox, emailTextBox and phoneTextBox. When
data is posted to the web server, the data that the user entered is accessible to the web ap-
plication through the web controls’ properties. Next, lines 25–29 set outputLabel’s Text
to display a message that includes the name, e-mail and phone information that was sub-
mitted to the server. In lines 25, 26 and 29, notice the use of
 rather than \n to start
new lines in the outputLabel—
 is the markup for a line break in a web page. Line
30 sets the outputLabel’s Visible property to true, so the user can see the thank-you
message and submitted data when the page reloads in the client web browser.

20.7 Session Tracking
Originally, critics accused the Internet and e-business of failing to provide the customized
service typically experienced in “brick-and-mortar” stores. To address this problem, busi-
nesses established mechanisms by which they could personalize users’ browsing experienc-
es, tailoring content to individual users. Businesses achieve this level of service by tracking
each customer’s movement through the Internet and combining the collected data with
information provided by the consumer, including billing information, personal preferenc-
es, interests and hobbies.

30 outputLabel.Visible = true; // display the output message
31 } // end if
32 } // end if
33 } // end method Page_Load
34 } // end class Validation

Fig. 20.26 | Code-behind file for the form demonstrating validation controls. (Part 2 of 2.)

iw3htp5_20_ASP.NET.fm Page 767 Wednesday, November 16, 2011 11:52 AM

768 Chapter 20 Web App Development with ASP.NET in C#

Personalization
Personalization makes it possible for businesses to communicate effectively with their cus-
tomers and also improves users’ ability to locate desired products and services. Companies
that provide content of particular interest to users can establish relationships with custom-
ers and build on those relationships over time. Furthermore, by targeting consumers with
personal offers, recommendations, advertisements, promotions and services, businesses
create customer loyalty. Websites can use sophisticated technology to allow visitors to cus-
tomize home pages to suit their individual needs and preferences. Similarly, online shop-
ping sites often store personal information for customers, tailoring notifications and
special offers to their interests. Such services encourage customers to visit sites more fre-
quently and make purchases more regularly.

Privacy
A trade-off exists between personalized business service and protection of privacy. Some
consumers embrace tailored content, but others fear the possible adverse consequences if
the info they provide to businesses is released or collected by tracking technologies. Con-
sumers and privacy advocates ask: What if the business to which we give personal data sells
or gives that information to another organization without our knowledge? What if we do
not want our actions on the Internet—a supposedly anonymous medium—to be tracked
and recorded by unknown parties? What if unauthorized parties gain access to sensitive
private data, such as credit-card numbers or medical history? These are questions that must
be addressed by programmers, consumers, businesses and lawmakers alike.

Recognizing Clients
To provide personalized services to consumers, businesses must be able to recognize clients
when they request information from a site. As we have discussed, the request/response sys-
tem on which the web operates is facilitated by HTTP. Unfortunately, HTTP is a stateless
protocol—it does not provide information that would enable web servers to maintain state
information regarding particular clients. This means that web servers cannot determine
whether a request comes from a particular client or whether the same or different clients
generate a series of requests.

To circumvent this problem, sites can provide mechanisms by which they identify indi-
vidual clients. A session represents a unique client on a website. If the client leaves a site and
then returns later, the client will still be recognized as the same user. When the user closes
the browser, the session typically ends. To help the server distinguish among clients, each
client must identify itself to the server. Tracking individual clients is known as session
tracking. One popular session-tracking technique uses cookies (discussed in Section 20.7.1);
another uses ASP.NET’s HttpSessionState object (used in Section 20.7.2). Additional ses-
sion-tracking techniques are beyond this book’s scope.

20.7.1 Cookies
Cookies provide you with a tool for personalizing web pages. A cookie is a piece of data
stored by web browsers in a small text file on the user’s computer. A cookie maintains in-
formation about the client during and between browser sessions. The first time a user visits
the website, the user’s computer might receive a cookie from the server; this cookie is then
reactivated each time the user revisits that site. The collected information is intended to

iw3htp5_20_ASP.NET.fm Page 768 Wednesday, November 16, 2011 11:52 AM

20.7 Session Tracking 769

be an anonymous record containing data that is used to personalize the user’s future visits
to the site. For example, cookies in a shopping application might store unique identifiers
for users. When a user adds items to an online shopping cart or performs another task re-
sulting in a request to the web server, the server receives a cookie containing the user’s
unique identifier. The server then uses the unique identifier to locate the shopping cart
and perform any necessary processing.

In addition to identifying users, cookies also can indicate users’ shopping preferences.
When a Web Form receives a request from a client, the Web Form can examine the
cookie(s) it sent to the client during previous communications, identify the user’s prefer-
ences and immediately display products of interest to the client.

Every HTTP-based interaction between a client and a server includes a header con-
taining information either about the request (when the communication is from the client
to the server) or about the response (when the communication is from the server to the
client). When a Web Form receives a request, the header includes information such as the
request type and any cookies that have been sent previously from the server to be stored
on the client machine. When the server formulates its response, the header information
contains any cookies the server wants to store on the client computer and other informa-
tion, such as the MIME type of the response.

The expiration date of a cookie determines how long the cookie remains on the
client’s computer. If you do not set an expiration date for a cookie, the web browser main-
tains the cookie for the duration of the browsing session. Otherwise, the web browser
maintains the cookie until the expiration date occurs. Cookies are deleted when they
expire.

20.7.2 Session Tracking with HttpSessionState
The next web application demonstrates session tracking using the .NET class Http-
SessionState. When you execute this application, the Options.aspx page (Fig. 20.27(a)),
which is the application’s Start Page, allows the user to select a programming language
from a group of radio buttons. [Note: You might need to right click Options.aspx in the
Solution Explorer and select Set As Start Page before running this application.] When the
user clicks Submit, the selection is sent to the web server for processing. The web server uses
an HttpSessionState object to store the chosen language and the ISBN number for one
of our books on that topic. Each user that visits the site has a unique HttpSessionState
object, so the selections made by one user are maintained separately from all other users.
After storing the selection, the server returns the page to the browser (Fig. 20.27(b)) and
displays the user’s selection and some information about the user’s unique session (which
we show just for demonstration purposes). The page also includes links that allow the user
to choose between selecting another programming language or viewing the Recommenda-
tions.aspx page (Fig. 20.27(e)), which lists recommended books pertaining to the pro-
gramming language(s) that the user selected previously. If the user clicks the link for book

Portability Tip 20.1
Users may disable cookies in their web browsers to help ensure their privacy. Such users
will experience difficulty using web applications that depend on cookies to maintain state
information.

iw3htp5_20_ASP.NET.fm Page 769 Wednesday, November 16, 2011 11:52 AM

770 Chapter 20 Web App Development with ASP.NET in C#

recommendations, the information stored in the user’s unique HttpSessionState object
is read and used to form the list of recommendations. To test this application:

1. Select Open Web Site… from the File menu.

2. In the Open Web Site dialog, ensure that File System is selected, then navigate to
this chapter’s examples, select the Sessions folder and click the Open Button.

3. Select Options.aspx in the Solution Explorer, then type Ctrl + F5 to execute the
web application in your default web browser.

Creating the Web Site
To begin, follow the steps in Section 20.4.1 to create an Empty Web Site named Sessions,
then add two Web Forms named Options.aspx and Recommendations.aspx to the proj-
ect. Set the Options.aspx document’s Title property to "Sessions" and the Recommen-
dations.aspx document’s Title property to "Book Recommendations". To ensure that
Options.aspx is the first page to load for this application, right click it in the Solution Ex-
plorer and select Set As Start Page.

Fig. 20.27 | ASPX file that presents a list of programming languages. (Part 1 of 2.)

a) User selects a language from
the Options.aspx page,

then presses Submit to send
the selection to the server

b) Options.aspx page is
updated to hide the controls for

selecting a language and to
display the user’s selection; the

user clicks the hyperlink to
return to the list of languages

and make another selection

iw3htp5_20_ASP.NET.fm Page 770 Wednesday, November 16, 2011 11:52 AM

20.7 Session Tracking 771

Fig. 20.27 | ASPX file that presents a list of programming languages. (Part 2 of 2.)

c) User selects another
language from the

Options.aspx page, then
presses Submit to send the

selection to the server

d) Options.aspx page is
updated to hide the controls for

selecting a language and to
display the user’s selection; the
user clicks the hyperlink to get a

list of book recommendations

e) Recommendations.aspx
displays the list of

recommended books based on
the user’s selections

iw3htp5_20_ASP.NET.fm Page 771 Wednesday, November 16, 2011 11:52 AM

772 Chapter 20 Web App Development with ASP.NET in C#

20.7.3 Options.aspx: Selecting a Programming Language
The Options.aspx page Fig. 20.27(a) contains the following controls arranged vertically:

1. A Label with its (ID) property set to promptLabel and its Text property set to
"Select a programming language:". We used the techniques shown in Step 5 of
Section 20.4.1 to create a CSS style for this label named .labelStyle, and set the
style’s font-size attribute to large and the font-weight attribute to bold.

2. The user selects a programming language by clicking one of the radio buttons in
a RadioButtonList. Each radio button has a Text property and a Value property.
The Text property is displayed next to the radio button and the Value property
represents a value that is sent to the server when the user selects that radio button
and submits the form. In this example, we’ll use the Value property to represent
the ISBN for the recommended book. Create a RadioButtonList with its (ID)
property set to languageList. Use the ListItem Collection Editor to add five radio
buttons with their Text properties set to Visual Basic, Visual C#, C, C++ and Ja-
va, and their Value properties set to 0-13-215213-4, 0-13-605322-X, 0-13-
512356-2, 0-13-611726-0 and 0-13-605306-8, respectively

3. A Button with its (ID) property set to submitButton and its Text property set to
Submit. In this example, we’ll handle this Button’s Click event. You can create
its event handler by double clicking the Button in Design view.

4. A Label with its (ID) property set to responseLabel and its Text property set to
"Welcome to Sessions!". This Label should be placed immediately to the right
of the Button so that the Label appears at the top of the page when we hide the
preceding controls on the page. Reuse the CSS style you created in Step 1 by set-
ting this Label’s CssClass property to labelStyle.

5. Two more Labels with their (ID) properties set to idLabel and timeoutLabel,
respectively. Clear the text in each Label’s Text property—you’ll set these pro-
grammatically with information about the current user’s session.

6. A HyperLink with its (ID) property set to languageLink and its Text property
set to "Click here to choose another language". Set its NavigateUrl property
by clicking the ellipsis next to the property in the Properties window and selecting
Options.aspx from the Select URL dialog.

7. A HyperLink with its (ID) property set to recommendationsLink and its Text
property set to "Click here to get book recommendations". Set its NavigateUrl
property by clicking the ellipsis next to the property in the Properties window and
selecting Recommendations.aspx from the Select URL dialog.

8. Initially, the controls in Steps 4–7 will not be displayed, so set each control’s Vis-
ible property to false.

Session Property of a Page
Every Web Form includes a user-specific HttpSessionState object, which is accessible
through property Session of class Page. Throughout this section, we use this property to
manipulate the current user’s HttpSessionState object. When a page is first requested, a
unique HttpSessionState object is created by ASP.NET and assigned to the Page’s Ses-
sion property.

iw3htp5_20_ASP.NET.fm Page 772 Wednesday, November 16, 2011 11:52 AM

20.7 Session Tracking 773

Code-Behind File for Options.aspx
Fig. 20.28 presents the code-behind file for the Options.aspx page. When this page is re-
quested, the Page_Load event handler (lines 10–40) executes before the response is sent to
the client. Since the first request to a page is not a postback, the code in lines 16–39 does
not execute the first time the page loads.

1 // Fig. 20.28: Options.aspx.cs
2 // Processes user's selection of a programming language by displaying
3 // links and writing information in a Session object.
4 using System;
5
6 public partial class Options : System.Web.UI.Page
7 {
8 // if postback, hide form and display links to make additional
9 // selections or view recommendations

10 protected void Page_Load(object sender, EventArgs e)
11 {
12 if (IsPostBack)
13 {
14 // user has submitted information, so display message
15 // and appropriate hyperlinks
16 responseLabel.Visible = true;
17 idLabel.Visible = true;
18 timeoutLabel.Visible = true;
19 languageLink.Visible = true;
20 recommendationsLink.Visible = true;
21
22 // hide other controls used to make language selection
23 promptLabel.Visible = false;
24 languageList.Visible = false;
25 submitButton.Visible = false;
26
27 // if the user made a selection, display it in responseLabel
28 if (languageList.SelectedItem != null)
29 responseLabel.Text += " You selected " +
30 languageList.SelectedItem.Text;
31 else
32 responseLabel.Text += " You did not select a language.";
33
34
35
36
37
38
39 } // end if
40 } // end method Page_Load
41
42 // record the user's selection in the Session
43 protected void submitButton_Click(object sender, EventArgs e)
44 {

Fig. 20.28 | Process user's selection of a programming language by displaying links and writing
information in an HttpSessionState object. (Part 1 of 2.)

// display session ID
idLabel.Text = "Your unique session ID is: " + Session.SessionID;

// display the timeout
timeoutLabel.Text = "Timeout: " + Session.Timeout + " minutes.";

iw3htp5_20_ASP.NET.fm Page 773 Wednesday, November 16, 2011 11:52 AM

774 Chapter 20 Web App Development with ASP.NET in C#

Postback Processing
When the user presses Submit, a postback occurs. The form is submitted to the server and
Page_Load executes. Lines 16–20 display the controls shown in Fig. 20.27(b) and lines
23–25 hide the controls shown in Fig. 20.27(a). Next, lines 28–32 ensure that the user
selected a language and, if so, display a message in the responseLabel indicating the se-
lection. Otherwise, the message "You did not select a language" is displayed.

The ASP.NET application contains information about the HttpSessionState object
(property Session of the Page object) for the current client. The object’s SessionID prop-
erty (displayed in line 35) contains the unique session ID—a sequence of random letters
and numbers. The first time a client connects to the web server, a unique session ID is cre-
ated for that client and a temporary cookie is written to the client so the server can identify
the client on subsequent requests. When the client makes additional requests, the client’s
session ID from that temporary cookie is compared with the session IDs stored in the web
server’s memory to retrieve the client’s HttpSessionState object. HttpSessionState
property Timeout (displayed in line 38) specifies the maximum amount of time that an
HttpSessionState object can be inactive before it’s discarded. By default, if the user does
not interact with this web application for 20 minutes, the HttpSessionState object is dis-
carded by the server and a new one will be created if the user interacts with the application
again. Figure 20.29 lists some common HttpSessionState properties.

Method submitButton_Click
In this example, we wish to store the user’s selection in an HttpSessionState object when
the user clicks the Submit Button. The submitButton_Click event handler (lines 43–50)

45 // if the user made a selection
46 if (languageList.SelectedItem != null)
47
48
49
50 } // end method submitButton_Click
51 } // end class Options

Properties Description

Count Specifies the number of key/value pairs in the Session object.
IsNewSession Indicates whether this is a new session (that is, whether the session was

created during loading of this page).
Keys Returns a collection containing the Session object’s keys.
SessionID Returns the session’s unique ID.
Timeout Specifies the maximum number of minutes during which a session can

be inactive (that is, no requests are made) before the session expires. By
default, this property is set to 20 minutes.

Fig. 20.29 | HttpSessionState properties.

Fig. 20.28 | Process user's selection of a programming language by displaying links and writing
information in an HttpSessionState object. (Part 2 of 2.)

// add name/value pair to Session
Session.Add(languageList.SelectedItem.Text,
 languageList.SelectedItem.Value);

iw3htp5_20_ASP.NET.fm Page 774 Wednesday, November 16, 2011 11:52 AM

20.7 Session Tracking 775

adds a key/value pair to the HttpSessionState object for the current user, specifying the
language chosen and the ISBN number for a book on that language. The HttpSession-
State object is a dictionary—a data structure that stores key/value pairs. A program uses
the key to store and retrieve the associated value in the dictionary.

The key/value pairs in an HttpSessionState object are often referred to as session
items. They’re placed in an HttpSessionState object by calling its Add method. If the user
made a selection (line 46), lines 48–49 get the selection and its corresponding value from
the languageList by accessing its SelectedItem’s Text and Value properties, respec-
tively, then call HttpSessionState method Add to add this name/value pair as a session
item in the HttpSessionState object (Session).

If the application adds a session item that has the same name as an item previously stored
in the HttpSessionState object, the session item is replaced—session item names must be
unique. Another common syntax for placing a session item in the HttpSessionState object
is Session[Name] = Value. For example, we could have replaced lines 48–49 with

20.7.4 Recommendations.aspx: Displaying Recommendations Based
on Session Values
After the postback of Options.aspx, the user may request book recommendations. The
book-recommendations hyperlink forwards the user to the page Recommendations.aspx
(Fig. 20.27(e)) to display the recommendations based on the user’s language selections.
The page contains the following controls arranged vertically:

1. A Label with its (ID) property set to recommendationsLabel and its Text property
set to "Recommendations". We created a CSS style for this label named .label-
Style, and set the font-size attribute to x-large and the font-weight attribute
to bold. (See Step 5 in Section 20.4.1 for information on creating a CSS style.)

2. A ListBox with its (ID) property set to booksListBox. We created a CSS style
for this label named .listBoxStyle. In the Position category, we set the width
attribute to 450px and the height attribute to 125px. The px indicates that the
measurement is in pixels.

3. A HyperLink with its (ID) property set to languageLink and its Text property
set to "Click here to choose another language". Set its NavigateUrl property

Session[languageList.SelectedItem.Text] =
 languageList.SelectedItem.Value

Software Engineering Observation 20.1
A Web Form should not use instance variables to maintain client state information,
because each new request or postback is handled by a new instance of the page. Instead,
maintain client state information in HttpSessionState objects, because such objects are
specific to each client.

Software Engineering Observation 20.2
A benefit of using HttpSessionState objects (rather than cookies) is that they can store
any type of object (not just Strings) as attribute values. This provides you with increased
flexibility in determining the type of state information to maintain for clients.

iw3htp5_20_ASP.NET.fm Page 775 Wednesday, November 16, 2011 11:52 AM

776 Chapter 20 Web App Development with ASP.NET in C#

by clicking the ellipsis next to the property in the Properties window and selecting
Options.aspx from the Select URL dialog. When the user clicks this link, the Op-
tions.aspx page will be reloaded. Requesting the page in this manner is not con-
sidered a postback, so the original form in Fig. 20.27(a) will be displayed.

Code-Behind File for Recommendations.aspx
Figure 20.30 presents the code-behind file for Recommendations.aspx. Event handler
Page_Init (lines 8–29) retrieves the session information. If a user has not selected a lan-
guage in the Options.aspx page, the HttpSessionState object’s Count property will be 0
(line 11). This property provides the number of session items contained in a HttpSes-
sionState object. If the Count is 0, then we display the text No Recommendations (line
22), clear the ListBox and hide it (lines 23–24), and update the Text of the HyperLink
back to Options.aspx (line 27).

If the user chose at least one language, the loop in lines 14–16 iterates through the
HttpSessionState object’s keys (line 14) by accessing the HttpSessionState’s Keys
property, which returns a collection containing all the keys in the session. Lines 15–16
concatenate the keyName, the String " How to Program. ISBN#: " and the key’s corre-

1 // Fig. 20.30: Recommendations.aspx.cs
2 // Creates book recommendations based on a Session object.
3 using System;
4
5 public partial class Recommendations : System.Web.UI.Page
6 {
7 // read Session items and populate ListBox with recommendations
8 protected void Page_Init(object sender, EventArgs e)
9 {

10 // determine whether Session contains any information
11 if (!= 0)
12 {
13
14
15
16
17 } // end if
18 else
19 {
20 // if there are no session items, no language was chosen, so
21 // display appropriate message and clear and hide booksListBox
22 recommendationsLabel.Text = "No Recommendations";
23 booksListBox.Items.Clear();
24 booksListBox.Visible = false;
25
26 // modify languageLink because no language was selected
27 languageLink.Text = "Click here to choose a language";
28 } // end else
29 } // end method Page_Init
30 } // end class Recommendations

Fig. 20.30 | Session data used to provide book recommendations to the user.

Session.Count

// display Session's name-value pairs
foreach (string keyName in Session.Keys)
 booksListBox.Items.Add(keyName +
 " How to Program. ISBN#: " + Session[keyName]);

iw3htp5_20_ASP.NET.fm Page 776 Wednesday, November 16, 2011 11:52 AM

20.8 Case Study: Database-Driven ASP.NET Guestbook 777

sponding value, which is returned by Session(keyName). This String is the recommen-
dation that is added to the ListBox.

20.8 Case Study: Database-Driven ASP.NET Guestbook
Many websites allow users to provide feedback about the website in a guestbook. Typical-
ly, users click a link on the website’s home page to request the guestbook page. This page
usually consists of a form that contains fields for the user’s name, e-mail address, message/
feedback and so on. Data submitted on the guestbook form is then stored in a database
located on the server.

In this section, we create a guestbook Web Form application. The GUI (Fig. 20.31)
contains a GridView data control, which displays all the entries in the guestbook in tabular
format. This control is located in the Toolbox’s Data section. We explain how to create and
configure this data control shortly. The GridView displays abc in Design mode to indicate
data that will be retrieved from a data source at runtime. You’ll learn how to create and
configure the GridView shortly.

The Guestbook Database
The application stores the guestbook information in a SQL Server database called Guest-
book.mdf located on the web server. (We provide this database in the databases folder
with this chapter’s examples.) The database contains a single table named Messages.

Testing the Application
To test this application:

1. Select Open Web Site… from the File menu.

Fig. 20.31 | Guestbook application GUI in Design mode.

GridView
control

iw3htp5_20_ASP.NET.fm Page 777 Wednesday, November 16, 2011 11:52 AM

778 Chapter 20 Web App Development with ASP.NET in C#

2. In the Open Web Site dialog, ensure that File System is selected, then navigate to
this chapter’s examples, select the Guestbook folder and click the Open Button.

3. Select Guestbook.aspx in the Solution Explorer, then type Ctrl + F5 to execute
the web application in your default web browser.

Figure 20.32(a) shows the user submitting a new entry. Figure 20.32(b) shows the
new entry as the last row in the GridView.

Fig. 20.32 | Sample execution of the Guestbook application.

a) User enters
data for the

name, e-mail and
message, then

presses Submit to
send the data to

the server

b) Server stores
the data in the
database, then

refreshes the
GridView with
the updated data

iw3htp5_20_ASP.NET.fm Page 778 Wednesday, November 16, 2011 11:52 AM

20.8 Case Study: Database-Driven ASP.NET Guestbook 779

20.8.1 Building a Web Form that Displays Data from a Database
You’ll now build this GUI and set up the data binding between the GridView control and
the database. We discuss the code-behind file in Section 20.8.2. To build the guestbook
application, perform the following steps:

Step 1: Creating the Web Site
To begin, follow the steps in Section 20.4.1 to create an Empty Web Site named Guestbook
then add a Web Form named Guestbook.aspx to the project. Set the document’s Title
property to "Guestbook". To ensure that Guestobook.aspx loads when you execute this
application, right click it in the Solution Explorer and select Set As Start Page.

Step 2: Creating the Form for User Input
In Design mode, add the text Please leave a message in our guestbook:, then use the
Block Format ComboBox in the IDE’s toolbar to change the text to Heading 3 format. Insert a
table with four rows and two columns, configured so that the text in each cell aligns with the
top of the cell. Place the appropriate text (see Fig. 20.31) in the top three cells in the table’s
left column. Then place TextBoxes named nameTextBox, emailTextBox and messageText-
Box in the top three table cells in the right column. Configure the TextBoxes as follows:

• Set the nameTextBox’s width to 300px.

• Set the emailTextBox’s width to 300px.

• Set the messageTextBox’s width to 300px and height to 100px. Also set this con-
trol’s TextMode property to MultiLine so the user can type a message containing
multiple lines of text.

Finally, add Buttons named submitButton and clearButton to the bottom-right table
cell. Set the buttons’ Text properties to Submit and Clear, respectively. We discuss the
buttons’ event handlers when we present the code-behind file. You can create these event
handlers now by double clicking each Button in Design view.

Step 3: Adding a GridView Control to the Web Form
Add a GridView named messagesGridView that will display the guestbook entries. This
control appears in the Data section of the Toolbox. The colors for the GridView are speci-
fied through the Auto Format... link in the GridView Tasks smart-tag menu that opens when
you place the GridView on the page. Clicking this link displays an AutoFormat dialog with
several choices. In this example, we chose Professional. We show how to set the GridView’s
data source (that is, where it gets the data to display in its rows and columns) shortly.

Step 4: Adding a Database to an ASP.NET Web Application
To use a SQL Server Express database file in an ASP.NET web application, you must first
add the file to the project’s App_Data folder. For security reasons, this folder can be ac-
cessed only by the web application on the server—clients cannot access this folder over a
network. The web application interacts with the database on behalf of the client.

The Empty Web Site template does not create the App_Data folder. To create it, right
click the project’s name in the Solution Explorer, then select Add ASP.NET Folder >
App_Data. Next, add the Guestbook.mdf file to the App_Data folder. You can do this in
one of two ways:

iw3htp5_20_ASP.NET.fm Page 779 Wednesday, November 16, 2011 11:52 AM

780 Chapter 20 Web App Development with ASP.NET in C#

• Drag the file from Windows Explorer and drop it on the App_Data folder.

• Right click the App_Data folder in the Solution Explorer and select Add Existing
Item… to display the Add Existing Item dialog, then navigate to the databases folder
with this chapter’s examples, select the Guestbook.mdf file and click Add. [Note:
Ensure that Data Files is selected in the ComboBox above or next to the Add Button
in the dialog; otherwise, the database file will not be displayed in the list of files.]

Step 5: Creating the LINQ to SQL Classes
You’ll use LINQ to interact with the database. To create the LINQ to SQL classes for the
Guestbook database:

1. Right click the project in the Solution Explorer and select Add New Item… to dis-
play the Add New Item dialog.

2. In the dialog, select LINQ to SQL Classes, enter Guestbook.dbml as the Name, and
click Add. A dialog appears asking if you would like to put your new LINQ to
SQL classes in the App_Code folder; click Yes. The IDE will create an App_Code
folder and place the LINQ to SQL classes information in that folder.

3. In the Database Explorer window, drag the Guestbook database’s Messages table
from the Database Explorer onto the Object Relational Designer. Finally, save your
project by selecting File > Save All.

Step 6: Binding the GridView to the Messages Table of the Guestbook Database
You can now configure the GridView to display the database’s data.

1. In the GridView Tasks smart-tag menu, select <New data source...> from the Choose
Data Source ComboBox to display the Data Source Configuration Wizard dialog.

2. In this example, we use a LinqDataSource control that allows the application to
interact with the Guestbook.mdf database through LINQ. Select LINQ, then set
the ID of the data source to messagesLinqDataSource and click OK to begin the
Configure Data Source wizard.

3. In the Choose a Context Object screen, ensure that GuestbookDataContext is se-
lected in the ComboBox, then click Next >.

4. The Configure Data Selection screen (Fig. 20.33) allows you to specify which data
the LinqDataSource should retrieve from the data context. Your choices on this
page design a Select LINQ query. The Table drop-down list identifies a table in
the data context. The Guestbook data context contains one table named
Messages, which is selected by default. If you haven’t saved your project since cre-
ating your LINQ to SQL classes (Step 5), the list of tables will not appear. In the
Select pane, ensure that the checkbox marked with an asterisk (*) is selected to
indicate that you want to retrieve all the columns in the Messages table.

5. Click the Advanced… button, then select the Enable the LinqDataSource to per-
form automatic inserts CheckBox and click OK. This configures the LinqData-
Source control to automatically insert new data into the database when new data
is inserted in the data context. We discuss inserting new guestbook entries based
on users’ form submissions shortly.

6. Click Finish to complete the wizard.

iw3htp5_20_ASP.NET.fm Page 780 Wednesday, November 16, 2011 11:52 AM

20.8 Case Study: Database-Driven ASP.NET Guestbook 781

A control named messagesLinqDataSource now appears on the Web Form directly
below the GridView (Fig. 20.34). It’s represented in Design mode as a gray box containing
its type and name. It will not appear on the web page—the gray box simply provides a way
to manipulate the control visually through Design mode—similar to how the objects in
the component tray are used in Design mode for a Windows Forms application.

The GridView now has column headers that correspond to the columns in the Mes-
sages table. The rows each contain either a number (which signifies an autoincremented
column) or abc (which indicates string data). The actual data from the Guestbook.mdf
database file will appear in these rows when you view the ASPX file in a web browser.

Step 7: Modifying the Columns of the Data Source Displayed in the GridView
It’s not necessary for site visitors to see the MessageID column when viewing past guest-
book entries—this column is merely a unique primary key required by the Messages table
within the database. So, let’s modify the GridView to prevent this column from displaying
on the Web Form. We’ll also modify the column Message1 to read Message.

1. In the GridView Tasks smart tag menu, click Edit Columns to display the Fields
dialog (Fig. 20.35).

2. Select MessageID in the Selected fields pane, then click the Button. This re-
moves the MessageID column from the GridView.

3. Next select Message1 in the Selected fields pane and change its HeaderText
property to Message. The IDE renamed this field to prevent a naming conflict in
the LINQ to SQL classes.

4. Click OK to return to the main IDE window, then set the Width property of the
GridView to 650px.

The GridView should now appear as shown in Fig. 20.31.

Fig. 20.33 | Configuring the query used by the LinqDataSource to retrieve data.

iw3htp5_20_ASP.NET.fm Page 781 Wednesday, November 16, 2011 11:52 AM

782 Chapter 20 Web App Development with ASP.NET in C#

20.8.2 Modifying the Code-Behind File for the Guestbook Application
After building the Web Form and configuring the data controls used in this example, dou-
ble click the Submit and Clear buttons in Design view to create their corresponding Click
event handlers in the code-behind file (Fig. 20.36). The IDE generates empty event han-
dlers, so we must add the appropriate code to make these buttons work properly. The

Fig. 20.34 | Design mode displaying LinqDataSource control for a GridView.

Fig. 20.35 | Removing the MessageID column from the GridView.

LinqDataSource
control

iw3htp5_20_ASP.NET.fm Page 782 Wednesday, November 16, 2011 11:52 AM

20.8 Case Study: Database-Driven ASP.NET Guestbook 783

event handler for clearButton (lines 37–42) clears each TextBox by setting its Text prop-
erty to an empty string. This resets the form for a new guestbook submission.

Lines 10–34 contain submitButton’s event-handling code, which adds the user’s
information to the Guestbook database’s Messages table. To use the values of the Text-
Boxes on the Web Form as the parameter values inserted into the database, we must create
a ListDictionary of insert parameters that are key/value pairs.

1 // Fig. 20.36: Guestbook.aspx.cs
2 // Code-behind file that defines event handlers for the guestbook.
3 using System;
4 using System.Collections.Specialized; // for class ListDictionary
5
6 public partial class Guestbook : System.Web.UI.Page
7 {
8 // Submit Button adds a new guestbook entry to the database,
9 // clears the form and displays the updated list of guestbook entries

10 protected void submitButton_Click(object sender, EventArgs e)
11 {
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 // clear the TextBoxes
28 nameTextBox.Text = String.Empty;
29 emailTextBox.Text = String.Empty;
30 messageTextBox.Text = String.Empty;
31
32 // update the GridView with the new database table contents
33 messagesGridView.DataBind();
34 } // submitButton_Click
35
36 // Clear Button clears the Web Form's TextBoxes
37 protected void clearButton_Click(object sender, EventArgs e)
38 {
39 nameTextBox.Text = String.Empty;
40 emailTextBox.Text = String.Empty;
41 messageTextBox.Text = String.Empty;
42 } // clearButton_Click
43 } // end class Guestbook

Fig. 20.36 | Code-behind file for the guestbook application.

// create dictionary of parameters for inserting
ListDictionary insertParameters = new ListDictionary();

// add current date and the user's name, e-mail address
// and message to dictionary of insert parameters
insertParameters.Add("Date", DateTime.Now.ToShortDateString());
insertParameters.Add("Name", nameTextBox.Text);
insertParameters.Add("Email", emailTextBox.Text);
insertParameters.Add("Message1", messageTextBox.Text);

// execute an INSERT LINQ statement to add a new entry to the
// Messages table in the Guestbook data context that contains the
// current date and the user's name, e-mail address and message
messagesLinqDataSource.Insert(insertParameters);

iw3htp5_20_ASP.NET.fm Page 783 Wednesday, November 16, 2011 11:52 AM

784 Chapter 20 Web App Development with ASP.NET in C#

Line 13 creates a ListDictionary object—a set of key/value pairs that is imple-
mented as a linked list and is intended for dictionaries that store 10 or fewer keys. Lines
17–20 use the ListDictionary’s Add method to store key/value pairs that represent each
of the four insert parameters—the current date and the user’s name, e-mail address, and
message. The keys must match the names of the columns of the Messages table in the
.dbml file. Invoking the LinqDataSource method Insert (line 25) inserts the data in the
data context, adding a row to the Messages table and automatically updating the database.
We pass the ListDictionary object as an argument to the Insert method to specify the
insert parameters. After the data is inserted into the database, lines 28–30 clear the Text-
Boxes, and line 33 invokes messagesGridView’s DataBind method to refresh the data that
the GridView displays. This causes messagesLinqDataSource (the GridView’s source) to
execute its Select command to obtain the Messages table’s newly updated data.

20.9 Case Study Introduction: ASP.NET AJAX
In Chapter 21, you learn the difference between a traditional web application and an Ajax
(Asynchronous JavaScript and XML) web application. You also learn how to use
ASP.NET AJAX to quickly and easily improve the user experience for your web applica-
tions, giving them responsiveness comparable to that of desktop applications. To demon-
strate ASP.NET AJAX capabilities, you enhance the validation example by displaying the
submitted form information without reloading the entire page. The only modifications to
this web application appear in the Validation.aspx file. You use Ajax-enabled controls
to add this feature.

20.10 Case Study Introduction: Password-Protected
Books Database Application
In Chapter 21, we include a web application case study in which a user logs into a pass-
word-protected website to view a list of publications by a selected author. The application
consists of several pages and provides website registration and login capabilities. You’ll
learn about ASP.NET master pages, which allow you to specify a common look-and-feel
for all the pages in your app. We also introduce the Web Site Administration Tool and use
it to configure the portions of the application that can be accessed only by users who are
logged into the website.

Summary
Section 20.1 Introduction
• ASP.NET technology is Microsoft’s technology for web-application development.

• Web Form files have the file-name extension .aspx and contain the web page’s GUI. A Web
Form file represents the web page that is sent to the client browser.

• The file that contains the programming logic of a Web Form is called the code-behind file.

iw3htp5_20_ASP.NET.fm Page 784 Wednesday, November 16, 2011 11:52 AM

 Summary 785

Section 20.2 Web Basics
• URIs (Uniform Resource Identifiers) identify resources on the Internet. URIs that start with

http:// are called URLs (Uniform Resource Locators).

• A URL contains information that directs a browser to the resource that the user wishes to access.
Computers that run web server software make such resources available.

• In a URL, the hostname is the name of the server on which the resource resides. This computer
usually is referred to as the host, because it houses and maintains resources.

• A hostname is translated into a unique IP address that identifies the server. This translation is
performed by a domain-name system (DNS) server.

• The remainder of a URL specifies the location and name of a requested resource. For security
reasons, the location is normally a virtual directory. The server translates the virtual directory into
a real location on the server.

• When given a URL, a web browser uses HTTP to retrieve the web page found at that address.

Section 20.3 Multitier Application Architecture
• Multitier applications divide functionality into separate tiers—logical groupings of functional-

ity—that commonly reside on separate computers for security and scalability.

• The information tier (also called the bottom tier) maintains data pertaining to the application.
This tier typically stores data in a relational database management system.

• The middle tier implements business logic, controller logic and presentation logic to control in-
teractions between the application’s clients and the application’s data. The middle tier acts as an
intermediary between data in the information tier and the application’s clients.

• Business logic in the middle tier enforces business rules and ensures that data is reliable before
the server application updates the database or presents the data to users.

• The client tier, or top tier, is the application’s user interface, which gathers input and displays
output. Users interact directly with the application through the user interface (typically viewed
in a web browser), keyboard and mouse. In response to user actions, the client tier interacts with
the middle tier to make requests and to retrieve data from the information tier. The client tier
then displays to the user the data retrieved from the middle tier.

Section 20.4.1 Building the WebTime Application
• File System websites are created and tested on your local computer. Such websites execute in

Visual Web Developer’s built-in ASP.NET Development Server and can be accessed only by web
browsers running on the same computer. You can later “publish” your website to a production
web server for access via a local network or the Internet.

• HTTP websites are created and tested on an IIS web server and use HTTP to allow you to put
your website’s files on the server. If you own a website and have your own web server computer,
you might use this to build a new website directly on that server computer.

• FTP websites use File Transfer Protocol (FTP) to allow you to put your website’s files on the serv-
er. The server administrator must first create the website on the server for you. FTP is commonly
used by so called “hosting providers” to allow website owners to share a server computer that runs
many websites.

• A Web Form represents one page in a web application and contains a web application’s GUI.

• You can view the Web Form’s properties by selecting DOCUMENT in the Properties window. The
Title property specifies the title that will be displayed in the web browser’s title bar when the
page is loaded.

iw3htp5_20_ASP.NET.fm Page 785 Wednesday, November 16, 2011 11:52 AM

786 Chapter 20 Web App Development with ASP.NET in C#

• Controls and other elements are placed sequentially on a Web Form one after another in the or-
der in which you drag-and-drop them onto the Web Form. The cursor indicates the insertion
point in the page. This type of layout is known as relative positioning. You can also use absolute
positioning in which controls are located exactly where you drop them on the Web Form.

• When a Label does not contain text, its name is displayed in square brackets in Design view as a
placeholder for design and layout purposes. This text is not displayed at execution time.

• Formatting in a web page is performed with Cascading Style Sheets (CSS).

• A Web Form’s Init event occurs when the page is requested by a web browser. The event handler
for this event—named Page_Init—initialize the page.

Section 20.4.2 Examining WebTime.aspx’s Code-Behind File
• A class declaration can span multiple source-code files—the separate portions of the class decla-

ration in each file are known as partial classes. The partial modifier indicates that the class in a
particular file is part of a larger class.

• Every Web Form class inherits from class Page in namespace System.Web.UI. Class Page repre-
sents the default capabilities of each page in a web application.

• The ASP.NET controls are defined in namespace System.Web.UI.WebControls.

Section 20.5 Standard Web Controls: Designing a Form
• An Image control’s ImageUrl property specifies the location of the image to display.

• By default, the contents of a table cell are aligned vertically in the middle of the cell. You can
change this with the cell’s valign property.

• A TextBox control allows you to obtain text from the user and display text to the user.

• A DropDownList control is similar to the Windows Forms ComboBox control, but doesn’t allow
users to type text. You can add items to the DropDownList using the ListItem Collection Editor,
which you can access by clicking the ellipsis next to the DropDownList’s Items property in the
Properties window, or by using the DropDownList Tasks menu.

• A HyperLink control adds a hyperlink to a Web Form. The NavigateUrl property specifies the
resource or web page that will be requested when the user clicks the HyperLink.

• A RadioButtonList control provides a series of radio buttons from which the user can select only
one. The RadioButtonList Tasks smart-tag menu provides an Edit Items… link to open the ListItem
Collection Editor so that you can create the items in the list.

• A Button control triggers an action when clicked.

Section 20.6 Validation Controls
• A validation control determines whether the data in another web control is in the proper format.

• When the page is sent to the client, the validator is converted into JavaScript that performs the
validation in the client web browser.

• Some client browsers might not support scripting or the user might disable it. For this reason,
you should always perform validation on the server.

• A RequiredFieldValidator control ensures that its ControlToValidate is not empty when the
form is submitted. The validator’s ErrorMessage property specifies what to display on the Web
Form if the validation fails. When the validator’s Display property is set to Dynamic, the validator
occupies space on the Web Form only when validation fails.

• A RegularExpressionValidator uses a regular expression to ensure data entered by the user is in
a valid format. Visual Web Developer provides several predefined regular expressions that you can

iw3htp5_20_ASP.NET.fm Page 786 Wednesday, November 16, 2011 11:52 AM

 Summary 787

simply select to validate e-mail addresses, phone numbers and more. A RegularExpressionVali-
dator’s ValidationExpression property specifies the regular expression to use for validation.

• A Web Form’s Load event occurs each time the page loads into a web browser. The event handler
for this event is Page_Load.

• ASP.NET pages are often designed so that the current page reloads when the user submits the
form; this enables the program to receive input, process it as necessary and display the results in
the same page when it’s loaded the second time.

• Submitting a web form is known as a postback. Class Page’s IsPostBack property returns true if
the page is being loaded due to a postback.

• Server-side Web Form validation must be implemented programmatically. Class Page’s Validate
method validates the information in the request as specified by the Web Form’s validation con-
trols. Class Page’s IsValid property returns true if validation succeeded.

Section 20.7 Session Tracking
• Personalization makes it possible for e-businesses to communicate effectively with their custom-

ers and also improves users’ ability to locate desired products and services.

• To provide personalized services to consumers, e-businesses must be able to recognize clients
when they request information from a site.

• HTTP is a stateless protocol—it does not provide information regarding particular clients.

• Tracking individual clients is known as session tracking.

Section 20.7.1 Cookies
• A cookie is a piece of data stored in a small text file on the user’s computer. A cookie maintains

information about the client during and between browser sessions.

• The expiration date of a cookie determines how long the cookie remains on the client’s comput-
er. If you do not set an expiration date for a cookie, the web browser maintains the cookie for the
duration of the browsing session.

Section 20.7.2 Session Tracking with HttpSessionState
• Session tracking is implemented with class HttpSessionState.

Section 20.7.3 Options.aspx: Selecting a Programming Language
• Each radio button in a RadioButtonList has a Text property and a Value property. The Text

property is displayed next to the radio button and the Value property represents a value that is
sent to the server when the user selects that radio button and submits the form.

• Every Web Form includes a user-specific HttpSessionState object, which is accessible through
property Session of class Page.

• HttpSessionState property SessionID contains a client’s unique session ID. The first time a cli-
ent connects to the web server, a unique session ID is created for that client and a temporary
cookie is written to the client so the server can identify the client on subsequent requests. When
the client makes additional requests, the client’s session ID from that temporary cookie is com-
pared with the session IDs stored in the web server’s memory to retrieve the client’s HttpSes-
sionState object.

• HttpSessionState property Timeout specifies the maximum amount of time that an Http-
SessionState object can be inactive before it’s discarded. Twenty minutes is the default.

• The HttpSessionState object is a dictionary—a data structure that stores key/value pairs. A pro-
gram uses the key to store and retrieve the associated value in the dictionary.

iw3htp5_20_ASP.NET.fm Page 787 Wednesday, November 16, 2011 11:52 AM

788 Chapter 20 Web App Development with ASP.NET in C#

• The key/value pairs in an HttpSessionState object are often referred to as session items. They’re
placed in an HttpSessionState object by calling its Add method. Another common syntax for
placing a session item in the HttpSessionState object is Session(Key) = Value.

• If an application adds a session item that has the same name as an item previously stored in the
HttpSessionState object, the session item is replaced—session items names must be unique.

Section 20.7.4 Recommendations.aspx: Displaying Recommendations Based on Ses-
sion Values
• The Count property returns the number of session items stored in an HttpSessionState object.

• HttpSessionState’s Keys property returns a collection containing all the keys in the session.

Section 20.8 Case Study: Database-Driven ASP.NET Guestbook
• A GridView data control displays data in tabular format. This control is located in the Toolbox’s

Data section.

Section 20.8.1 Building a Web Form that Displays Data from a Database
• To use a SQL Server Express database file in an ASP.NET web application, you must first add

the file to the project’s App_Data folder. For security reasons, this folder can be accessed only by
the web application on the server—clients cannot access this folder over a network. The web ap-
plication interacts with the database on behalf of the client.

• A LinqDataSource control allows a web application to interact with a database through LINQ.

Section 20.8.2 Modifying the Code-Behind File for the Guestbook Application
• To insert data into a database using a LinqDataSource, you must create a ListDictionary of in-

sert parameters that are formatted as key/value pairs.

• A ListDictionary’s Add method stores key/value pairs that represent each insert parameter.

• A GridView’s DataBind method refreshes the data that the GridView displays.

Self-Review Exercises
20.1 State whether each of the following is true or false. If false, explain why.

a) Web Form file names end in .aspx.
b) App.config is a file that stores configuration settings for an ASP.NET web application.
c) A maximum of one validation control can be placed on a Web Form.
d) A LinqDataSource control allows a web application to interact with a database.

20.2 Fill in the blanks in each of the following statements:
a) Web applications contain three basic tiers: , , and .
b) The web control is similar to the ComboBox Windows control.
c) A control which ensures that the data in another control is in the correct format is called

a(n) .
d) A(n) occurs when a page requests itself.
e) Every ASP.NET page inherits from class .
f) The file contains the functionality for an ASP.NET page.

Answers to Self-Review Exercises
20.1 a) True. b) False. Web.config is the file that stores configuration settings for an ASP.NET
web application. c) False. An unlimited number of validation controls can be placed on a Web
Form. d) True.

iw3htp5_20_ASP.NET.fm Page 788 Wednesday, November 16, 2011 11:52 AM

 Exercises 789

20.2 a) bottom (information), middle (business logic), top (client). b) DropDownList. c) valida-
tor. d) postback. e) Page. f) code-behind.

Exercises
20.3 (WebTime Modification) Modify the WebTime example to contain drop-down lists that allow
the user to modify such Label properties as BackColor, ForeColor and Font-Size. Configure these
drop-down lists so that a postback occurs whenever the user makes a selection—to do this, set their
AutoPostBack properties to true. When the page reloads, it should reflect the specified changes to
the properties of the Label displaying the time.

20.4 (Page Hit Counter) Create an ASP.NET page that uses session tracking to keep track of
how many times the client computer has visited the page. Set the HttpSessionState object’s Time-
out property to 1440 (the number of minutes in one day) to keep the session in effect for one day
into the future. Display the number of page hits every time the page loads.

20.5 (Guestbook Application Modification) Add validation to the guestbook application in
Section 20.8. Use validation controls to ensure that the user provides a name, a valid e-mail address
and a message.

20.6 (Project: WebControls Modification) Modify the example of Section 20.5 to add function-
ality to the Register Button. When the user clicks the Button, validate all of the input fields to ensure
that the user has filled out the form completely, and entered a valid email address and phone num-
ber. If any of the fields are not valid, appropriate messages should be displayed by validation con-
trols. If the fields are all valid, direct the user to another page that displays a message indicating that
the registration was successful followed by the registration information that was submitted from the
form.

20.7 (Project: Web-Based Address Book) Using the techniques you learned in Section 20.8, cre-
ate a web-based Address book. Display the address book’s contents in a GridView. Allow the user to
search for entries with a particular last name.

iw3htp5_20_ASP.NET.fm Page 789 Wednesday, November 16, 2011 11:52 AM

21 Web App Development with
ASP.NET in C#: A Deeper
Look

… the challenges are for the
designers of these applications:
to forget what we think we
know about the limitations of
the Web, and begin to imagine a
wider, richer range of
possibilities. It’s going to be fun.
—Jesse James Garrett

If any man will draw up his
case, and put his name at the
foot of the first page, I will give
him an immediate reply. Where
he compels me to turn over the
sheet, he must wait my leisure.
—Lord Sandwich

O b j e c t i v e s
In this chapter you’ll learn:

■ To use the Web Site
Administration Tool to
modify web application
configuration settings.

■ To restrict access to pages to
authenticated users.

■ To create a uniform look-and-
feel for a website using
master pages.

■ To use ASP.NET Ajax to
improve the user interactivity
of your web applications.

iw3htp5_21_ASP.NET2.fm Page 790 Wednesday, November 16, 2011 11:52 AM

21.1 Introduction 791

21.1 Introduction
In Chapter 20, we introduced ASP.NET and web application development. In this chap-
ter, we introduce several additional ASP.NET web-application development topics, in-
cluding:

• master pages to maintain a uniform look-and-feel across the Web Forms in a web
application

• creating a password-protected website with registration and login capabilities

• using the Web Site Administration Tool to specify which parts of a website are pass-
word protected

• using ASP.NET Ajax to quickly and easily improve the user experience for your
web applications, giving them responsiveness comparable to that of desktop ap-
plications.

21.2 Case Study: Password-Protected Books Database
Application
This case study presents a web application in which a user logs into a password-protected
website to view a list of publications by a selected author. The application consists of sev-
eral ASPX files. For this application, we’ll use the ASP.NET Web Site template, which is a
starter kit for a small multi-page website. The template uses Microsoft’s recommended
practices for organizing a website and separating the website’s style (look-and-feel) from
its content. The default site has two primary pages (Home and About) and is pre-config-
ured with login and registration capabilities. The template also specifies a common look-
and-feel for all the pages in the website—a concept known as a master page.

We begin by examining the features of the default website that is created with the
ASP.NET Web Site template. Next, we test drive the completed application to demonstrate
the changes we made to the default website. Then, we provide step-by-step instructions to
guide you through building the application.

21.1 Introduction
21.2 Case Study: Password-Protected

Books Database Application
21.2.1 Examining the ASP.NET Web Site

Template
21.2.2 Test-Driving the Completed

Application
21.2.3 Configuring the Website
21.2.4 Modifying the Default.aspx and

About.aspx Pages
21.2.5 Creating a Content Page That Only

Authenticated Users Can Access
21.2.6 Linking from the Default.aspx

Page to the Books.aspx Page

21.2.7 Modifying the Master Page
(Site.master)

21.2.8 Customizing the Password-Protected
Books.aspx Page

21.3 ASP.NET Ajax
21.3.1 Traditional Web Applications
21.3.2 Ajax Web Applications
21.3.3 Testing an ASP.NET Ajax Application
21.3.4 The ASP.NET Ajax Control Toolkit
21.3.5 Using Controls from the Ajax Control

Toolkit

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

iw3htp5_21_ASP.NET2.fm Page 791 Wednesday, November 16, 2011 11:52 AM

792 Chapter 21 Web App Development with ASP.NET in C#: A Deeper Look

21.2.1 Examining the ASP.NET Web Site Template
To test the default website, begin by creating the website that you’ll customize in this case
study. Perform the following steps:

1. Select File > New Web Site... to display the New Web Site dialog.

2. In the left column of the New Web Site dialog, ensure that Visual C# is selected,
then select ASP.NET Web Site in the middle column.

3. Choose a location for your website, name it Bug2Bug and click OK to create it.

Fig. 21.1 shows the website’s contents in the Solution Explorer.

Executing the Website
You can now execute the website. Select the Default.aspx page in the Solution Explorer,
then type Ctrl + F5 to display the default page shown in Fig. 21.2.

Fig. 21.1 | The default ASP.NET Web Site in the Solution Explorer.

Fig. 21.2 | Default Home page of a website created with the ASP.NET Web Site template.

Account folder expanded to
show the default pages for login,
registration and changing
passwords

About page
Default home page

Master page that specifies the
site’s look-and-feel

Navigation bar contains links to the
Home and About pages

Click this link to log
into the website

You can customize the content of each page
and the look-and-feel of the website

iw3htp5_21_ASP.NET2.fm Page 792 Wednesday, November 16, 2011 11:52 AM

21.2 Case Study: Password-Protected Books Database Application 793

Navigation and Pages
The default ASP.NET Web Site contains a home page and an about page—so-called con-
tent pages—that you’ll customize in subsequent sections. The navigation bar near the top
of the page allows you to switch between these pages by clicking the link for the appropri-
ate page. In Section 21.2.7, you’ll add another link to the navigation bar to allow users to
browse book information.

As you navigate between the pages, notice that each page has the same look-and-feel.
This is typical of professional websites. The site uses a master page and cascading style
sheets (CSS) to achieve this. A master page defines common GUI elements that are dis-
played by each page in a set of content pages. Just as C# classes can inherit instance vari-
ables and methods from existing classes, content pages can inherit elements from master
pages—this is a form of visual inheritance.

Login and Registration Support
Websites commonly provide “membership capabilities” that allow users to register at a
website and log in. Often this gives users access to website customization capabilities or
premium content. The default ASP.NET Web Site is pre-configured to support registration
and login capabilities.

In the upper-right corner of each page is a Log In link. Click that link to display the
Login page (Fig. 21.3). If you are already registered with the site, you can log in with your
username and password. Otherwise, you can click the Register link to display the Register
page (Fig. 21.4). For the purpose of this case study, we created an account with the user-
name testuser1 and the password testuser1. You do not need to be registered or logged
into the default website to view the home and about pages.

Fig. 21.3 | Login page.

Click here to register

iw3htp5_21_ASP.NET2.fm Page 793 Wednesday, November 16, 2011 11:52 AM

794 Chapter 21 Web App Development with ASP.NET in C#: A Deeper Look

21.2.2 Test-Driving the Completed Application
This example uses a technique known as forms authentication to protect a page so that
only registered users who are logged into the website can access the page. Such users are
known as the site’s members. Authentication is a crucial tool for sites that allow only mem-
bers to enter the site or a portion of the site. In this application, website visitors must log
in before they’re allowed to view the publications in the Books database.

Let’s open the completed Bug2Bug website and execute it so that you can see the
authentication functionality in action. Perform the following steps:

1. Close the application you created in Section 21.2.1—you’ll reopen this website
so that you can customize it in Section 21.2.3.

2. Select Open Web Site… from the File menu.

3. In the Open Web Site dialog, ensure that File System is selected, then navigate to
this chapter’s examples, select the Bug2Bug folder and click the Open Button.

4. Select the Default.aspx page then type Ctrl + F5 to execute the website.

The website appears as shown in Fig. 21.5. Notice that we modified the site’s master page
so that the top of the page displays an image, the background color of the top of the page
is white and the Log In link is black. Also, the navigation bar contains a link for the Books
page that you’ll create later in this case study.

Fig. 21.4 | Register page.

iw3htp5_21_ASP.NET2.fm Page 794 Wednesday, November 16, 2011 11:52 AM

21.2 Case Study: Password-Protected Books Database Application 795

Try to visit the Books page by clicking the Books link in the navigation bar. Because
this page is password protected in the Bug2Bug website, the website automatically redirects
you to the Login page instead—you cannot view the Books page without logging in first.
If you’ve not yet registered at the completed Bug2Bug website, click the Register link to
create a new account. If you have registered, log in now.

If you are logging in, when you click the Log In Button on the Log In page, the website
attempts to validate your username and password by comparing them with the usernames
and passwords that are stored in a database on the server—this database is created for you
with the ASP.NET Web Site template. If there is a match, you are authenticated (that is,
your identity is confirmed) and you’re redirected to the Books page (Fig. 21.6). If you’re
registering for the first time, the server ensures that you’ve filled out the registration form
properly and that your password is valid (at least 6 characters), then logs you in and redi-
rects you to the Books page.

Fig. 21.5 | Home page for the completed Bug2Bug website.

Fig. 21.6 | Books.aspx displaying books by Harvey Deitel (by default).

iw3htp5_21_ASP.NET2.fm Page 795 Wednesday, November 16, 2011 11:52 AM

796 Chapter 21 Web App Development with ASP.NET in C#: A Deeper Look

The Books page provides a drop-down list of authors and a table containing the
ISBNs, titles, edition numbers and copyright years of books in the database. By default,
the page displays all the books by Harvey Deitel. Links appear at the bottom of the table
that allow you to access additional pages of data—we configured the table to display only
four rows of data at a time. When the user chooses an author, a postback occurs, and the
page is updated to display information about books written by the selected author
(Fig. 21.7).

Logging Out of the Website
When you’re logged in, the Log In link is replaced in the upper-right corner of each page
(not shown in Figs. 21.6–21.7) with the message “Welcome username” where username is
replaced with your log in name, and a Log Out link. When you click Log Out, the website
redirects you to the home page (Fig. 21.5).

21.2.3 Configuring the Website
Now that you’re familiar with how this application behaves, you’ll modify the default web-
site you created in Section 21.2.1. Thanks to the rich functionality of the default website,
you’ll have to write almost no Visual C# code to create this application. The ASP.NET Web
Site template hides the details of authenticating users against a database of user names and
passwords, displaying appropriate success or error messages and redirecting the user to the
correct page based on the authentication results. We now discuss the steps you must per-
form to create the password-protected books database application.

Step 1: Opening the Website
Open the default website that you created in Section 21.2.1.

1. Select Open Web Site… from the File menu.

2. In the Open Web Site dialog, ensure that File System is selected, then navigate to
the location where you created your version of the Bug2Bug website and click the
Open Button.

Fig. 21.7 | Books.aspx displaying books by Greg Ayer.

iw3htp5_21_ASP.NET2.fm Page 796 Wednesday, November 16, 2011 11:52 AM

21.2 Case Study: Password-Protected Books Database Application 797

Step 2: Setting Up Website Folders
For this website, you’ll create two new folders—one that will contain the image that is
used on all the pages and one that will contain the password-protected page. Password-
protected parts of your website are typically placed in a separate folder. As you’ll see short-
ly, you can control access to specific folders in a website.

You can choose any name you like for these folders—we chose Images for the folder
that will contain the image and ProtectedContent for the folder that will contain the pass-
word-protected Books page. To create the folders, perform the following steps:

1. Create an Images folder by right clicking the location of the website in the Solu-
tion Explorer, selecting New Folder and typing the name Images.

2. Create a ProtectedContent folder by right clicking the location of the website in
the Solution Explorer, selecting New Folder and typing the name ProtectedCon-
tent.

Step 3: Importing the Website Header Image and the Database File
Next, you’ll add an image to the Images folder and the database file to the App_Data folder.

1. In Windows Explorer, locate the folder containing this chapter’s examples.

2. Drag the image bug2bug.png from the images folder in Windows Explorer into
the Images folder in the Solution Explorer to copy the image into the website.

3. Drag the Books.mdf database file from the databases folder in Windows Explor-
er to the project’s App_Data folder. We show how to retrieve data from this data-
base later in the section.

Step 4: Opening the Web Site Administration Tool
In this application, we want to ensure that only authenticated users are allowed to access
Books.aspx (created in Section 21.2.5) to view the information in the database. Previous-
ly, we created all of our ASPX pages in the web application’s root directory. By default,
any website visitor (regardless of whether the visitor is authenticated) can view pages in the
root directory. ASP.NET allows you to restrict access to particular folders of a website. We
do not want to restrict access to the root of the website, however, because users won’t be
able to view any pages of the website except the login and registration pages. To restrict
access to the Books page, it must reside in a directory other than the root directory.

You’ll now configure the website to allow only authenticated users (that is, users who
have logged in) to view the pages in the ProtectedContent folder. Perform the following
steps:

1. Select Website > ASP.NET Configuration to open the Web Site Administration Tool
in a web browser (Fig. 21.8). This tool allows you to configure various options
that determine how your application behaves.

2. Click either the Security link or the Security tab to open a web page in which you
can set security options (Fig. 21.9), such as the type of authentication the appli-
cation should use. By default, website users are authenticated by entering user-
name and password information in a web form.

iw3htp5_21_ASP.NET2.fm Page 797 Wednesday, November 16, 2011 11:52 AM

798 Chapter 21 Web App Development with ASP.NET in C#: A Deeper Look

Step 5: Configuring the Website’s Security Settings
Next, you’ll configure the ProtectedContent folder to grant access only to authenticated
users—anyone who attempts to access pages in this folder without first logging in will be
redirected to the Login page. Perform the following steps:

Fig. 21.8 | Web Site Administration Tool for configuring a web application.

Fig. 21.9 | Security page of the Web Site Administration Tool.

This will say 0 if you
have not yet created an
account to test the
website

This will say 0 if
you have not yet
created an
account to test
the website

iw3htp5_21_ASP.NET2.fm Page 798 Wednesday, November 16, 2011 11:52 AM

21.2 Case Study: Password-Protected Books Database Application 799

1. Click the Create access rules link in the Access Rules column of the Web Site
Administration Tool (Fig. 21.9) to view the Add New Access Rule page
(Fig. 21.10). This page is used to create an access rule—a rule that grants or de-
nies access to a particular directory for a specific user or group of users.

2. Click the ProtectedContent directory in the left column of the page to identify
the directory to which our access rule applies.

3. In the middle column, select the radio button marked Anonymous users to spec-
ify that the rule applies to users who have not been authenticated.

4. Finally, select Deny in the Permission column to prevent unauthenticated users
from accessing pages in the ProtectedContent directory, then click OK.

By default, unauthenticated (anonymous) users who attempt to load a page in the Pro-
tectedContent directory are redirected to the Login.aspx page so that they can identify
themselves. Because we did not set up any access rules for the Bug2Bug root directory,
anonymous users may still access pages there.

21.2.4 Modifying the Default.aspx and About.aspx Pages
We modified the content of the home (Default.aspx) and about (About.aspx) pages to
replace the default content. To do so, perform the following steps:

1. Double click Default.aspx in the Solution Explorer to open it, then switch to De-
sign view (Fig. 21.11). As you move the cursor over the page, you’ll notice that

Fig. 21.10 | Add New Access Rule page used to configure directory access.

iw3htp5_21_ASP.NET2.fm Page 799 Wednesday, November 16, 2011 11:52 AM

800 Chapter 21 Web App Development with ASP.NET in C#: A Deeper Look

sometimes the cursor displays as to indicate that you cannot edit the part of
the page behind the cursor. Any part of a content page that is defined in a master
page can be edited only in the master page.

2. Change the text "Welcome to ASP.NET!" to "Welcome to Our Password-Protect-
ed Book Information Site". Note that the text in this heading is actually format-
ted as small caps text when the page is displayed in a web browser—all of the
letters are displayed in uppercase, but the letters that would normally be lower-
case are smaller than the first letter in each word.

3. Select the text of the two paragraphs that remain in the page and replace them
with "To learn more about our books, click here or click the Books tab in
the navigation bar above. You must be logged in to view the Books page." In
a later step, you’ll link the words "click here" to the Books page.

4. Save and close the Default.aspx page.

5. Next, open About.aspx and switch to Design view.

6. Change the text "Put content here." to "This is the Bug2Bug password-pro-
tected book information database example."

7. Save and close the About.aspx page.

21.2.5 Creating a Content Page That Only Authenticated Users Can
Access
We now create the Books.aspx file in the ProtectedContent folder—the folder for which
we set an access rule denying access to anonymous users. If an unauthenticated user re-
quests this file, the user will be redirected to Login.aspx. From there, the user can either
log in or create a new account, both of which will authenticate the user, then redirect back
to Books.aspx. To create the page, perform the following steps:

Fig. 21.11 | Default.aspx page in Design view.

This cursor indicates a part of a content page that cannot
be edited because it’s inherited from a master page

iw3htp5_21_ASP.NET2.fm Page 800 Wednesday, November 16, 2011 11:52 AM

21.2 Case Study: Password-Protected Books Database Application 801

1. Right click the ProtectedContent folder in the Solution Explorer and select Add
New Item…. In the resulting dialog, select Web Form and specify the file name
Books.aspx. Ensure that the CheckBox Select master page is checked to indicate
that this Web Form should be created as a content page that references a master
page, then click Add.

2. In the Select a Master Page dialog, select Site.master and click OK. The IDE
creates the file and opens it.

3. Switch to Design view, click in the page to select it, then select DOCUMENT from
the ComboBox in the Properties window.

4. Change the Title property of the page to Books, then save and close the page

You’ll customize this page and create its functionality shortly.

21.2.6 Linking from the Default.aspx Page to the Books.aspx Page
Next, you’ll add a hyperlink from the text "click here" in the Default.aspx page to the
Books.aspx page. To do so, perform the following steps:

1. Open the Default.aspx page and switch to Design view.

2. Select the text "click here".

3. Click the Convert to Hyperlink () Button on the toolbar at the top of Visual
Web Developer to display the Hyperlink dialog. You can enter a URL here, or you
can link to another page within the website.

4. Click the Browse… Button to display the Select Project Item dialog, which allows
you to select another page in the website.

5. In the left column, select the ProtectedContent directory.

6. In the right column, select Books.aspx, then click OK to dismiss the Select Proj-
ect Item dialog and click OK again to dismiss the Hyperlink dialog.

Fig. 21.12 | Selecting the Books.aspx page from the Select Project Item dialog.

iw3htp5_21_ASP.NET2.fm Page 801 Wednesday, November 16, 2011 11:52 AM

802 Chapter 21 Web App Development with ASP.NET in C#: A Deeper Look

Users can now click the click here link in the Default.aspx page to browse to the
Books.aspx page. If a user is not logged in, clicking this link will redirect the user to the
Login page.

21.2.7 Modifying the Master Page (Site.master)
Next, you’ll modify the website’s master page, which defines the common elements we want
to appear on each page. A master page is like a base class in a visual inheritance hierarchy,
and content pages are like derived classes. The master page contains placeholders for custom
content created in each content page. The content pages visually inherit the master page’s
content, then add content in the areas designated by the master page’s placeholders.

For example, it’s common to include a navigation bar (that is, a series of buttons or
menus for navigating a website) on every page of a site. If a site encompasses a large
number of pages, adding markup to create the navigation bar for each page can be time
consuming. Moreover, if you subsequently modify the navigation bar, every page on the
site that uses it must be updated. By creating a master page, you can specify the navigation-
bar in one file and have it appear on all the content pages. If the navigation bar changes,
only the master page changes—any content pages that use it are updated the next time the
page is requested.

In the final version of this website, we modified the master page to include the Bug2Bug
logo in the header at the top of every page. We also changed the colors of some elements in
the header to make them work better with the logo. In particular, we changed the back-
ground color from a dark blue to white, and we changed the color of the text for the Log In
and Log Out links to black. The color changes require you to modify the CSS styles for some
of the master page’s elements. These styles are defined in the file Site.css, which is located
in the website’s Styles folder. You will not modify the CSS file directly. Instead, you’ll use
the tools built into Visual Web Developer to perform these modifications.

Inserting an Image in the Header
To display the logo, we’ll place an Image control in the header of the master page. Each
content page based on this master page will include the logo. Perform the following steps
to add the Image:

1. Open Site.master and switch to Design view.

2. Delete the text MY ASP.NET APPLICATION at the top of the page.

3. In the Toolbox, double click Image to add an Image control where the text used
to be.

4. Edit the Image control’s ImageUrl property to point to the bug2bug.png image
in the Images folder.

Customizing the CSS Styles for the Master Page
Our logo image was designed to be displayed against a white background. To change the
background color in the header at the top of the page, perform the following steps:

1. Just below the Design view is a list of Buttons that show you where the cursor is
currently located in the master page (Fig. 21.13). These Buttons also allow you
to select specific elements in the page. Click the <div.header> Button to select the
header portion of the page.

iw3htp5_21_ASP.NET2.fm Page 802 Wednesday, November 16, 2011 11:52 AM

21.2 Case Study: Password-Protected Books Database Application 803

2. Select View > Other Windows > CSS Properties to display the CSS properties (at
the left of the IDE) for the currently selected element (the header of the page).

3. At the top of the CSS Properties window, click the Summary Button to show only
the CSS properties that are currently set for the selected element.

4. Change the background property from #4b6c9e (the hexadecimal value for the
current dark blue background) to white and press Enter.

5. The Log In and Log Out links use white text in the default website. Now that the
background of the header is white, we need to change the color of these links so
they’ll be visible. In the upper-right corner of the master page click the HeadLog-
inView control, which is where the Log In and Log Out links get displayed.

6. Below the Design view, click the <div.loginDisplay> Button to display the styles
for the HeadLoginView in the CSS Properties window.

7. Change the color property from white to black and press Enter.

8. Click inside the box below HeadLoginView. Then, below the Design view, click
the <a#HeadingLoginStatus> Button to display the styles for the Log In/Log Out
link in the CSS Properties window

9. Change the color property from white to black and press Enter.

10. We chose to make some style changes directly in the Site.css file. On many
websites, when you move the mouse over a hyperlink, the color of the link chang-
es. Similarly, once you click a hyperlink, the hyperlink is often displayed in a dif-
ferent color the next time you visit the page to indicate that you’ve already clicked
that link during a previous visit. The predefined styles in this website set the color
of the Log In link to white for both of these cases. To change these to black, open
the Site.css file from the Styles folder in the Solution Explorer, then search for
the following two styles:

Change each style’s color property from white to black.

11. Save the Site.master and Site.css files.

Adding a Books Link to the Navigation Bar
Currently the navigation bar has only Home and About links. Next, you’ll add a link to the
Books page. Perform the following steps:

1. In the master page, position the mouse over the navigation bar links, then open
the smart-tag menu and click Edit Menu Items.

2. In the Menu Item Editor dialog, click the Add a root item () Button.

3. Set the new item’s Text property to Books and use the up arrow Button to move
the new item up so the order of the navigation bar items is Home, Books and About.

i

Fig. 21.13 | Buttons for selecting parts of a page in Design view.

 .loginDisplay a:visited
 .loginDisplay a:hover

iw3htp5_21_ASP.NET2.fm Page 803 Wednesday, November 16, 2011 11:52 AM

804 Chapter 21 Web App Development with ASP.NET in C#: A Deeper Look

4. Set the new item’s NavigateUrl property to the Books.aspx page in the Pro-
tectedContent folder.

5. Click OK, then save Site.master to complete the changes to the master page.

21.2.8 Customizing the Password-Protected Books.aspx Page
You are now ready to customize the Books.aspx page to display the book information for
a particular author.

Generating LINQ to SQL Classes Based on the Books.mdf Database
The Books.aspx page will provide a DropDownList containing authors’ names and a Grid-
View displaying information about books written by the author selected in the DropDown-
List. A user will select an author from the DropDownList to cause the GridView to display
information about only the books written by the selected author.

To work with the Books database through LINQ, we use the same approach as in the
Guestbook case study (Section 20.8). First you need to generate the LINQ to SQL classes
based on the Books database, which is provided in the databases directory of this
chapter’s examples folder. Name the file Books.dbml. When you drag the tables of the
Books database from the Database Explorer onto the Object Relational Designer of
Books.dbml, you’ll find that associations (represented by arrows) between the two tables
are automatically generated (Fig. 21.14).

To obtain data from this data context, you’ll use two LinqDataSource controls. In
both cases, the LinqDataSource control’s built-in data selection functionality won’t be
versatile enough, so the implementation will be slightly different than in Section 20.8. So,
we’ll use a custom Select LINQ statement as the query of a LinqDataSource.

Adding a DropDownList to Display the Authors’ First and Last Names
Now that we have created a BooksDataContext class (one of the generated LINQ to SQL
classes), we add controls to Books.aspx that will display the data on the web page. We first
add the DropDownList from which users can select an author.

1. Open Books.aspx in Design mode, then add the text Author: and a DropDownList
control named authorsDropDownList in the page’s editable content area (which
has a white background). The DropDownList initially displays the text Unbound.

2. Next, we’ll bind the list to a data source, so the list displays the author informa-
tion in the Authors table of the Books database. Because the Configure Data

Fig. 21.14 | Object Relational Designer for the Books database.

iw3htp5_21_ASP.NET2.fm Page 804 Wednesday, November 16, 2011 11:52 AM

21.2 Case Study: Password-Protected Books Database Application 805

Source wizard allows us to create LinqDataSources with only simple Select
LINQ statements, we cannot use the wizard here. Instead, add a LinqDataSource
object below the DropDownList named authorsLinqDataSource.

3. Open the smart-tag menu for the DropDownList and click Choose Data Source…
to start the Data Source Configuration Wizard (Fig. 21.15). Select authorsLinq-
DataSource from the Select a data source drop-down list in the first screen of the
wizard. Then, type Name as the data field to display in the DropDownList and
AuthorID as the data field that will be submitted to the server when the user
makes a selection. [Note: You must manually type these values in because
authorsLinqDataSource does not yet have a defined Select query.] When
authorsDropDownList is rendered in a web browser, the list items will display the
names of the authors, but the underlying values associated with each item will be
the AuthorIDs of the authors. Click OK to bind the DropDownList to the specified
data.

4. In the C# code-behind file (Books.aspx.cs), create an instance of BooksData-
Context named database as an instance variable.

5. In the Design view of Books.aspx, double click authorsLinqDataSource to cre-
ate an event handler for its Selecting event. This event occurs every time the
LinqDataSource selects data from its data context, and can be used to implement
custom Select queries against the data context. To do so, assign the custom
LINQ query to the Result property of the event handler’s LinqDataSourceSe-
lectEventArgs argument. The query results become the data source’s data. In
this case, we must create a custom anonymous type in the Select clause with
properties Name and AuthorID that contain the author’s full name and ID. The
LINQ query is

Fig. 21.15 | Choosing a data source for a DropDownList.

iw3htp5_21_ASP.NET2.fm Page 805 Wednesday, November 16, 2011 11:52 AM

806 Chapter 21 Web App Development with ASP.NET in C#: A Deeper Look

The limitations of the Configure Data Source wizard prevent us from using a cus-
tom field such as Name (a combination of first name and last name, separated by
a space) that isn’t one of the database table’s existing columns.

6. The last step in configuring the DropDownList on Books.aspx is to set the con-
trol’s AutoPostBack property to True. This property indicates that a postback oc-
curs each time the user selects an item in the DropDownList. As you’ll see shortly,
this causes the page’s GridView (created in the next step) to display new data.

Creating a GridView to Display the Selected Author’s Books
We now add a GridView to Books.aspx for displaying the book information by the author
selected in the authorsDropDownList.

1. Add a GridView named titlesGridView below the other controls in the page’s
content area.

2. To bind the GridView to data from the Books database, create a LinqDataSource
named titlesLinqDataSource beneath the GridView.

3. Select titlesLinqDataSource from the Choose Data Source drop-down list in
the GridView Tasks smart-tag menu. Because titlesLinqDataSource has no de-
fined Select query, the GridView will not automatically be configured.

4. To configure the columns of the GridView to display the appropriate data, select
Edit Columns… from the GridView Tasks smart-tag menu to display the Fields di-
alog (Fig. 21.16).

5. Uncheck the Auto-generate fields box to indicate that you’ll manually define the
fields to display.

 from author in database.Authors
 select new { Name = author.FirstName + " " + author.LastName,
 author.AuthorID };

Fig. 21.16 | Creating GridView fields in the Fields dialog.

iw3htp5_21_ASP.NET2.fm Page 806 Wednesday, November 16, 2011 11:52 AM

21.2 Case Study: Password-Protected Books Database Application 807

6. Create four BoundFields with the HeaderText ISBN, Title, Edition Number and
Copyright, respectively.

7. For the ISBN and Copyright BoundFields, set the SortExpression and Data-
Field properties to match the HeaderText. For the Title BoundField, set the
SortExpression and DataField properties to Title1 (the IDE renamed the
Title column to Title1 to avoid a naming conflict with the table’s class—
Title). For Edition Number, set the SortExpression and DataField to Edi-
tionNumber—the name of the field in the database. The SortExpression speci-
fies to sort by the associated data field when the user chooses to sort by the
column. Shortly, we’ll enable sorting to allow users to sort this GridView. Click
OK to close the Fields dialog.

8. To specify the Select LINQ query for obtaining the data, double click titles-
LinqDataSource to create its Selecting event handler. Assign the custom LINQ
query to the LinqDataSourceSelectEventArgs argument’s Result property. Use
the following LINQ query:

9. The GridView needs to update every time the user makes a new author selection.
To implement this, double click the DropDownList to create an event handler for
its SelectedIndexChanged event. You can make the GridView update by invok-
ing its DataBind method.

Code-Behind File for the Books Page
Figure 21.17 shows the code for the completed code-behind file. Line 10 defines the data
context object that is used in the LINQ queries. Lines 13–20 and 23–31 define the two
LinqDataSource’s Selecting events. Lines 34–38 define the authorsDropDownList’s
SelectedIndexChanged event handler, which updates the GridView.

 from book in database.AuthorISBNs
 where book.AuthorID ==
 Convert.ToInt32(authorsDropDownList.SelectedValue)
 select book.Title

1 // Fig. 21.17: ProtectedContent_Books.aspx.cs
2 // Code-behind file for the password-protected Books page.
3 using System;
4 using System.Linq;
5 using System.Web.UI.WebControls;
6
7 public partial class ProtectedContent_Books : System.Web.UI.Page
8 {
9 // data context queried by data sources

10 BooksDataContext database = new BooksDataContext();
11
12 // specify the Select query that creates a combined first and last name
13 protected void (object sender,
14 LinqDataSourceSelectEventArgs e)
15 {

Fig. 21.17 | Code-behind file for the password-protected Books page. (Part 1 of 2.)

authorsLinqDataSource_Selecting

iw3htp5_21_ASP.NET2.fm Page 807 Wednesday, November 16, 2011 11:52 AM

808 Chapter 21 Web App Development with ASP.NET in C#: A Deeper Look

Configuring the GridView to Enable Sorting and Paging
Now that the GridView is tied to a data source, we modify several of the control’s proper-
ties to adjust its appearance and behavior.

1. In Design view, use the GridView’s sizing handles to set the width to 580px.

2. Next, in the GridView Tasks smart-tag menu, check Enable Sorting so that the
column headings in the GridView become hyperlinks that allow users to sort the
data in the GridView using the sort expressions specified by each column. For ex-
ample, clicking the Titles heading in the web browser will cause the displayed
data to appear sorted in alphabetical order. Clicking this heading a second time
will cause the data to be sorted in reverse alphabetical order. ASP.NET hides the
details required to achieve this functionality.

3. Finally, in the GridView Tasks smart-tag menu, check Enable Paging. This causes
the GridView to split across multiple pages. The user can click the numbered links
at the bottom of the GridView control to display a different page of data. Grid-
View’s PageSize property determines the number of entries per page. Set the Page-
Size property to 4 using the Properties window so that the GridView displays only
four books per page. This technique for displaying data makes the site more read-
able and enables pages to load more quickly (because less data is displayed at one
time). As with sorting data in a GridView, you do not need to add any code to
achieve paging functionality. Figure 21.18 displays the completed Books.aspx file
in Design mode.

16 e.Result =
17 from author in database.Authors
18 select new { Name = author.FirstName + " " + author.LastName,
19 author.AuthorID };
20 } // end method authorsLinqDataSource_Selecting
21
22 // specify the Select query that gets the specified author's books
23 protected void (object sender,
24 LinqDataSourceSelectEventArgs e)
25 {
26 e.Result =
27 from book in database.AuthorISBNs
28 where book.AuthorID ==
29 Convert.ToInt32(authorsDropDownList.SelectedValue)
30 select book.Title;
31 } // end method titlesLinqDataSource_Selecting
32
33 // refresh the GridView when a different author is selected
34 protected void authorsDropDownList_SelectedIndexChanged(
35 object sender, EventArgs e)
36 {
37
38 } // end method authorsDropDownList_SelectedIndexChanged
39 } // end class ProtectedContent_Books

Fig. 21.17 | Code-behind file for the password-protected Books page. (Part 2 of 2.)

titlesLinqDataSource_Selecting

titlesGridView.DataBind(); // update the GridView

iw3htp5_21_ASP.NET2.fm Page 808 Wednesday, November 16, 2011 11:52 AM

21.3 ASP.NET Ajax 809

21.3 ASP.NET Ajax
In this section, you learn the difference between a traditional web application and an Ajax
(Asynchronous JavaScript and XML) web application. You also learn how to use
ASP.NET Ajax to quickly and easily improve the user experience for your web applica-
tions. To demonstrate ASP.NET Ajax capabilities, you enhance the validation example of
Section 20.6 by displaying the submitted form information without reloading the entire
page. The only modifications to this web application appear in the Validation.aspx file.
You use Ajax-enabled controls to add this feature.

21.3.1 Traditional Web Applications
Figure 21.19 presents the typical interactions between the client and the server in a tradi-
tional web application, such as one that uses a user registration form. The user first fills in
the form’s fields, then submits the form (Fig. 21.19, Step 1). The browser generates a re-
quest to the server, which receives the request and processes it (Step 2). The server generates
and sends a response containing the exact page that the browser renders (Step 3), which
causes the browser to load the new page (Step 4) and temporarily makes the browser win-
dow blank. The client waits for the server to respond and reloads the entire page with the
data from the response (Step 4). While such a synchronous request is being processed on
the server, the user cannot interact with the web page. Frequent long periods of waiting,
due perhaps to Internet congestion, have led some users to refer to the World Wide Web
as the “World Wide Wait.” If the user interacts with and submits another form, the pro-
cess begins again (Steps 5–8).

This model was designed for a web of hypertext documents—what some people call
the “brochure web.” As the web evolved into a full-scale applications platform, the model
shown in Fig. 21.19 yielded “choppy” user experiences. Every full-page refresh required
users to reload the full page. Users began to demand a more responsive model.

Fig. 21.18 | Completed Books.aspx page in Design mode.

iw3htp5_21_ASP.NET2.fm Page 809 Wednesday, November 16, 2011 11:52 AM

810 Chapter 21 Web App Development with ASP.NET in C#: A Deeper Look

21.3.2 Ajax Web Applications
Ajax web applications add a layer between the client and the server to manage communi-
cation between the two (Fig. 21.20). When the user interacts with the page, the client re-
quests information from the server (Step 1). The request is intercepted by the ASP.NET
Ajax controls and sent to the server as an asynchronous request (Step 2)—the user can con-
tinue interacting with the application in the client browser while the server processes the
request. Other user interactions could result in additional requests to the server (Steps 3

Fig. 21.19 | Traditional web application reloading the page for every user interaction.

Fig. 21.20 | Ajax-enabled web application interacting with the server asynchronously.

Se
rv

er
C

lie
nt Form

Form

Page 1

Form

Form

Page 2

Form

Form

Page 3

Request 1

Process
request

Generate
response

Process
request

Generate
response

Page
reloading

Request 2

Page
reloading

Form

Form

Page 2

Form

Form

Page 3

1

2

3

4

5

6

7

8

Se
rv

er
C

lie
nt Form

Form

Page 1

Process
request 1

Generate
response

Process
request 2

Generate
response

Request object

Callback function
Response processing Request object

Callback function
Response processing

Update Update

User interaction initiates
asynchronous request

User interaction initiates
asynchronous request

Partial
page update

Partial
page update

1

2

3

4

5

6

7

8

data data

iw3htp5_21_ASP.NET2.fm Page 810 Wednesday, November 16, 2011 11:52 AM

21.3 ASP.NET Ajax 811

and 4). Once the server responds to the original request (Step 5), the ASP.NET Ajax con-
trol that issued the request calls a client-side function to process the data returned by the
server. This function—known as a callback function—uses partial-page updates (Step 6)
to display the data in the existing web page without reloading the entire page. At the same
time, the server may be responding to the second request (Step 7) and the client browser
may be starting another partial-page update (Step 8). The callback function updates only
a designated part of the page. Such partial-page updates help make web applications more
responsive, making them feel more like desktop applications. The web application does
not load a new page while the user interacts with it. In the following section, you use
ASP.NET Ajax controls to enhance the Validation.aspx page.

21.3.3 Testing an ASP.NET Ajax Application
To demonstrate ASP.NET Ajax capabilities we’ll enhance the Validation application from
Section 20.6 by adding ASP.NET Ajax controls. There are no C# code modifications to
this application—all of the changes occur in the .aspx file.

Testing the Application in Your Default Web Browser
To test this application in your default web browser, perform the following steps:

1. Select Open Web Site… from the Visual Web Developer File menu.

2. In the Open Web Site dialog, select File System, then navigate to this chapter’s ex-
amples, select the ValidationAjax folder and click the Open Button.

3. Select Validation.aspx in the Solution Explorer, then type Ctrl + F5 to execute
the web application in your default web browser.

Figure 21.21 shows a sample execution of the enhanced application. In Fig. 21.21(a), we
show the contact form split into two tabs via the TabContainer Ajax control. You can
switch between the tabs by clicking the title of each tab. Fig. 21.21(b) shows a Validator-
CalloutExtender control, which displays a validation error message in a callout that
points to the control in which the validation error occurred, rather than as text in the page.
Fig. 21.21(c) shows the updated page with the data the user submitted to the server.

Fig. 21.21 | Validation application enhanced by ASP.NET Ajax. (Part 1 of 2.)

a) Entering a name on the
Name tab then clicking the

Contact tab

iw3htp5_21_ASP.NET2.fm Page 811 Wednesday, November 16, 2011 11:52 AM

812 Chapter 21 Web App Development with ASP.NET in C#: A Deeper Look

21.3.4 The ASP.NET Ajax Control Toolkit
You’ll notice that there is a tab of basic AJAX Extensions controls in the Toolbox. Microsoft
also provides the ASP.NET Ajax Control Toolkit as part of the ASP.NET Ajax Library:

The toolkit contains many more Ajax-enabled, rich GUI controls. Click the Download
Button to begin the download. The toolkit does not come with an installer, so you must
extract the contents of the toolkit’s ZIP file to your hard drive. Note the location where
you extracted the files as you’ll need this information to add the ASP.NET Ajax Controls
to your Toolbox.

ajax.codeplex.com

Fig. 21.21 | Validation application enhanced by ASP.NET Ajax. (Part 2 of 2.)

b) Entering an e-mail address
in an incorrect format and

pressing the Tab key to move
to the next input field causes
a callout to appear informing

the user to enter an e-mail
address in a valid format

c) After filling out the form
properly and clicking the Submit

button, the submitted data is
displayed at the bottom of the

page with a partial page update

iw3htp5_21_ASP.NET2.fm Page 812 Wednesday, November 16, 2011 11:52 AM

21.3 ASP.NET Ajax 813

Adding the ASP.NET Ajax Controls to the Toolbox
You should add controls from the Ajax Control Toolkit to the Toolbox in Visual Web De-
veloper (or in Visual Studio), so you can drag and drop controls onto your Web Forms.
To do so, perform the following steps:

1. Open an existing website project or create a new website project.

2. Open an ASPX page from your project in Design mode.

3. Right click inside the Toolbox and choose Add Tab, then type ASP.NET Ajax Li-
brary in the new tab.

4. Right click under the new ASP.NET Ajax Library tab and select Choose Items… to
open the Choose Toolbox Items dialog.

5. Click the Browse Button then locate the folder where you extracted the
ASP.NET Ajax Control Toolkit. Select the file AjaxControlToolkit.dll then
click Open.

6. Click OK to close dialog. The controls from the Ajax Control Toolkit now appear
in the Toolbox’s ASP.NET Ajax Library tab.

7. If the control names are not in alphabetical order, you can sort them alphabeti-
cally, by right clicking in the list of Ajax Control Toolkit controls and selecting
Sort Items Alphabetically.

21.3.5 Using Controls from the Ajax Control Toolkit
In this section, you’ll enhance the application you created in Section 20.6 by adding
ASP.NET Ajax controls. The key control in every ASP.NET Ajax-enabled application is
the ScriptManager (in the Toolbox’s AJAX Extensions tab), which manages the JavaScript
client-side code (called scripts) that enable asynchronous Ajax functionality. A benefit of
using ASP.NET Ajax is that you do not need to know JavaScript to be able to use these
scripts. The ScriptManager is meant for use with the controls in the Toolbox’s AJAX Ex-
tensions tab. There can be only one ScriptManager per page.

ToolkitScriptManager
The Ajax Control Toolkit comes with an enhanced ScriptManager called the Tool-
kitScriptManager, which manages the scripts for the ASP. NET Ajax Toolkit controls.
This one should be used in any page with controls from the ASP. NET Ajax Toolkit.

Open the Validation website you created in Section 20.6. Then drag a Toolkit-
ScriptManager from the ASP.NET Ajax Library tab in the Toolbox to the top of the page—
a script manager must appear before any controls that use the scripts it manages.

Grouping Information in Tabs Using the TabContainer Control
The TabContainer control enables you to group information into tabs that are displayed
only if they’re selected. The information in an unselected tab won’t be displayed until the

Common Programming Error 21.1
Putting more than one ScriptManager and/or ToolkitScriptManager control on a Web
Form causes the application to throw an InvalidOperationException when the page is
initialized.

iw3htp5_21_ASP.NET2.fm Page 813 Wednesday, November 16, 2011 11:52 AM

814 Chapter 21 Web App Development with ASP.NET in C#: A Deeper Look

user selects that tab. To demonstrate a TabContainer control, let’s split the form into two
tabs—one in which the user can enter the name and one in which the user can enter the
e-mail address and phone number. Perform the following steps:

1. Click to the right of the text Please fill out all the fields in the following form: and
press Enter to create a new paragraph.

2. Drag a TabContainer control from the ASP.NET Ajax Library tab in the Toolbox
into the new paragraph. This creates a container for hosting tabs. Set the TabCon-
tainer’s Width property to 450px.

3. To add a tab, open the TabContainer Tasks smart-tag menu and select Add Tab
Panel. This adds a TabPanel object—representing a tab—to the TabContainer.
Do this again to add a second tab.

4. You must change each TabPanel’s HeaderText property by editing the ASPX
page’s markup. To do so, click the TabContainer to ensure that it’s selected, then
switch to Split view in the design window. In the highlighted markup that corre-
sponds to the TabContainer, locate HeaderText="TabPanel1" and change
"TabPanel1" to "Name", then locate HeaderText="TabPanel2" and change
"TabPanel2" to "Contact". Switch back to Design view. In Design view, you can
navigate between tabs by clicking the tab headers. You can drag-and-drop ele-
ments into the tab as you would anywhere else.

5. Click in the Name tab’s body, then insert a one row and two column table. Take
the text and controls that are currently in the Name: row of the original table and
move them to the table in the Name tab.

6. Switch to the Contact tab, click in its body, then insert a two-row-by-two-column
table. Take the text and controls that are currently in the E-mail: and Phone: rows
of the original table and move them to the table in the Contact tab.

7. Delete the original table that is currently below the TabContainer.

Partial-Page Updates Using the UpdatePanel Control
The UpdatePanel control eliminates full-page refreshes by isolating a section of a page for
a partial-page update. In this example, we’ll use a partial-page update to display the user’s
information that is submitted to the server.

To implement a partial-page update, perform the following steps:

1. Click to the left of the Submit Button and press Enter to create a new paragraph
above it. Then click in the new paragraph and drag an UpdatePanel control from
the AJAX Extensions tab in the Toolbox to your form.

2. Then, drag into the UpdatePanel the control(s) to update and the control that
triggers the update. For this example, drag the outputLabel and the submitBut-
ton into the UpdatePanel.

3. To specify when an UpdatePanel should update, you need to define an Up-
datePanel trigger. Select the UpdatePanel, then click the ellipsis button next to
the control’s Triggers property in the Properties window. In the UpdatePanel-
Trigger Collection dialog that appears (Fig. 21.22), click Add to add an Async-
PostBackTrigger. Set the ControlID property to submitButton and the

iw3htp5_21_ASP.NET2.fm Page 814 Wednesday, November 16, 2011 11:52 AM

21.3 ASP.NET Ajax 815

EventName property to Click. Now, when the user clicks the Submit button, the
UpdatePanel intercepts the request and makes an asynchronous request to the
server instead. Then the response is inserted in the outputLabel element, and the
UpdatePanel reloads the label to display the new text without refreshing the en-
tire page. Click OK to close the dialog.

Adding Ajax Functionality to ASP.NET Validation Controls Using Ajax Extenders
Several controls in the Ajax Control Toolkit are extenders—components that enhance the
functionality of regular ASP.NET controls. In this example, we use ValidatorCallout-
Extender controls that enhance the ASP.NET validation controls by displaying error mes-
sages in small yellow callouts next to the input fields, rather than as text in the page.

You can create a ValidatorCalloutExtender by opening any validator control’s
smart-tag menu and clicking Add Extender… to display the Extender Wizard dialog
(Fig. 21.23). Next, choose ValidatorCalloutExtender from the list of available
extenders. The extender’s ID is chosen based on the ID of the validation control you’re
extending, but you can rename it if you like. Click OK to create the extender. Do this for
each of the validation controls in this example.

Changing the Display Property of the Validation Controls
The ValidatorCalloutExtenders display error messages with a nicer look-and-feel, so we
no longer need the validator controls to display these messages on their own. For this rea-
son, set each validation control's Display property to None.

Running the Application
When you run this application, the TabContainer will display whichever tab was last dis-
played in the ASPX page’s Design view. Ensure that the Name tab is displayed, then select
Validation.aspx in the Solution Explorer and type Ctrl + F5 to execute the application.

Fig. 21.22 | Creating a trigger for an UpdatePanel.

iw3htp5_21_ASP.NET2.fm Page 815 Wednesday, November 16, 2011 11:52 AM

816 Chapter 21 Web App Development with ASP.NET in C#: A Deeper Look

Additional ASP.NET Information
The Ajax Control Toolkit contains many other extenders and independent controls. You
can check them out at www.asp.net/ajax/ajaxcontroltoolkit/samples/. For more in-
formation on ASP.NET Ajax, check out our ASP.NET Ajax Resource Center at

Fig. 21.23 | Creating a control extender using the Extender Wizard.

www.deitel.com/aspdotnetajax

Summary
Section 21.2 Case Study: Password-Protected Books Database Application
• The ASP.NET Web Site template is a starter kit for a small multi-page website. The template uses

Microsoft’s recommended practices for organizing a website and separating the website’s style
(look-and-feel) from its content.

Section 21.2.1 Examining the ASP.NET Web Site Template
• The default ASP.NET Web Site contains a home page and an about page—so-called content pages.

The navigation bar near the top of the page allows you to switch between these pages by clicking
the link for the appropriate page.

• A master page defines common elements that are displayed by each page in a set of content pages.

• Content pages can inherit elements from master pages—this is a form of visual inheritance.

iw3htp5_21_ASP.NET2.fm Page 816 Wednesday, November 16, 2011 11:52 AM

 Summary 817

• Websites commonly provide “membership capabilities” that allow users to register at a website
and log in. The default ASP.NET Web Site is pre-configured to support registration and login ca-
pabilities.

Section 21.2.2 Test-Driving the Completed Application
• Forms authentication enables only registered users who are logged into the website to access a

password-protected page or set of pages. Such users are known as the site’s members.

• If you attempt to access a password-protected page without logging in, you’re automatically re-
directed to the login page.

• When you successfully log into the website you’re considered to be authenticated.

• When you’re logged in, the Log In link is replaced in the upper-right corner of each page with the
message “Welcome username,” where username is replaced with your log in name, and a Log Out
link. When you click Log Out, the website redirects you to the home page.

Section 21.2.3 Configuring the Website
• To create a folder in a website, right click the location of the website in the Solution Explorer, se-

lect New Folder and type the folder name.

• To restrict access to a page, you typically place it in a directory other than the website’s root.

• The Web Site Administration Tool allows you to configure various options that determine how
your application behaves.

• An access rule grants or denies access to a particular directory for a specific user or group of users.

Section 21.2.4 Modifying the Default.aspx and About.aspx Pages
• As you move the cursor over a content page, you’ll notice that sometimes the cursor displays as

 to indicate that you cannot edit the part of the page behind the cursor. Any part of a content
page that is defined in a master page can be edited only in the master page.

Section 21.2.5 Creating a Content Page That Only Authenticated Users Can Access
• When you create a new Web Form that should inherit from a specific master page, ensure that the

CheckBox Select master page is checked. Then, in the Select a Master Page dialog, select the ap-
propriate master page and click OK.

Section 21.2.6 Linking from the Default.aspx Page to the Books.aspx Page
• To convert text to a hyperlink, select the text then click the Convert to Hyperlink () Button on

the toolbar at the top of Visual Web Developer to display the Hyperlink dialog. You can enter a
URL here, or you can link to another page within the website.

Section 21.2.7 Modifying the Master Page (Site.master)
• A master page is like a base class in a visual inheritance hierarchy, and content pages are like de-

rived classes. The master page contains placeholders for custom content created in each content
page. The content pages visually inherit the master page’s content, then add content in the areas
designated by the master page’s placeholders.

• The website’s styles are defined in the file Site.css, which is located in the site’s Styles folder.

• Select View > Other Windows > CSS Properties to display the CSS properties (at the left of the IDE)
for the currently selected element. At the top of the CSS Properties window, click the Summary
Button to show only the CSS properties that are currently set for the selected element.

• To add a link to the navigation bar in the master page, position the mouse over the navigation
bar links then open the smart-tag menu and click Edit Menu Items. In the Menu Item Editor dialog,

iw3htp5_21_ASP.NET2.fm Page 817 Wednesday, November 16, 2011 11:52 AM

818 Chapter 21 Web App Development with ASP.NET in C#: A Deeper Look

click the Add a root item () Button. Set the new item’s Text property and use the arrow Buttons
to move the new item where it should appear in the navigation bar. Set the new item’s Navigate-
Url property to the appropriate page.

Section 21.2.8 Customizing the Password-Protected Books.aspx Page
• The Configure Data Source wizard allows you to create LinqDataSources with only simple Select

LINQ statements. Sometimes you must add a LinqDataSource object with a custom query.

• A LinqDataSource’s Selecting event occurs every time the LinqDataSource selects data from its
data context, and can be used to implement custom Select queries against the data context. To
do so, assign the custom LINQ query to the Result property of the event handler’s LinqData-
SourceSelectEventArgs argument. The query results become the data source’s data.

• Setting a DropDownList’s AutoPostBack property to True indicates that a postback occurs each
time the user selects an item in the DropDownList.

• You can configure the columns of a GridView manually by selecting Edit Columns… from the
GridView Tasks smart-tag menu.

• Checking Enable Sorting in the GridView Tasks smart-tag menu changes the column headings in
the GridView to hyperlinks that allow users to sort the data in the GridView using the sort expres-
sions specified by each column.

• Checking Enable Paging in the GridView Tasks smart-tag menu causes the GridView to split across
multiple pages. The user can click the numbered links at the bottom of the GridView control to
display a different page of data. GridView’s PageSize property determines the number of entries per
page. This technique for displaying data makes the site more readable and enables pages to load
more quickly (because less data is displayed at one time).

Section 21.3 ASP.NET Ajax
• A traditional web application must make synchronous requests and must wait for a response,

whereas an Ajax (Asynchronous JavaScript and XML) web applications can make asynchronous
requests and do not need to wait for a response.

• The key control in every ASP.NET Ajax-enabled application is the ScriptManager (in the Tool-
box’s AJAX Extensions tab), which manages the JavaScript client-side code (called scripts) that en-
able asynchronous Ajax functionality. A benefit of using ASP.NET Ajax is that you do not need
to know JavaScript to be able to use these scripts.

• The ScriptManager is meant for use with the controls in the Toolbox’s AJAX Extensions tab. There
can be only one ScriptManager per page.

• The Ajax Control Toolkit comes with an enhanced version of the ScriptManager called the Tool-
kitScriptManager, which manages all the scripts for the ASP. NET Ajax Toolkit controls. This
one should be used in any ASPX page that contains controls from the ASP. NET Ajax Toolkit.

• The TabContainer control enables you to group information into tabs that are displayed only if
they’re selected. To add a tab, open the TabContainer Tasks smart-tag menu and select Add Tab
Panel. This adds a TabPanel object—representing a tab—to the TabContainer.

• The UpdatePanel control eliminates full-page refreshes by isolating a section of a page for a par-
tial-page update.

• To specify when an UpdatePanel should update, you need to define an UpdatePanel trigger. Se-
lect the UpdatePanel, then click the ellipsis button next to the control’s Triggers property in the
Properties window. In the UpdatePanelTrigger Collection dialog that appears, click Add to add an
AsyncPostBackTrigger. Set the ControlID property to the control that triggers the update and
the EventName property to the event that is generated when the user interacts with the control.

iw3htp5_21_ASP.NET2.fm Page 818 Wednesday, November 16, 2011 11:52 AM

 Self-Review Exercises 819

• Several controls in the Ajax Control Toolkit are extenders—components that enhance the func-
tionality of regular ASP.NET controls.

• ValidatorCalloutExtender controls enhance the ASP.NET validation controls by displaying er-
ror messages in small yellow callouts next to the input fields, rather than as text in the page.

• You can create a ValidatorCalloutExtender by opening any validator control’s smart-tag menu
and clicking Add Extender… to display the Extender Wizard dialog. Next, choose ValidatorCall-
outExtender from the list of available extenders.

Self-Review Exercises
21.1 State whether each of the following is true or false. If false, explain why.

a) An access rule grants or denies access to a particular directory for a specific user or group
of users.

b) When using controls from the Ajax Control Toolkit, you must include the ScriptMan-
ager control at the top of the ASPX page.

c) A master page is like a base class in a visual inheritance hierarchy, and content pages are
like derived classes.

d) A GridView automatically enables sorting and paging of its contents.
e) Ajax web applications make synchronous requests and wait for responses.

21.2 Fill in the blanks in each of the following statements:
a) A(n) defines common GUI elements that are inherited by each page in a set

of .
b) The main difference between a traditional web application and an Ajax web application

is that the latter supports requests.
c) The template is a starter kit for a small multi-page website that uses Micro-

soft’s recommended practices for organizing a website and separating the website’s style
(look-and-feel) from its content.

d) The allows you to configure various options that determine how your appli-
cation behaves.

e) A LinqDataSource’s event occurs every time the LinqDataSource selects data
from its data context, and can be used to implement custom Select queries against the
data context.

f) Setting a DropDownList’s property to True indicates that a postback occurs
each time the user selects an item in the DropDownList.

g) Several controls in the Ajax Control Toolkit are —components that enhance
the functionality of regular ASP.NET controls.

Answers to Self-Review Exercises
21.1 a) True. b) False. The ToolkitScriptManager control must be used for controls from the
Ajax Control Toolkit. The ScriptManager control can be used only for the controls in the Toolbox’s
AJAX Extensions tab. c) True. d) False. Checking Enable Sorting in the GridView Tasks smart-tag
menu changes the column headings in the GridView to hyperlinks that allow users to sort the data
in the GridView. Checking Enable Paging in the GridView Tasks smart-tag menu causes the GridView
to split across multiple pages. e) False. That is what traditional web applications do. Ajax web appli-
cations can make asynchronous requests and do not need to wait for responses.

21.2 a) master page, content pages. b) asynchronous. c) ASP.NET Web Site. d) Web Site Adminis-
tration Tool. e) Selecting. f) AutoPostBack. g) extenders.

iw3htp5_21_ASP.NET2.fm Page 819 Wednesday, November 16, 2011 11:52 AM

820 Chapter 21 Web App Development with ASP.NET in C#: A Deeper Look

Exercises
21.3 (Guestbook Application Modification) Add Ajax functionality to the Guestbook application
in Exercise 20.5. Use control extenders to display error callouts when one of the user input fields is
invalid.

21.4 (Guestbook Application Modification) Modify the Guestbook application in Exercise 21.3
to use a UpdatePanel so only the GridView updates when the user submits the form. Because only
the UpdatePanel will be updated, you cannot clear the user input fields in the Submit button’s Click
event, so you can remove this functionality.

21.5 (Session Tracking Modification) Use the ASP.NET Web Site template that you learned about
in this chapter to reimplement the session tracking example in Exercise 20.7.

iw3htp5_21_ASP.NET2.fm Page 820 Wednesday, November 16, 2011 11:52 AM

22Web Services in C#

A client is to me a mere unit, a
factor in a problem.
—Sir Arthur Conan Doyle

...if the simplest things of nature
have a message that you
understand, rejoice, for your
soul is alive.
—Eleonora Duse

O b j e c t i v e s
In this chapter you’ll learn:

■ How to create WCF web
services.

■ How XML, JSON, XML-Based
Simple Object Access
Protocol (SOAP) and
Representational State
Transfer Architecture (REST)
enable WCF web services.

■ The elements that comprise
WCF web services, such as
service references, service
endpoints, service contracts
and service bindings.

■ How to create a client that
consumes a WCF web
service.

■ How to use WCF web
services with Windows and
web applications.

■ How to use session tracking
in WCF web services to
maintain state information
for the client.

■ How to pass user-defined
types to a WCF web service.

iw3htp5_22_WCF.fm Page 821 Wednesday, November 16, 2011 11:52 AM

822 Chapter 22 Web Services in C#

22.1 Introduction
This chapter introduces Windows Communication Foundation (WCF) services. WCF is
a set of technologies for building distributed systems in which system components com-
municate with one another over networks. In earlier versions of .NET, the various types
of communication used different technologies and programming models. WCF uses a
common framework for all communication between systems, so you need to learn only
one programming model to use WCF.

This chapter focuses on WCF web services, which promote software reusability in dis-
tributed systems that typically execute across the Internet. A web service is a class that
allows its methods to be called by methods on other machines via common data formats
and protocols, such as XML, JSON (Section 22.5) and HTTP. In .NET, the over-the-net-
work method calls are commonly implemented through Simple Object Access Protocol
(SOAP) or the Representational State Transfer (REST) architecture. SOAP is an XML-
based protocol describing how to mark up requests and responses so that they can be sent
via protocols such as HTTP. SOAP uses a standardized XML-based format to enclose data
in a message that can be sent between a client and a server. REST is a network architecture

22.1 Introduction
22.2 WCF Services Basics
22.3 Simple Object Access Protocol

(SOAP)
22.4 Representational State Transfer

(REST)
22.5 JavaScript Object Notation (JSON)
22.6 Publishing and Consuming SOAP-

Based WCF Web Services
22.6.1 Creating a WCF Web Service
22.6.2 Code for the

WelcomeSOAPXMLService
22.6.3 Building a SOAP WCF Web Service
22.6.4 Deploying the

WelcomeSOAPXMLService
22.6.5 Creating a Client to Consume the

WelcomeSOAPXMLService
22.6.6 Consuming the

WelcomeSOAPXMLService

22.7 Publishing and Consuming REST-
Based XML Web Services

22.7.1 HTTP get and post Requests
22.7.2 Creating a REST-Based XML WCF

Web Service
22.7.3 Consuming a REST-Based XML WCF

Web Service
22.8 Publishing and Consuming REST-

Based JSON Web Services

22.8.1 Creating a REST-Based JSON WCF
Web Service

22.8.2 Consuming a REST-Based JSON WCF
Web Service

22.9 Blackjack Web Service: Using
Session Tracking in a SOAP-Based
WCF Web Service

22.9.1 Creating a Blackjack Web Service
22.9.2 Consuming the Blackjack Web

Service
22.10 Airline Reservation Web Service:

Database Access and Invoking a
Service from ASP.NET

22.11 Equation Generator: Returning User-
Defined Types

22.11.1 Creating the REST-Based XML
EquationGenerator Web Service

22.11.2 Consuming the REST-Based XML
EquationGenerator Web Service

22.11.3 Creating the REST-Based JSON WCF
EquationGenerator Web Service

22.11.4 Consuming the REST-Based JSON
WCF EquationGenerator Web
Service

22.12 Web Resources

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

iw3htp5_22_WCF.fm Page 822 Wednesday, November 16, 2011 11:52 AM

22.2 WCF Services Basics 823

that uses the web’s traditional request/response mechanisms such as GET and POST requests.
REST-based systems do not require data to be wrapped in a special message format.

We build the WCF web services presented in this chapter in Visual Web Developer
2010 Express, and we create client applications that invoke these services using both Visual
C# 2010 Express and Visual Web Developer 2010 Express. Full versions of Visual Studio
2010 include the functionality of both Express editions.

Requests to and responses from web services created with Visual Web Developer are
typically transmitted via SOAP or REST, so any client capable of generating and pro-
cessing SOAP or REST messages can interact with a web service, regardless of the language
in which the web service is written. We say more about SOAP and REST in Section 22.3
and Section 22.4, respectively.

22.2 WCF Services Basics
Microsoft’s Windows Communication Foundation (WCF) was created as a single plat-
form to encompass many existing communication technologies. WCF increases produc-
tivity, because you learn only one straightforward programming model. Each WCF service
has three key components—addresses, bindings and contracts (usually called the ABCs of
a WCF service):

• An address represents the service’s location (also known as its endpoint), which
includes the protocol (for example, HTTP) and network address (for example,
www.deitel.com) used to access the service.

• A binding specifies how a client communicates with the service (for example,
SOAP, REST, and so on). Bindings can also specify other options, such as secu-
rity constraints.

• A contract is an interface representing the service’s methods and their return
types. The service’s contract allows clients to interact with the service.

The machine on which the web service resides is referred to as a web service host. The
client application that accesses the web service sends a method call over a network to the
web service host, which processes the call and returns a response over the network to the
application. This kind of distributed computing benefits systems in various ways. For
example, an application without direct access to data on another system might be able to
retrieve this data via a web service. Similarly, an application lacking the processing power
necessary to perform specific computations could use a web service to take advantage of
another system’s superior resources.

22.3 Simple Object Access Protocol (SOAP)
The Simple Object Access Protocol (SOAP) is a platform-independent protocol that uses
XML to make remote procedure calls, typically over HTTP. Each request and response is
packaged in a SOAP message—an XML message containing the information that a web
service requires to process the message. SOAP messages are written in XML so that they’re
computer readable, human readable and platform independent. Most firewalls—security
barriers that restrict communication among networks—allow HTTP traffic to pass
through, so that clients can browse the Internet by sending requests to and receiving re-

iw3htp5_22_WCF.fm Page 823 Wednesday, November 16, 2011 11:52 AM

824 Chapter 22 Web Services in C#

sponses from web servers. Thus, SOAP-based services can send and receive SOAP mes-
sages over HTTP connections with few limitations.

SOAP supports an extensive set of types. The wire format used to transmit requests
and responses must support all types passed between the applications. SOAP types include
the primitive types (for example, int), as well as DateTime, XmlNode and others. SOAP can
also transmit arrays of these types. In Section 22.11, you’ll see that you can also transmit
user-defined types in SOAP messages.

When a program invokes a method of a SOAP web service, the request and all relevant
information are packaged in a SOAP message enclosed in a SOAP envelope and sent to
the server on which the web service resides. When the web service receives this SOAP mes-
sage, it parses the XML representing the message, then processes the message’s contents.
The message specifies the method that the client wishes to execute and the arguments the
client passed to that method. Next, the web service calls the method with the specified
arguments (if any) and sends the response back to the client in another SOAP message.
The client parses the response to retrieve the method’s result. In Section 22.6, you’ll build
and consume a basic SOAP web service.

22.4 Representational State Transfer (REST)
Representational State Transfer (REST) refers to an architectural style for implementing
web services. Such web services are often called RESTful web services. Though REST it-
self is not a standard, RESTful web services are implemented using web standards. Each
operation in a RESTful web service is identified by a unique URL. Thus, when the server
receives a request, it immediately knows what operation to perform. Such web services can
be used in a program or directly from a web browser. The results of a particular operation
may be cached locally by the browser when the service is invoked with a GET request. This
can make subsequent requests for the same operation faster by loading the result directly
from the browser’s cache. Amazon’s web services (aws.amazon.com) are RESTful, as are
many others.

RESTful web services are alternatives to those implemented with SOAP. Unlike
SOAP-based web services, the request and response of REST services are not wrapped in
envelopes. REST is also not limited to returning data in XML format. It can use a variety
of formats, such as XML, JSON, HTML, plain text and media files. In Sections 22.7–
22.8, you’ll build and consume basic RESTful web services.

22.5 JavaScript Object Notation (JSON)
JavaScript Object Notation (JSON) is an alternative to XML for representing data. JSON
is a text-based data-interchange format used to represent objects in JavaScript as collec-
tions of name/value pairs represented as Strings. It is commonly used in Ajax applica-
tions. JSON is a simple format that makes objects easy to read, create and parse, and allows
programs to transmit data efficiently across the Internet because it is much less verbose
than XML. Each JSON object is represented as a list of property names and values con-
tained in curly braces, in the following format:

{ propertyName1 : value1, propertyName2 : value2 }

iw3htp5_22_WCF.fm Page 824 Wednesday, November 16, 2011 11:52 AM

22.6 Publishing and Consuming SOAP-Based WCF Web Services 825

Arrays are represented in JSON with square brackets in the following format:

Each value in an array can be a string, a number, a JSON object, true, false or null. To
appreciate the simplicity of JSON data, examine this representation of an array of address-
book entries

Many programming languages now support the JSON data format.

22.6 Publishing and Consuming SOAP-Based WCF Web
Services
This section presents our first example of publishing (enabling for client access) and con-
suming (using) a web service. We begin with a SOAP-based web service.

22.6.1 Creating a WCF Web Service
To build a SOAP-based WCF web service in Visual Web Developer, you first create a
project of type WCF Service. SOAP is the default protocol for WCF web services, so no
special configuration is required to create them. Visual Web Developer then generates files
for the WCF service code, an SVC file (Service.svc, which provides access to the ser-
vice), and a Web.config file (which specifies the service’s binding and behavior).

Visual Web Developer also generates code files for the WCF service class and any
other code that is part of the WCF service implementation. In the service class, you define
the methods that your WCF web service makes available to client applications.

22.6.2 Code for the WelcomeSOAPXMLService
Figures 22.1 and 22.2 present the code-behind files for the WelcomeSOAPXMLService
WCF web service that you’ll build in Section 22.6.3. When creating services in Visual
Web Developer, you work almost exclusively in the code-behind files. The service provides
a method that takes a name (represented as a string) as an argument and appends it to
the welcome message that is returned to the client. We use a parameter in the method def-
inition to demonstrate that a client can send data to a web service.

Figure 22.1 is the service’s interface, which describes the service’s contract—the set of
methods and properties the client uses to access the service. The ServiceContract attri-
bute (line 6) exposes a class that implements this interface as a WCF web service. The
OperationContract attribute (line 10) exposes the Welcome method to clients for remote
calls. Optional parameters can be assigned to these contracts to change the data format and
method behavior, as we’ll show in later examples.

Figure 22.2 defines the class that implements the interface declared as the Service-
Contract. Lines 7–12 define the method Welcome, which returns a string welcoming you
to WCF web services. Next, we build the web service from scratch.

[value1, value2, value3]

[{ first: 'Cheryl', last: 'Black' },
 { first: 'James', last: 'Blue' },
 { first: 'Mike', last: 'Brown' },
 { first: 'Meg', last: 'Gold' }]

iw3htp5_22_WCF.fm Page 825 Wednesday, November 16, 2011 11:52 AM

826 Chapter 22 Web Services in C#

22.6.3 Building a SOAP WCF Web Service
In the following steps, you create a WCF Service project for the WelcomeSOAPXMLService
and test it using the built-in ASP.NET Development Server that comes with Visual Web
Developer Express and Visual Studio.

Step 1: Creating the Project
To create a project of type WCF Service, select File > New Web Site… to display the New
Web Site dialog (Fig. 22.3). Select the WCF Service template. Select File System from the
Location drop-down list to indicate that the files should be placed on your local hard disk.
By default, Visual Web Developer places files on the local machine in a directory named
WCFService1. Rename this folder to WelcomeSOAPXMLService. We modified the default
path as well. Click OK to create the project.

Step 2: Examining the Newly Created Project
After you create the project, the code-behind file Service.cs, which contains code for a
simple web service, is displayed by default. If the code-behind file is not open, open it by
double clicking the file in the App_Code directory listed in the Solution Explorer. By

1 // Fig. 22.1: IWelcomeSOAPXMLService.cs
2 // WCF web service interface that returns a welcome message through SOAP
3 // protocol and XML data format.
4
5
6
7 public interface IWelcomeSOAPXMLService
8 {
9 // returns a welcome message

10
11 string Welcome(string yourName);
12 } // end interface IWelcomeSOAPXMLService

Fig. 22.1 | WCF web-service interface that returns a welcome message through SOAP protocol
and XML format.

1 // Fig. 22.2: WelcomeSOAPXMLService.cs
2 // WCF web service that returns a welcome message using SOAP protocol and
3 // XML data format.
4 public class WelcomeSOAPXMLService :
5 {
6 // returns a welcome message
7 public string Welcome(string yourName)
8 {
9 return string.Format(

10 "Welcome to WCF Web Services with SOAP and XML, {0}!",
11 yourName);
12 } // end method Welcome
13 } // end class WelcomeSOAPXMLService

Fig. 22.2 | WCF web service that returns a welcome message through the SOAP protocol and
XML format.

using System.ServiceModel;

[ServiceContract]

[OperationContract]

IWelcomeSOAPXMLService

iw3htp5_22_WCF.fm Page 826 Wednesday, November 16, 2011 11:52 AM

22.6 Publishing and Consuming SOAP-Based WCF Web Services 827

default, a new code-behind file implements an interface named IService. This interface
(in the file IService.cs) is marked with the ServiceContract and OperationContract
attributes. In addition, the IService.cs file defines a class named CompositeType with a
DataContract attribute (discussed in Section 22.8). The interface contains two sample
service methods named GetData and GetDataUsingContract. The Service.cs contains
the code that defines these methods.

Step 3: Modifying and Renaming the Code-Behind File
To create the WelcomeSOAPXMLService service developed in this section, modify ISer-
vice.cs and Service.cs by replacing the sample code provided by Visual Web Develop-
er with the code from the IWelcomeSOAPXMLService and WelcomeSOAPXMLService files
(Figs. 22.1 and 22.2, respectively). Then rename the files to IWelcomeSOAPXMLService.cs
and WelcomeSOAPXMLService.cs by right clicking each file in the Solution Explorer and
choosing Rename.

Step 4: Examining the SVC File
The Service.svc file, when accessed through a web browser, provides information about
the web service. However, if you open the SVC file on disk, it contains only

to indicate the programming language in which the web service’s code-behind file is writ-
ten, the Debug attribute (enables a page to be compiled for debugging), the name of the
service and the code-behind file’s location. When you request the SVC page in a web
browser, WCF uses this information to dynamically generate the WSDL document.

Fig. 22.3 | Creating a WCF Service in Visual Web Developer.

<%@ ServiceHost Language="C#" Debug="true" Service="Service"
 CodeBehind="~/App_Code/Service.cs" %>

iw3htp5_22_WCF.fm Page 827 Wednesday, November 16, 2011 11:52 AM

828 Chapter 22 Web Services in C#

Step 5: Modifying the SVC File
If you change the code-behind file name or the class name that defines the web service, you
must modify the SVC file accordingly. Thus, after defining class WelcomeSOAPXMLService
in the code-behind file WelcomeSOAPXMLService.cs, modify the SVC file as follows:

22.6.4 Deploying the WelcomeSOAPXMLService
You can choose Build Web Site from the Build menu to ensure that the web service com-
piles without errors. You can also test the web service directly from Visual Web Developer
by selecting Start Debugging from the Debug menu. The first time you do this, the Debug-
ging Not Enabled dialog appears. Click OK if you want to enable debugging. Next, a brows-
er window opens and displays information about the service. This information is
generated dynamically when the SVC file is requested. Figure 22.4 shows a web browser
displaying the Service.svc file for the WelcomeSOAPXMLService WCF web service.

<%@ ServiceHost Language="C#" Debug="true"
 Service="WelcomeSOAPXMLService"
 CodeBehind="~/App_Code/WelcomeSOAPXMLService.cs" %>

Fig. 22.4 | SVC file rendered in a web browser.

iw3htp5_22_WCF.fm Page 828 Wednesday, November 16, 2011 11:52 AM

22.6 Publishing and Consuming SOAP-Based WCF Web Services 829

Once the service is running, you can also access the SVC page from your browser by
typing a URL of the following form in a web browser:

(See the actual URL in Fig. 22.4.) By default, the ASP.NET Development Server assigns
a random port number to each website it hosts. You can change this behavior by going to
the Solution Explorer and clicking on the project name to view the Properties window
(Fig. 22.5). Set the Use dynamic ports property to False and set the Port number property
to the port number that you want to use, which can be any unused TCP port. Generally,
you don’t do this for web services that will be deployed to a real web server. You can also
change the service’s virtual path, perhaps to make the path shorter or more readable.

Web Services Description Language
To consume a web service, a client must determine the service’s functionality and how to
use it. For this purpose, web services normally contain a service description. This is an
XML document that conforms to the Web Service Description Language (WSDL)—an
XML vocabulary that defines the methods a web service makes available and how clients
interact with them. The WSDL document also specifies lower-level information that cli-
ents might need, such as the required formats for requests and responses.

WSDL documents help applications determine how to interact with the web services
described in the documents. When viewed in a web browser, an SVC file presents a link
to the service’s WSDL document and information on using the utility svcutil.exe to
generate test console applications. The svcutil.exe tool is included with Visual Studio
2010 and Visual Web Developer. We do not use svcutil.exe to test our services, opting
instead to build our own test applications. When a client requests the SVC file’s URL fol-
lowed by ?wsdl, the server autogenerates the WSDL that describes the web service and
returns the WSDL document. Copy the SVC URL (which ends with .svc) from the
browser’s address field in Fig. 22.4, as you’ll need it in the next section to build the client
application. Also, leave the web service running so the client can interact with it.

22.6.5 Creating a Client to Consume the WelcomeSOAPXMLService
Now that you’ve defined and deployed the web service, let’s consume it from a client ap-
plication. A .NET web-service client can be any type of .NET application, such as a Win-

http://localhost:portNumber/virtualPath/Service.svc

Fig. 22.5 | WCF web service Properties window.

iw3htp5_22_WCF.fm Page 829 Wednesday, November 16, 2011 11:52 AM

830 Chapter 22 Web Services in C#

dows application, a console application or a web application. You can enable a client
application to consume a web service by adding a service reference to the client.
Figure 22.6 diagrams the parts of a client for a SOAP-based web service after a service ref-
erence has been added. [Note: This section discusses building a client application in Visual
C# 2010 Express, but the discussion also applies to Visual Web Developer 2010 Express.]

An application that consumes a SOAP-based web service actually consists of two
parts—a proxy class representing the web service and a client application that accesses the
web service via a proxy object (that is, an instance of the proxy class). A proxy class handles
all the “plumbing” required for service method calls (that is, the networking details and
the formation of SOAP messages). Whenever the client application calls a web service’s
method, the application actually calls a corresponding method in the proxy class. This
method has the same name and parameters as the web service’s method that is being called,
but formats the call to be sent as a request in a SOAP message. The web service receives
this request as a SOAP message, executes the method call and sends back the result as
another SOAP message. When the client application receives the SOAP message con-
taining the response, the proxy class deserializes it and returns the results as the return
value of the web-service method that was called. Figure 22.7 depicts the interactions
among the client code, proxy class and web service. The proxy class is not shown in the
project unless you click the Show All Files button in the Solution Explorer.

Fig. 22.6 | .NET WCF web-service client after a web-service reference has been added.

Fig. 22.7 | Interaction between a web-service client and a SOAP web service.

Client code
(web service
consumer)

Client

Service reference

Proxy
class

WSDL
copy

Client

Client
code

Proxy
object

SOAP
web

service
Network

iw3htp5_22_WCF.fm Page 830 Wednesday, November 16, 2011 11:52 AM

22.6 Publishing and Consuming SOAP-Based WCF Web Services 831

Many aspects of web-service creation and consumption—such as generating WSDL
files and proxy classes—are handled by Visual Web Developer, Visual C# 2010 and WCF.
Although developers are relieved of the tedious process of creating these files, they can still
modify the files if necessary. This is required only when developing advanced web ser-
vices—none of our examples require modifications to these files.

We now create a client and generate a proxy class that allows the client to access the
WelcomeSOAPXMLService web service. First create a Windows application named Wel-
comeSOAPXMLClient in Visual C# 2010, then perform the following steps.

Step 1: Opening the Add Service Reference Dialog
Right click the project name in the Solution Explorer and select Add Service Reference…
to display the Add Service Reference dialog.

Step 2: Specifying the Web Service’s Location
In the dialog, enter the URL of WelcomeSOAPXMLService’s .svc file (that is, the URL you
copied from Fig. 22.4) in the Address field and click Go. When you specify the service you
want to consume, the IDE accesses the web service’s WSDL information and copies it into
a WSDL file that is stored in the client project’s Service References folder. This file is
visible when you view all of your project’s files in the Solution Explorer. [Note: A copy of
the WSDL file provides the client application with local access to the web service’s descrip-
tion. To ensure that the WSDL file is up to date, Visual C# 2010 provides an Update Ser-
vice Reference option (available by right clicking the service reference in the Solution
Explorer), which updates the files in the Service References folder.]

Many companies that provide web services simply distribute the exact URLs at which
their web services can be accessed. The Add Service Reference dialog also allows you to
search for services on your local machine or on the Internet.

Step 3: Renaming the Service Reference’s Namespace
In the Add Service Reference dialog, rename the service reference’s namespace by changing
the Namespace field to ServiceReference.

Step 4: Adding the Service Reference
Click the Ok button to add the service reference.

Step 5: Viewing the Service Reference in the Solution Explorer
The Solution Explorer should now contain a Service References folder with a node show-
ing the namespace you specified in Step 3.

22.6.6 Consuming the WelcomeSOAPXMLService
Figure 22.8 uses the WelcomeSOAPXMLService service to send a welcome message. You are
already familiar with Visual C# applications that use Labels, TextBoxes and Buttons, so
we focus our discussions on the web-services concepts in this chapter’s applications.

Line 11 defines a new ServiceReference.WelcomeSOAPXMLServiceClient proxy
object named client. The event handler uses this object to call methods of the Welcome-
SOAPXMLService web service. Line 22 invokes the WelcomeSOAPXMLService web service’s
Welcome method. The call is made via the local proxy object client, which then commu-
nicates with the web service on the client’s behalf. If you’re using the downloaded exam-

iw3htp5_22_WCF.fm Page 831 Wednesday, November 16, 2011 11:52 AM

832 Chapter 22 Web Services in C#

ples from this chapter, you may need to regenerate the proxy by removing the service
reference, then adding it again, because ASP.NET Development Server may use a different
port number on your computer. To do so, right click ServiceReference in the Service
References folder in the Solution Explorer and select option Delete. Then follow the
instructions in Section 22.6.5 to add the service reference to the project.

When the application runs, enter your name and click the Submit button. The appli-
cation invokes the Welcome service method to perform the appropriate task and return the
result, then displays the result in a MessageBox.

1 // Fig. 22.8: WelcomeSOAPXML.cs
2 // Client that consumes the WelcomeSOAPXMLService.
3 using System;
4 using System.Windows.Forms;
5
6 namespace WelcomeSOAPXMLClient
7 {
8 public partial class WelcomeSOAPXML : Form
9 {

10
11
12
13 public WelcomeSOAPXML()
14 {
15 InitializeComponent();
16
17 } // end constructor
18
19 // creates welcome message from text input and web service
20 private void submitButton_Click(object sender, EventArgs e)
21 {
22 MessageBox.Show();
23 } // end method submitButton_Click
24 } // end class WelcomeSOAPXML
25 } // end namespace WelcomeSOAPXMLClient

Fig. 22.8 | Client that consumes the WelcomeSOAPXMLService.

// declare a reference to web service
private ServiceReference.WelcomeSOAPXMLServiceClient client;

client = new ServiceReference.WelcomeSOAPXMLServiceClient();

client.Welcome(textBox.Text), "Welcome"

a) User inputs name and
clicks Submit to send it

to the web service

b) Message returned by
the web service

iw3htp5_22_WCF.fm Page 832 Wednesday, November 16, 2011 11:52 AM

22.7 Publishing and Consuming REST-Based XML Web Services 833

22.7 Publishing and Consuming REST-Based XML Web
Services
In the previous section, we used a proxy object to pass data to and from a WCF web service
using the SOAP protocol. In this section, we access a WCF web service using the REST
architecture. We modify the IWelcomeSOAPXMLService example to return data in plain
XML format. You can create a WCF Service project as you did in Section 22.6 to begin.

22.7.1 HTTP get and post Requests
The two most common HTTP request types (also known as request methods) are get
and post. A get request typically gets (or retrieves) information from a server. Common
uses of get requests are to retrieve a document or an image, or to fetch search results based
on a user-submitted search term. A post request typically posts (or sends) data to a server.
Common uses of post requests are to send form data or documents to a server.

An HTTP request often posts data to a server-side form handler that processes the
data. For example, when a user performs a search or participates in a web-based survey, the
web server receives the information specified in the XHTML form as part of the request.
Both types of requests can be used to send form data to a web server, yet each request type
sends the information differently.

A get request sends information to the server in the URL. For example, in the fol-
lowing URL

search is the name of Google’s server-side form handler, q is the name of a variable in
Google’s search form and deitel is the search term. A ? separates the query string from
the rest of the URL in a request. A name/value pair is passed to the server with the name
and the value separated by an equals sign (=). If more than one name/value pair is submit-
ted, each pair is separated by an ampersand (&). The server uses data passed in a query
string to retrieve an appropriate resource from the server. The server then sends a response
to the client. A get request may be initiated by submitting an XHTML form whose meth-
od attribute is set to "get", or by typing the URL (possibly containing a query string) di-
rectly into the browser’s address bar.

A post request sends form data as part of the HTTP message, not as part of the URL.
A get request typically limits the query string (that is, everything to the right of the ?) to
a specific number of characters. For example, Internet Explorer restricts the entire URL to
no more than 2083 characters. Typically, large amounts of information should be sent
using the post method. The post method is also sometimes preferred because it hides the
submitted data from the user by embedding it in an HTTP message. If a form submits
hidden input values along with user-submitted data, the post method might generate a
URL like www.searchengine.com/search. The form data still reaches the server for pro-
cessing, but the user does not see the exact information sent.

22.7.2 Creating a REST-Based XML WCF Web Service
Step 1: Adding the WebGet Attribute
IWelcomeRESTXMLService interface (Fig. 22.9) is a modified version of the IWelcome-
SOAPXMLService interface. The Welcome method’s WebGet attribute (line 12) maps a meth-

www.google.com/search?q=deitel

iw3htp5_22_WCF.fm Page 833 Wednesday, November 16, 2011 11:52 AM

834 Chapter 22 Web Services in C#

od to a unique URL that can be accessed via an HTTP get operation programmatically or
in a web browser. To use the WebGet attribute, we import the System.ServiceModel.Web
namespace (line 5). WebGet’s UriTemplate property (line 12) specifies the URI format that
is used to invoke the method. You can access the Welcome method in a web browser by ap-
pending text that matches the UriTemplate definition to the end of the service’s location,
as in http://localhost:portNumber/WelcomeRESTXMLService/Service.svc/welcome/
Paul. WelcomeRESTXMLService (Fig. 22.10) is the class that implements the IWelcome-
RESTXMLService interface; it is similar to the WelcomeSOAPXMLService class (Fig. 22.2).

Step 2: Modifying the Web.config File
Figure 22.11 shows part of the default Web.config file modified to use REST architecture.
The endpointBehaviors element (lines 16–20) in the behaviors element indicates that
this web service endpoint will be accessed using the web programming model (REST).

1 // Fig. 22.9: IWelcomeRESTXMLService.cs
2 // WCF web service interface. A class that implements this interface
3 // returns a welcome message through REST architecture and XML data format
4 using System.ServiceModel;
5 using System.ServiceModel.Web;
6
7 [ServiceContract]
8 public interface IWelcomeRESTXMLService
9 {

10 // returns a welcome message
11 [OperationContract]
12
13 string Welcome(string yourName);
14 } // end interface IWelcomeRESTXMLService

Fig. 22.9 | WCF web-service interface. A class that implements this interface returns a welcome
message through REST architecture and XML data format.

1 // Fig. 22.10: WelcomeRESTXMLService.cs
2 // WCF web service that returns a welcome message using REST architecture
3 // and XML data format.
4 public class WelcomeRESTXMLService : IWelcomeRESTXMLService
5 {
6 // returns a welcome message
7 public string Welcome(string yourName)
8 {
9 return string.Format("Welcome to WCF Web Services"

10 + " with REST and XML, {0}!", yourName);
11 } // end method Welcome
12 } // end class WelcomeRESTXMLService

Fig. 22.10 | WCF web service that returns a welcome message using REST architecture and
XML data format.

[WebGet(UriTemplate = "/welcome/{yourName}")]

iw3htp5_22_WCF.fm Page 834 Wednesday, November 16, 2011 11:52 AM

22.7 Publishing and Consuming REST-Based XML Web Services 835

The nested webHttp element specifies that clients communicate with this service using the
standard HTTP request/response mechanism. The protocolMapping element (lines 22–
24) in the system.serviceModel element, changes the default protocol for communicat-
ing with this web service (normally SOAP) to webHttpBinding, which is used for REST-
based HTTP requests.

Figure 22.12 tests the WelcomeRESTXMLService’s Welcome method in a web browser.
The URL specifies the location of the Service.svc file and uses the URI template to
invoke method Welcome with the argument Bruce. The browser displays the XML data
response from WelcomeRESTXMLService. Next, you’ll learn how to consume this service.

1 <system.serviceModel>
2 <behaviors>
3 <serviceBehaviors>
4 <behavior>
5 <!-- To avoid disclosing metadata information, set the
6 value below to false and remove the metadata
7 endpoint above before deployment -->
8 <serviceMetadata httpGetEnabled="true"/>
9 <!-- To receive exception details in faults for debugging

10 purposes, set the value below to true. Set to false
11 before deployment to avoid disclosing exception
12 information -->
13 <serviceDebug includeExceptionDetailInFaults="false"/>
14 </behavior>
15 </serviceBehaviors>
16
17
18
19
20
21 </behaviors>
22
23
24
25 <serviceHostingEnvironment multipleSiteBindingsEnabled="true"/>
26 </system.serviceModel>

Fig. 22.11 | WelcomeRESTXMLService Web.config file.

Fig. 22.12 | Response from WelcomeRESTXMLService in XML data format.

<endpointBehaviors>
 <behavior>
 <webHttp/>
 </behavior>
</endpointBehaviors>

<protocolMapping>
 <add scheme="http" binding="webHttpBinding"/>
</protocolMapping>

iw3htp5_22_WCF.fm Page 835 Wednesday, November 16, 2011 11:52 AM

836 Chapter 22 Web Services in C#

22.7.3 Consuming a REST-Based XML WCF Web Service
Class WelcomeRESTXML (Fig. 22.13) uses the System.Net namespace’s WebClient class
(line 13) to invoke the web service and receive its response. In lines 23–25, we register a
handler for the WebClient’s DownloadStringCompleted event.

1 // Fig. 22.13: WelcomeRESTXML.cs
2 // Client that consumes the WelcomeRESTXMLService.
3 using System;
4 using System.Net;
5 using System.Windows.Forms;
6 using System.Xml.Linq;
7
8 namespace WelcomeRESTXMLClient
9 {

10 public partial class WelcomeRESTXML : Form
11 {
12
13
14
15 private XNamespace xmlNamespace = XNamespace.Get(
16 "http://schemas.microsoft.com/2003/10/Serialization/");
17
18 public WelcomeRESTXML()
19 {
20 InitializeComponent();
21
22
23
24
25
26 } // end constructor
27
28 // get user input and pass it to the web service
29 private void submitButton_Click(object sender, EventArgs e)
30 {
31
32
33
34
35 } // end method submitButton_Click
36
37
38
39
40 {
41 // check if any error occurred in retrieving service data
42 if (e.Error == null)
43 {
44 // parse the returned XML string (e.Result)
45 XDocument xmlResponse = XDocument.Parse(e.Result);
46

Fig. 22.13 | Client that consumes the WelcomeRESTXMLService. (Part 1 of 2.)

// object to invoke the WelcomeRESTXMLService
private WebClient client = new WebClient();

// add DownloadStringCompleted event handler to WebClient
client.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler(
 client_DownloadStringCompleted);

// send request to WelcomeRESTXMLService
client.DownloadStringAsync(new Uri(
 "http://localhost:49429/WelcomeRESTXMLService/Service.svc/" +
 "welcome/" + textBox.Text));

// process web service response
private void client_DownloadStringCompleted(
 object sender, DownloadStringCompletedEventArgs e)

iw3htp5_22_WCF.fm Page 836 Wednesday, November 16, 2011 11:52 AM

22.8 Publishing and Consuming REST-Based JSON Web Services 837

In this example, we process the WebClient’s DownloadStringCompleted event, which
occurs when the client receives the completed response from the web service. Lines 32–34
call the client object’s DownloadStringAsync method to invoke the web service asyn-
chronously. (There’s also a synchronous DownloadString method that does not return
until it receives the response.) The method’s argument (i.e., the URL to invoke the web
service) must be specified as an object of class Uri. Class Uri’s constructor receives a
string representing a uniform resource identifier. [Note: The URL’s port number must
match the one issued to the web service by the ASP.NET Development Server.] When the
call to the web service completes, the WebClient object raises the DownloadStringCom-
pleted event. Its event handler has a parameter e of type DownloadStringCompleted-
EventArgs which contains the information returned by the web service. We can use this
variable’s properties to get the returned XML document (e.Result) and any errors that
may have occurred during the process (e.Error). We then parse the XML response using
XDocument method Parse (line 45). In lines 15–16, we specify the XML message’s
namespace (seen in Fig. 22.12), and use it to parse the service’s XML response to display
our welcome string in a MessageBox (lines 48–49).

22.8 Publishing and Consuming REST-Based JSON Web
Services
We now build a RESTful web service that returns data in JSON format.

22.8.1 Creating a REST-Based JSON WCF Web Service
By default, a web-service method with the WebGet attribute returns data in XML format. In
Fig. 22.14, we modify the WelcomeRESTXMLService to return data in JSON format by set-
ting WebGet’s ResponseFormat property to WebMessageFormat.Json (line 13). (Web-
MessageFormat.XML is the default value.) For JSON serialization to work properly, the
objects being converted to JSON must have Public properties. This enables the JSON seri-
alization to create name/value pairs representing each Public property and its corresponding

47
48
49
50 } // end if
51 } // end method client_DownloadStringCompleted
52 } // end class WelcomeRESTXML
53 } // end namespace WelcomeRESTXMLClient

Fig. 22.13 | Client that consumes the WelcomeRESTXMLService. (Part 2 of 2.)

// get the <string> element's value
MessageBox.Show(xmlResponse.Element(
 xmlNamespace + "string").Value, "Welcome");

a) User inputs name b) Message sent from WelcomeRESTXMLService

iw3htp5_22_WCF.fm Page 837 Wednesday, November 16, 2011 11:52 AM

838 Chapter 22 Web Services in C#

value. The previous examples return String objects containing the responses. Even though
Strings are objects, Strings do not have any Public properties that represent their contents.
So, lines 19–25 define a TextMessage class that encapsulates a String value and defines a
Public property Message to access that value. The DataContract attribute (line 19) exposes
the TextMessage class to the client access. Similarly, the DataMember attribute (line 23)
exposes a property of this class to the client. This property will appear in the JSON object as
a name/value pair. Only DataMembers of a DataContract are serialized.

Figure 22.15 shows the implementation of the interface of Fig. 22.14. The Welcome
method (lines 7–15) returns a TextMessage object, reflecting the changes we made to the
interface class. This object is automatically serialized in JSON format (as a result of line
13 in Fig. 22.14) and sent to the client.

1 // Fig. 22.14: IWelcomeRESTJSONService.cs
2 // WCF web service interface that returns a welcome message through REST
3 // architecture and JSON format.
4
5 using System.ServiceModel;
6 using System.ServiceModel.Web;
7
8 [ServiceContract]
9 public interface IWelcomeRESTJSONService

10 {
11 // returns a welcome message
12 [OperationContract]
13 [WebGet(,
14 UriTemplate = "/welcome/{yourName}")]
15 TextMessage Welcome(string yourName);
16 } // end interface IWelcomeRESTJSONService
17
18 // class to encapsulate a string to send in JSON format
19
20 public class TextMessage
21 {
22 // automatic property message
23
24 public string Message {get; set; }
25 } // end class TextMessage

Fig. 22.14 | WCF web-service interface that returns a welcome message through REST
architecture and JSON format.

1 // Fig. 22.15: WelcomeRESTJSONService.cs
2 // WCF web service that returns a welcome message through REST
3 // architecture and JSON format.
4 public class WelcomeRESTJSONService : IWelcomeRESTJSONService
5 {

Fig. 22.15 | WCF web service that returns a welcome message through REST architecture and
JSON format. (Part 1 of 2.)

using System.Runtime.Serialization;

ResponseFormat = WebMessageFormat.Json

[DataContract]

[DataMember]

iw3htp5_22_WCF.fm Page 838 Wednesday, November 16, 2011 11:52 AM

22.8 Publishing and Consuming REST-Based JSON Web Services 839

We can once again test the web service using a web browser, by accessing the Ser-
vice.svc file (http://localhost:49745/WelcomeRESTJSONService/Service.svc) and
appending the URI template (welcome/yourName) to the address. The response prompts
you to download a file called yourName, which is a text file. If you save it to disk, the file
will have the .json extension. This contains the JSON formatted data. By opening the file
in a text editor such as Notepad (Fig. 22.16), you can see the service response as a JSON
object. Notice that the property named Message has the welcome message as its value.

22.8.2 Consuming a REST-Based JSON WCF Web Service
We mentioned earlier that all types passed to and from web services can be supported by
REST. Custom types that are sent to or from a REST web service are converted to XML
or JSON data format. This process is referred to as XML serialization or JSON serializa-
tion, respectively. In Fig. 22.17, we consume the WelcomeRESTJSONService service using
an object of the System.Runtime.Serialization.Json library’s DataContractJsonSeri-
alizer class (lines 44–45). The TextMessage class (lines 57–61) maps the JSON re-
sponse’s fields for the DataContractJsonSerializer to deserialize. We add the
Serializable attribute (line 57) to the TextMessage class to recognize it as a valid serial-
izable object we can convert to and from JSON format. Also, this class on the client must
have public data or properties that match the public data or properties in the correspond-
ing class from the web service. Since we want to convert the JSON response into a Text-
Message object, we set the DataContractJsonSerializer’s type parameter to
TextMessage (line 45). In line 48, we use the System.Text namespace’s Encoding.Uni-
code.GetBytes method to convert the JSON response to a Unicode encoded byte array,
and encapsulate the byte array in a MemoryStream object so we can read data from the array

6 // returns a welcome message
7 public TextMessage Welcome(string yourName)
8 {
9 // add welcome message to field of TextMessage object

10 message = new TextMessage();
11 message.Message = string.Format(
12 "Welcome to WCF Web Services with REST and JSON, {0}!",
13 yourName);
14 return message;
15 } // end method Welcome
16 } // end class WelcomeRESTJSONService

Fig. 22.16 | Response from WelcomeRESTJSONService in JSON data format.

Fig. 22.15 | WCF web service that returns a welcome message through REST architecture and
JSON format. (Part 2 of 2.)

TextMessage

iw3htp5_22_WCF.fm Page 839 Wednesday, November 16, 2011 11:52 AM

840 Chapter 22 Web Services in C#

using stream semantics. The bytes in the MemoryStream object are read by the DataCon-
tractJsonSerializer and deserialized into a TextMessage object (lines 47–48).

1 // Fig. 22.17: WelcomeRESTJSONForm.cs
2 // Client that consumes the WelcomeRESTJSONService.
3 using System;
4 using System.IO;
5 using System.Net;
6 using System.Runtime.Serialization.Json;
7 using System.Text;
8 using System.Windows.Forms;
9

10 namespace WelcomeRESTJSONClient
11 {
12 public partial class WelcomeRESTJSONForm : Form
13 {
14 // object to invoke the WelcomeRESTJSONService
15 private WebClient client = new WebClient();
16
17 public WelcomeRESTJSONForm()
18 {
19 InitializeComponent();
20
21 // add DownloadStringCompleted event handler to WebClient
22 client.DownloadStringCompleted+=
23 new DownloadStringCompletedEventHandler(
24 client_DownloadStringCompleted);
25 } // end constructor
26
27 // get user input and pass it to the web service
28 private void submitButton_Click(object sender, EventArgs e)
29 {
30 // send request to WelcomeRESTJSONService
31 client.DownloadStringAsync(new Uri(
32 "http://localhost:49579/WelcomeRESTJSONService/Service.svc/"
33 + "welcome/" + textBox.Text));
34 } // end method submitButton_Click
35
36 // process web service response
37 private void client_DownloadStringCompleted(
38 object sender, DownloadStringCompletedEventArgs e)
39 {
40 // check if any error occurred in retrieving service data
41 if (e.Error == null)
42 {
43
44
45
46
47
48
49

Fig. 22.17 | Client that consumes the WelcomeRESTJSONService. (Part 1 of 2.)

// deserialize response into a TextMessage object
DataContractJsonSerializer JSONSerializer =
 new DataContractJsonSerializer(typeof(TextMessage));
TextMessage message =
 (TextMessage) JSONSerializer.ReadObject(new
 MemoryStream(Encoding.Unicode.GetBytes(e.Result)));

iw3htp5_22_WCF.fm Page 840 Wednesday, November 16, 2011 11:52 AM

22.9 Using Session Tracking in a SOAP-Based WCF Web Service 841

22.9 Blackjack Web Service: Using Session Tracking in a
SOAP-Based WCF Web Service
In Chapter 20, we described the advantages of maintaining information about users to
personalize their experiences. In particular, we discussed session tracking using HttpSes-
sionState objects. Next, we incorporate session tracking into a SOAP-based WCF web
service.

Suppose a client application needs to call several methods from the same web service,
possibly several times each. In such a case, it can be beneficial for the web service to main-
tain state information for the client. Session tracking eliminates the need for information
about the client to be passed between the client and the web service multiple times. For
example, a web service providing access to local restaurant reviews would benefit from
storing the client user’s street address. Once the user’s address is stored in a session variable,
web service methods can return personalized, localized results without requiring that the
address be passed in each method call. This not only improves performance but also
requires less effort on your part—less information is passed in each method call.

22.9.1 Creating a Blackjack Web Service
Web services store session information to provide more intuitive functionality. Our next
example is a SOAP-based web service that assists programmers in developing a blackjack
card game. The web service provides methods to deal a card and to evaluate a hand of
cards. After presenting the web service, we use it to serve as the dealer for a game of black-
jack. The blackjack web service creates a session variable to maintain a unique deck of
cards for each client application. Several clients can use the service at the same time, but

50
51
52 } // end if
53 } // end method client_DownloadStringCompleted
54 } // end class WelcomeRESTJSONForm
55
56 // TextMessage class representing a JSON object
57 [Serializable]
58 public class TextMessage
59 {
60 public string Message;
61 } // end class TextMessage
62 } // end namespace WelcomeRESTJSONClient

Fig. 22.17 | Client that consumes the WelcomeRESTJSONService. (Part 2 of 2.)

// display Message text
MessageBox.Show(message.Message, "Welcome");

a) User inputs name b) Message sent from WelcomeRESTJSONService

iw3htp5_22_WCF.fm Page 841 Wednesday, November 16, 2011 11:52 AM

842 Chapter 22 Web Services in C#

method calls made by a specific client use only the deck stored in that client’s session. Our
example uses a simple subset of casino blackjack rules:

Two cards each are dealt to the dealer and the player. The player’s cards are dealt face
up. Only the dealer’s first card is dealt face up. Each card has a value. A card numbered
2 through 10 is worth its face value. Jacks, queens and kings each count as 10. Aces can
count as 1 or 11—whichever value is more beneficial to the player (as we’ll soon see). If
the sum of the player’s two initial cards is 21 (that is, the player was dealt a card valued
at 10 and an ace, which counts as 11 in this situation), the player has “blackjack” and
immediately wins the game. Otherwise, the player can begin taking additional cards
one at a time. These cards are dealt face up, and the player decides when to stop taking
cards. If the player “busts” (that is, the sum of the player’s cards exceeds 21), the game is
over, and the player loses. When the player is satisfied with the current set of cards, the
player “stays” (that is, stops taking cards), and the dealer’s hidden card is revealed. If the
dealer’s total is 16 or less, the dealer must take another card; otherwise, the dealer must
stay. The dealer must continue to take cards until the sum of the dealer’s cards is greater
than or equal to 17. If the dealer exceeds 21, the player wins. Otherwise, the hand with
the higher point total wins. If the dealer and the player have the same point total, the
game is a “push” (that is, a tie), and no one wins.

The Blackjack WCF web service’s interface (Fig. 22.18) uses a ServiceContract with
the SessionMode property set to Required (line 5). This means the service requires sessions
to execute correctly. By default, the SessionMode property is set to Allowed. It can also be
set to NotAllowed to disable sessions.

The web-service class (Fig. 22.19) provides methods to deal a card, shuffle the deck
and determine the point value of a hand. For this example, we want a separate object of
the BlackjackService class to handle each client session, so we can maintain a unique
deck for each client. To do this, we must specify this behavior in the ServiceBehavior
attribute (line 7). Setting the ServiceBehavior’s InstanceContextMode property to

1 // Fig. 22.18: IBlackjackService.cs
2 // Blackjack game WCF web service interface.
3 using System.ServiceModel;
4
5
6 public interface IBlackjackService
7 {
8 // deals a card that has not been dealt
9 [OperationContract]

10 string DealCard();
11
12 // creates and shuffle the deck
13 [OperationContract]
14 void Shuffle();
15
16 // calculates value of a hand
17 [OperationContract]
18 int GetHandValue(string dealt);
19 } // end interface IBlackjackService

Fig. 22.18 | Blackjack game WCF web-service interface.

[ServiceContract(SessionMode = SessionMode.Required)]

iw3htp5_22_WCF.fm Page 842 Wednesday, November 16, 2011 11:52 AM

22.9 Using Session Tracking in a SOAP-Based WCF Web Service 843

PerSession creates a new instance of the class for each session. The InstanceContextMode
property can also be set to PerCall or Single. PerCall uses a new object of the web-ser-
vice class to handle every method call to the service. Single uses the same object of the
web-service class to handle all calls to the service.

1 // Fig. 22.19: BlackjackService.cs
2 // Blackjack game WCF web service.
3 using System;
4 using System.Collections.Generic;
5 using System.ServiceModel;
6
7
8 public class BlackjackService :
9 {

10 // create persistent session deck of cards object
11 List< string > deck = new List< string >();
12
13 // deals card that has not yet been dealt
14 public string DealCard()
15 {
16 string card = deck[0]; // get first card
17 deck.RemoveAt(0); // remove card from deck
18 return card;
19 } // end method DealCard
20
21 // creates and shuffles a deck of cards
22 public void Shuffle()
23 {
24 Random randomObject = new Random(); // generates random numbers
25
26 deck.Clear(); // clears deck for new game
27
28 // generate all possible cards
29 for (int face = 1; face <= 13; face++) // loop through faces
30 for (int suit = 0; suit <= 3; suit++) // loop through suits
31 deck.Add(face + " " + suit); // add card (string) to deck
32
33 // shuffles deck by swapping each card with another card randomly
34 for (int i = 0; i < deck.Count; i++)
35 {
36 // get random index
37 int newIndex = randomObject.Next(deck.Count - 1);
38
39 // save current card in temporary variable
40 string temporary = deck[i];
41 deck[i] = deck[newIndex]; // copy randomly selected card
42
43 // copy current card back into deck
44 deck[newIndex] = temporary;
45 } // end for
46 } // end method Shuffle
47

Fig. 22.19 | Blackjack game WCF web service. (Part 1 of 2.)

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerSession)]
IBlackjackService

iw3htp5_22_WCF.fm Page 843 Wednesday, November 16, 2011 11:52 AM

844 Chapter 22 Web Services in C#

We represent each card as a string consisting of a digit (that is, 1–13) representing
the card’s face (for example, ace through king), followed by a space and a digit (that is, 0–
3) representing the card’s suit (for example, clubs, diamonds, hearts or spades). For
example, the jack of hearts is represented as "11 2", and the two of clubs as "2 0". After

48 // computes value of hand
49 public int GetHandValue(string dealt)
50 {
51 // split string containing all cards
52 string[] cards = dealt.Split('\t'); // get array of cards
53 int total = 0; // total value of cards in hand
54 int face; // face of the current card
55 int aceCount = 0; // number of aces in hand
56
57 // loop through the cards in the hand
58 foreach (var card in cards)
59 {
60 // get face of card
61 face = Convert.ToInt32(
62 card.Substring(0, card.IndexOf(' ')));
63
64 switch (face)
65 {
66 case 1: // if ace, increment aceCount
67 ++aceCount;
68 break;
69 case 11: // if jack add 10
70 case 12: // if queen add 10
71 case 13: // if king add 10
72 total += 10;
73 break;
74 default: // otherwise, add value of face
75 total += face;
76 break;
77 } // end switch
78 } // end foreach
79
80 // if there are any aces, calculate optimum total
81 if (aceCount > 0)
82 {
83 // if it is possible to count one ace as 11, and the rest
84 // as 1 each, do so; otherwise, count all aces as 1 each
85 if (total + 11 + aceCount - 1 <= 21)
86 total += 11 + aceCount - 1;
87 else
88 total += aceCount;
89 } // end if
90
91 return total;
92 } // end method GetHandValue
93 } // end class BlackjackService

Fig. 22.19 | Blackjack game WCF web service. (Part 2 of 2.)

iw3htp5_22_WCF.fm Page 844 Wednesday, November 16, 2011 11:52 AM

22.9 Using Session Tracking in a SOAP-Based WCF Web Service 845

deploying the web service, we create a Windows Forms application that uses the Black-
jackService’s methods to implement a blackjack game.

Method DealCard
Method DealCard (lines 14–19) removes a card from the deck and sends it to the client.
Without using session tracking, the deck of cards would need to be passed back and forth
with each method call. Using session state makes the method easy to call (it requires no
arguments) and avoids the overhead of sending the deck over the network multiple times.

This method manipulates the current user’s deck (the List of strings defined at line
11). From the user’s deck, DealCard obtains the current top card (line 16), removes the
top card from the deck (line 17) and returns the card’s value as a string (line 18).

Method Shuffle
Method Shuffle (lines 22–46) fills and shuffles the List representing a deck of cards.
Lines 29–31 generate strings in the form "face suit" to represent each card in a deck.
Lines 34–45 shuffle the deck by swapping each card with a randomly selected other card.

Method GetHandValue
Method GetHandValue (lines 49–92) determines the total value of cards in a hand by try-
ing to attain the highest score possible without going over 21. Recall that an ace can be
counted as either 1 or 11, and all face cards count as 10.

As you’ll see in Fig. 22.20, the client application maintains a hand of cards as a string
in which each card is separated by a tab character. Line 52 of Fig. 22.19 tokenizes the hand
of cards (represented by dealt) into individual cards by calling string method Split and
passing to it the tab character. Split uses the delimiter characters to separate tokens in the
string. Lines 58–78 count the value of each card. Lines 61–62 retrieve the first integer—
the face—and use that value in the switch statement (lines 64–77). If the card is an ace,
the method increments variable aceCount (line 67). We discuss how this variable is used
shortly. If the card is an 11, 12 or 13 (jack, queen or king), the method adds 10 to the total
value of the hand (line 72). If the card is anything else, the method increases the total by
that value (line 75).

Because an ace can represent 1 or 11, additional logic is required to process aces. Lines
81–89 process the aces after all the other cards. If a hand contains several aces, only one
ace can be counted as 11 (if two aces each are counted as 11, the hand would have a losing
value of at least 22). The condition in line 85 determines whether counting one ace as 11
and the rest as 1 results in a total that does not exceed 21. If this is possible, line 86 adjusts
the total accordingly. Otherwise, line 88 adjusts the total, counting each ace as 1.

Method GetHandValue maximizes the value of the current cards without exceeding
21. Imagine, for example, that the dealer has a 7 and receives an ace. The new total could
be either 8 or 18. However, GetHandValue always maximizes the value of the cards without
going over 21, so the new total is 18.

Modifying the web.config File
To allow this web service to perform session tracking, you must modify the web.config
file to include the following element in the system.serviceModel element:s

<protocolMapping>
 <add scheme="http" binding="wsHttpBinding"/>
</protocolMapping>

iw3htp5_22_WCF.fm Page 845 Wednesday, November 16, 2011 11:52 AM

846 Chapter 22 Web Services in C#

22.9.2 Consuming the Blackjack Web Service
We use our blackjack web service in a Windows application (Fig. 22.20). This application
uses an instance of BlackjackServiceClient (declared in line 14 and created in line 48)
to represent the dealer. The web service keeps track of the cards dealt to the player and the
dealer. As in Section 22.6.5, you must add a service reference to your project so it can ac-
cess the service. The images for this example are provided with the chapter’s examples.

Each player has 11 PictureBoxes—the maximum number of cards that can be dealt
without exceeding 21 (that is, four aces, four twos and three threes). These PictureBoxes
are placed in a List (lines 51–73), so we can index the List during the game to determine
which PictureBox should display a particular card image. The images are located in the
blackjack_images directory with this chapter’s examples. Drag this directory from Win-
dows Explorer into your project. In the Solution Explorer, select all the files in that folder
and set their Copy to Output Directory property to Copy if newer.

GameOver Method
Method GameOver (lines 169–202) shows an appropriate message in the status PictureBox
and displays the final point totals of both the dealer and the player. These values are ob-
tained by calling the web service’s GetHandValue method in lines 194 and 196. Method
GameOver receives as an argument a member of the GameStatus enumeration (defined in
lines 31–37). The enumeration represents whether the player tied, lost or won the game;
its four members are PUSH, LOSE, WIN and BLACKJACK.

1 // Fig. 22.20: Blackjack.cs
2 // Blackjack game that uses the BlackjackService web service.
3 using System;
4 using System.Drawing;
5 using System.Windows.Forms;
6 using System.Collections.Generic;
7 using System.Resources;
8
9 namespace BlackjackClient

10 {
11 public partial class Blackjack : Form
12 {
13
14
15
16 // string representing the dealer's cards
17 private string dealersCards;
18
19 // string representing the player's cards
20 private string playersCards;
21
22 // list of PictureBoxes for card images
23 private List< PictureBox > cardBoxes;
24 private int currentPlayerCard; // player's current card number
25 private int currentDealerCard; // dealer's current card number
26

Fig. 22.20 | Blackjack game that uses the BlackjackService web service. (Part 1 of 9.)

// reference to web service
private ServiceReference.BlackjackServiceClient dealer;

iw3htp5_22_WCF.fm Page 846 Wednesday, November 16, 2011 11:52 AM

22.9 Using Session Tracking in a SOAP-Based WCF Web Service 847

27 private ResourceManager pictureLibrary =
28 BlackjackClient.Properties.Resources.ResourceManager;
29
30 // enum representing the possible game outcomes
31 public enum GameStatus
32 {
33 PUSH, // game ends in a tie
34 LOSE, // player loses
35 WIN, // player wins
36 BLACKJACK // player has blackjack
37 } // end enum GameStatus
38
39 public Blackjack()
40 {
41 InitializeComponent();
42 } // end constructor
43
44 // sets up the game
45 private void Blackjack_Load(object sender, EventArgs e)
46 {
47
48
49
50 // put PictureBoxes into cardBoxes List
51 cardBoxes = new List<PictureBox>(); // create list
52 cardBoxes.Add(pictureBox1);
53 cardBoxes.Add(pictureBox2);
54 cardBoxes.Add(pictureBox3);
55 cardBoxes.Add(pictureBox4);
56 cardBoxes.Add(pictureBox5);
57 cardBoxes.Add(pictureBox6);
58 cardBoxes.Add(pictureBox7);
59 cardBoxes.Add(pictureBox8);
60 cardBoxes.Add(pictureBox9);
61 cardBoxes.Add(pictureBox10);
62 cardBoxes.Add(pictureBox11);
63 cardBoxes.Add(pictureBox12);
64 cardBoxes.Add(pictureBox13);
65 cardBoxes.Add(pictureBox14);
66 cardBoxes.Add(pictureBox15);
67 cardBoxes.Add(pictureBox16);
68 cardBoxes.Add(pictureBox17);
69 cardBoxes.Add(pictureBox18);
70 cardBoxes.Add(pictureBox19);
71 cardBoxes.Add(pictureBox20);
72 cardBoxes.Add(pictureBox21);
73 cardBoxes.Add(pictureBox22);
74 } // end method Blackjack_Load
75
76 // deals cards to dealer while dealer's total is less than 17,
77 // then computes value of each hand and determines winner
78 private void DealerPlay()
79 {

Fig. 22.20 | Blackjack game that uses the BlackjackService web service. (Part 2 of 9.)

// instantiate object allowing communication with web service
dealer = new ServiceReference.BlackjackServiceClient();

iw3htp5_22_WCF.fm Page 847 Wednesday, November 16, 2011 11:52 AM

848 Chapter 22 Web Services in C#

80 // reveal dealer's second card
81 string[] cards = dealersCards.Split('\t');
82 DisplayCard(1, cards[1]);
83
84 string nextCard;
85
86 // while value of dealer's hand is below 17,
87 // dealer must take cards
88 while () < 17)
89 {
90 nextCard = dealer.DealCard(); // deal new card
91 dealersCards += '\t' + nextCard; // add new card to hand
92
93 // update GUI to show new card
94 MessageBox.Show("Dealer takes a card");
95 DisplayCard(currentDealerCard, nextCard);
96 ++currentDealerCard;
97 } // end while
98
99 int dealersTotal = ;
100 int playersTotal = ;
101
102 // if dealer busted, player wins
103 if (dealersTotal > 21)
104 {
105 GameOver(GameStatus.WIN);
106 } // end if
107 else
108 {
109 // if dealer and player have not exceeded 21,
110 // higher score wins; equal scores is a push.
111 if (dealersTotal > playersTotal) // player loses game
112 GameOver(GameStatus.LOSE);
113 else if (playersTotal > dealersTotal) // player wins game
114 GameOver(GameStatus.WIN);
115 else // player and dealer tie
116 GameOver(GameStatus.PUSH);
117 } // end else
118 } // end method DealerPlay
119
120 // displays card represented by cardValue in specified PictureBox
121 public void DisplayCard(int card, string cardValue)
122 {
123 // retrieve appropriate PictureBox
124 PictureBox displayBox = cardBoxes[card];
125
126 // if string representing card is empty,
127 // set displayBox to display back of card
128 if (string.IsNullOrEmpty(cardValue))
129 {
130 displayBox.Image =
131 (Image) pictureLibrary.GetObject("cardback");

Fig. 22.20 | Blackjack game that uses the BlackjackService web service. (Part 3 of 9.)

dealer.GetHandValue(dealersCards

dealer.GetHandValue(dealersCards)
dealer.GetHandValue(playersCards)

iw3htp5_22_WCF.fm Page 848 Wednesday, November 16, 2011 11:52 AM

22.9 Using Session Tracking in a SOAP-Based WCF Web Service 849

132 return;
133 } // end if
134
135 // retrieve face value of card from cardValue
136 string face =
137 cardValue.Substring(0, cardValue.IndexOf(' '));
138
139 // retrieve the suit of the card from cardValue
140 string suit =
141 cardValue.Substring(cardValue.IndexOf(' ') + 1);
142
143 char suitLetter; // suit letter used to form image file name
144
145 // determine the suit letter of the card
146 switch (Convert.ToInt32(suit))
147 {
148 case 0: // clubs
149 suitLetter = 'c';
150 break;
151 case 1: // diamonds
152 suitLetter = 'd';
153 break;
154 case 2: // hearts
155 suitLetter = 'h';
156 break;
157 default: // spades
158 suitLetter = 's';
159 break;
160 } // end switch
161
162 // set displayBox to display appropriate image
163 displayBox.Image = (Image) pictureLibrary.GetObject(
164 "_" + face + suitLetter);
165 } // end method DisplayCard
166
167 // displays all player cards and shows
168 // appropriate game status message
169 public void GameOver(GameStatus winner)
170 {
171 string[] cards = dealersCards.Split('\t');
172
173 // display all the dealer's cards
174 for (int i = 0; i < cards.Length; i++)
175 DisplayCard(i, cards[i]);
176
177 // display appropriate status image
178 if (winner == GameStatus.PUSH) // push
179 statusPictureBox.Image =
180 (Image) pictureLibrary.GetObject("tie");
181 else if (winner == GameStatus.LOSE) // player loses
182 statusPictureBox.Image =
183 (Image) pictureLibrary.GetObject("lose");

Fig. 22.20 | Blackjack game that uses the BlackjackService web service. (Part 4 of 9.)

iw3htp5_22_WCF.fm Page 849 Wednesday, November 16, 2011 11:52 AM

850 Chapter 22 Web Services in C#

184 else if (winner == GameStatus.BLACKJACK)
185 // player has blackjack
186 statusPictureBox.Image =
187 (Image) pictureLibrary.GetObject("blackjack");
188 else // player wins
189 statusPictureBox.Image =
190 (Image) pictureLibrary.GetObject("win");
191
192 // display final totals for dealer and player
193 dealerTotalLabel.Text =
194 "Dealer: " + ;
195 playerTotalLabel.Text =
196 "Player: " + ;
197
198 // reset controls for new game
199 stayButton.Enabled = false;
200 hitButton.Enabled = false;
201 dealButton.Enabled = true;
202 } // end method GameOver
203
204 // deal two cards each to dealer and player
205 private void dealButton_Click(object sender, EventArgs e)
206 {
207 string card; // stores a card temporarily until added to a hand
208
209 // clear card images
210 foreach (PictureBox cardImage in cardBoxes)
211 cardImage.Image = null;
212
213 statusPictureBox.Image = null; // clear status image
214 dealerTotalLabel.Text = string.Empty; // clear dealer total
215 playerTotalLabel.Text = string.Empty; // clear player total
216
217
218
219
220 // deal two cards to player
221
222 DisplayCard(11, playersCards); // display card
223
224 DisplayCard(12, card); // update GUI to display new card
225 playersCards += '\t' + card; // add second card to player's hand
226
227 // deal two cards to dealer, only display face of first card
228
229 DisplayCard(0, dealersCards); // display card
230
231 DisplayCard(1, string.Empty); // display card face down
232 dealersCards += '\t' + card; // add second card to dealer's hand
233
234 stayButton.Enabled = true; // allow player to stay
235 hitButton.Enabled = true; // allow player to hit
236 dealButton.Enabled = false; // disable Deal Button

Fig. 22.20 | Blackjack game that uses the BlackjackService web service. (Part 5 of 9.)

dealer.GetHandValue(dealersCards)

dealer.GetHandValue(playersCards)

// create a new, shuffled deck on the web service host
dealer.Shuffle();

playersCards = dealer.DealCard(); // deal first card to player

card = dealer.DealCard(); // deal second card to player

dealersCards = dealer.DealCard(); // deal first card to dealer

card = dealer.DealCard(); // deal second card to dealer

iw3htp5_22_WCF.fm Page 850 Wednesday, November 16, 2011 11:52 AM

22.9 Using Session Tracking in a SOAP-Based WCF Web Service 851

237
238 // determine the value of the two hands
239 int dealersTotal = ;
240 int playersTotal = ;
241
242 // if hands equal 21, it is a push
243 if (dealersTotal == playersTotal && dealersTotal == 21)
244 GameOver(GameStatus.PUSH);
245 else if (dealersTotal == 21) // if dealer has 21, dealer wins
246 GameOver(GameStatus.LOSE);
247 else if (playersTotal == 21) // player has blackjack
248 GameOver(GameStatus.BLACKJACK);
249
250 // next dealer card has index 2 in cardBoxes
251 currentDealerCard = 2;
252
253 // next player card has index 13 in cardBoxes
254 currentPlayerCard = 13;
255 } // end method dealButton
256
257 // deal another card to player
258 private void hitButton_Click(object sender, EventArgs e)
259 {
260 string card = ; // deal new card
261 playersCards += '\t' + card; // add new card to player's hand
262
263 DisplayCard(currentPlayerCard, card); // display card
264 ++currentPlayerCard;
265
266 // determine the value of the player's hand
267 int total = ;
268
269 // if player exceeds 21, house wins
270 if (total > 21)
271 GameOver(GameStatus.LOSE);
272 else if (total == 21) // if player has 21, dealer's turn
273 {
274 hitButton.Enabled = false;
275 DealerPlay();
276 } // end if
277 } // end method hitButton_Click
278
279 // play the dealer's hand after the player chooses to stay
280 private void stayButton_Click(object sender, EventArgs e)
281 {
282 stayButton.Enabled = false; // disable Stay Button
283 hitButton.Enabled = false; // disable Hit Button
284 dealButton.Enabled = true; // enable Deal Button
285 DealerPlay(); // player chose to stay, so play the dealer's hand
286 } // end method stayButton_Click
287 } // end class Blackjack
288 } // end namespace BlackjackClient

Fig. 22.20 | Blackjack game that uses the BlackjackService web service. (Part 6 of 9.)

dealer.GetHandValue(dealersCards)
dealer.GetHandValue(playersCards)

dealer.DealCard()

dealer.GetHandValue(playersCards)

iw3htp5_22_WCF.fm Page 851 Wednesday, November 16, 2011 11:52 AM

852 Chapter 22 Web Services in C#

Fig. 22.20 | Blackjack game that uses the BlackjackService web service. (Part 7 of 9.)

a) Initial cards dealt to the player and the dealer when the user presses the Deal button.

b) Cards after the player presses the Hit button once, then the Stay button. In this case, the
player wins the game with a higher total than the dealer.

iw3htp5_22_WCF.fm Page 852 Wednesday, November 16, 2011 11:52 AM

22.9 Using Session Tracking in a SOAP-Based WCF Web Service 853

Fig. 22.20 | Blackjack game that uses the BlackjackService web service. (Part 8 of 9.)

c) Cards after the player presses the Hit button once, then the Stay button. In this case, the
player busts (exceeds 21) and the dealer wins the game.

d) Cards after the player presses the Deal button. In this case, the player wins with Blackjack
because the first two cards are an ace and a card with a value of 10 (a jack in this case).

iw3htp5_22_WCF.fm Page 853 Wednesday, November 16, 2011 11:52 AM

854 Chapter 22 Web Services in C#

dealButton_Click Method
When the player clicks the Deal button, the event handler (lines 205–255) clears the
PictureBoxes and the Labels displaying the final point totals. Line 218 shuffles the deck
by calling the web service’s Shuffle method, then the player and dealer receive two cards
each (returned by calls to the web service’s DealCard method in lines 221, 223, 228 and
230). Lines 239–240 evaluate both the dealer’s and player’s hands by calling the web ser-
vice’s GetHandValue method. If the player and the dealer both obtain scores of 21, the pro-
gram calls method GameOver, passing GameStatus.PUSH. If only the player has 21 after the
first two cards are dealt, the program passes GameStatus.BLACKJACK to method GameOver.
If only the dealer has 21, the program passes GameStatus.LOSE to method GameOver.

hitButton_Click Method
If dealButton_Click does not call GameOver, the player can take more cards by clicking
the Hit button. The event handler for this button is in lines 258–277. Each time a player
clicks Hit, the program deals the player one more card (line 260), displaying it in the GUI.
Line 267 evaluates the player’s hand. If the player exceeds 21, the game is over, and the
player loses. If the player has exactly 21, the player cannot take any more cards, and meth-
od DealerPlay (lines 78–118) is called, causing the dealer to keep taking cards until the
dealer’s hand has a value of 17 or more (lines 88–97). If the dealer exceeds 21, the player
wins (line 105); otherwise, the values of the hands are compared, and GameOver is called
with the appropriate argument (lines 111–116).

Fig. 22.20 | Blackjack game that uses the BlackjackService web service. (Part 9 of 9.)

e) Cards after the player presses the Stay button. In this case, the player and dealer push—
they have the same card total.

iw3htp5_22_WCF.fm Page 854 Wednesday, November 16, 2011 11:52 AM

22.10 Database Access and Invoking a Service from ASP.NET 855

hitButton_Click Method
Clicking the Stay button indicates that a player does not want to be dealt another card.
The event handler for this button (lines 280–286) disables the Hit and Stay buttons, then
calls method DealerPlay.

DisplayCard Method
Method DisplayCard (lines 121–165) updates the GUI to display a newly dealt card. The
method takes as arguments an integer representing the index of the PictureBox in the
List that must have its image set, and a string representing the card. An empty string
indicates that we wish to display the card face down. If method DisplayCard receives a
string that’s not empty, the program extracts the face and suit from the string and uses
this information to find the correct image. The switch statement (lines 146–160) converts
the number representing the suit to an int and assigns the appropriate character literal to
suitLetter (c for clubs, d for diamonds, h for hearts and s for spades). The character in
suitLetter is used to complete the image’s file name (lines 163–164).

22.10 Airline Reservation Web Service: Database
Access and Invoking a Service from ASP.NET
Our prior examples accessed web services from Windows Forms applications. You can just
as easily use web services in ASP.NET web applications. In fact, because web-based busi-
nesses are becoming increasingly prevalent, it is common for web applications to consume
web services. Figures 22.21 and 22.22 present the interface and class, respectively, for an
airline reservation service that receives information regarding the type of seat a customer
wishes to reserve, checks a database to see if such a seat is available and, if so, makes a res-
ervation. Later in this section, we present an ASP.NET web application that allows a cus-
tomer to specify a reservation request, then uses the airline reservation web service to
attempt to execute the request. The code and database used in this example are provided
with the chapter’s examples.

1 // Fig. 22.21: IReservationService.cs
2 // Airline reservation WCF web service interface.
3 using System.ServiceModel;
4
5
6 public interface IReservationService
7 {
8 // reserves a seat
9

10 bool Reserve(string seatType, string classType);
11 } // end interface IReservationService

Fig. 22.21 | Airline reservation WCF web-service interface.

1 // Fig. 22.22: ReservationService.cs
2 // Airline reservation WCF web service.
3 using System.Linq;

Fig. 22.22 | Airline reservation WCF web service. (Part 1 of 2.)

[ServiceContract]

[OperationContract]

iw3htp5_22_WCF.fm Page 855 Wednesday, November 16, 2011 11:52 AM

856 Chapter 22 Web Services in C#

 We added the Tickets.mdf database and corresponding LINQ to SQL classes to
create a DataContext object (Fig. 22.22, line 8) for our ticket reservation system.
Tickets.mdf database contains the Seats table with four columns—the seat number (1–
10), the seat type (Window, Middle or Aisle), the class (Economy or First) and a column
containing either 1 (true) or 0 (false) to indicate whether the seat is taken.

This web service has a single method—Reserve (lines 11–32)—which searches a seat
database (Tickets.mdf) to locate a seat matching a user’s request. If it finds an appropriate
seat, Reserve updates the database, makes the reservation and returns true; otherwise, no
reservation is made, and the method returns false. The statements in lines 14–18 and
lines 24–29, which query and update the database, use LINQ to SQL.

Reserve receives two parameters—a string representing the seat type (that is,
Window, Middle or Aisle) and a string representing the class type (that is, Economy or
First). Lines 15–18 retrieve the seat numbers of any available seats matching the
requested seat and class type with the results of a query. Line 21 gets the first matching
seat (or null if there is not one). If there is a matching seat (line 24), the web service
reserves that seat. Line 26 marks the seat as taken and line 27 submits the changes to the
database. Method Reserve returns true (line 28) to indicate that the reservation was suc-

4
5 public class ReservationService :
6 {
7
8
9

10 // checks database to determine whether matching seat is available
11 public bool Reserve(string seatType, string classType)
12 {
13 // LINQ query to find seats matching the parameters
14 var result =
15 from seat in ticketsDB.Seats
16 where (seat.Taken == false) && (seat.Type == seatType) &&
17 (seat.Class == classType)
18 select seat;
19
20 // get first available seat
21 Seat firstAvailableSeat = ;
22
23 // if seat is available seats, mark it as taken
24 if (firstAvailableSeat != null)
25 {
26 firstAvailableSeat.Taken = true; // mark the seat as taken
27 ticketsDB.SubmitChanges(); // update
28 return true; // seat was reserved
29 } // end if
30
31 return false; // no seat was reserved
32 } // end method Reserve
33 } // end class ReservationService

Fig. 22.22 | Airline reservation WCF web service. (Part 2 of 2.)

IReservationService

// create ticketsDB object to access Tickets database
private TicketsDataContext ticketsDB = new TicketsDataContext();

result.FirstOrDefault()

iw3htp5_22_WCF.fm Page 856 Wednesday, November 16, 2011 11:52 AM

22.10 Database Access and Invoking a Service from ASP.NET 857

cessful. If there are no matching seats, Reserve returns false (line 31) to indicate that no
seats matched the user’s request.

Creating a Web Form to Interact with the Airline Reservation Web Service
Figure 22.23 shows an ASP.NET page through which users can select seat types. This page
allows users to reserve a seat on the basis of its class (Economy or First) and location
(Aisle, Middle or Window) in a row of seats. The page then uses the airline reservation web
service to carry out user requests. If the database request is not successful, the user is in-
structed to modify the request and try again. When you create this ASP.NET application,
remember to add a service reference to the ReservationService.

This page defines two DropDownList objects and a Button. One DropDownList dis-
plays all the seat types from which users can select (Aisle, Middle, Window). The second
provides choices for the class type. Users click the Button named reserveButton to
submit requests after making selections from the DropDownLists. The page also defines an
initially blank Label named errorLabel, which displays an appropriate message if no seat
matching the user’s selection is available. The code-behind file is shown in Fig. 22.24.

Fig. 22.23 | ASPX file that takes reservation information.

1 // Fig. 22.24: ReservationClient.aspx.cs
2 // ReservationClient code behind file.
3 using System;
4
5 public partial class ReservationClient : System.Web.UI.Page
6 {
7
8
9

10
11 // attempt to reserve the selected type of seat
12 protected void reserveButton_Click(object sender, EventArgs e)
13 {
14 // if the ticket is reserved
15
16
17 {

Fig. 22.24 | ReservationClient code-behind file. (Part 1 of 2.)

// object of proxy type used to connect to ReservationService
private ServiceReference.ReservationServiceClient ticketAgent =
 new ServiceReference.ReservationServiceClient();

if (ticketAgent.Reserve(seatList.SelectedItem.Text,
 classList.SelectedItem.Text))

iw3htp5_22_WCF.fm Page 857 Wednesday, November 16, 2011 11:52 AM

858 Chapter 22 Web Services in C#

Lines 8–9 of Fig. 22.24 creates a ReservationServiceClient proxy object. When the
user clicks Reserve (Fig. 22.25(a)), the reserveButton_Click event handler (lines 12–34
of Fig. 22.24) executes, and the page reloads. The event handler calls the web service’s
Reserve method and passes to it the selected seat and class type as arguments (lines 15–16).
If Reserve returns true, the application hides the GUI controls and displays a message
thanking the user for making a reservation (line 26); otherwise, the application notifies the
user that the type of seat requested is not available and instructs the user to try again (lines

18 // hide other controls
19 instructionsLabel.Visible = false;
20 seatList.Visible = false;
21 classList.Visible = false;
22 reserveButton.Visible = false;
23 errorLabel.Visible = false;
24
25 // display message indicating success
26 Response.Write("Your reservation has been made. Thank you.");
27 } // end if
28 else // service method returned false, so signal failure
29 {
30 // display message in the initially blank errorLabel
31 errorLabel.Text = "This type of seat is not available. " +
32 "Please modify your request and try again.";
33 } // end else
34 } // end method reserveButton_Click
35 } // end class ReservationClient

Fig. 22.25 | Ticket reservation web-application sample execution. (Part 1 of 2.)

Fig. 22.24 | ReservationClient code-behind file. (Part 2 of 2.)

a) Selecting a seat

b) Seat is reserved successfully

iw3htp5_22_WCF.fm Page 858 Wednesday, November 16, 2011 11:52 AM

22.11 Equation Generator: Returning User-Defined Types 859

31–32). You can use the techniques presented in Chapter 20 to build this ASP.NET Web
Form. Figure 22.25 shows several user interactions with this web application.

22.11 Equation Generator: Returning User-Defined Types
With the exception of the WelcomeRESTJSONService (Fig. 22.15), the web services we’ve
demonstrated all received and returned primitive-type instances. It is also possible to pro-
cess instances of complete user-defined types in a web service. These types can be passed
to or returned from web-service methods.

This section presents an EquationGenerator web service that generates random arith-
metic equations of type Equation. The client is a math-tutoring application that inputs
information about the mathematical question that the user wishes to attempt (addition,
subtraction or multiplication) and the skill level of the user (1 specifies equations using
numbers from 1 to 10, 2 specifies equations involving numbers from 10 to 100, and 3
specifies equations containing numbers from 100 to 1000). The web service then gener-
ates an equation consisting of random numbers in the proper range. The client application
receives the Equation and displays the sample question to the user.

Defining Class Equation
We define class Equation in Fig. 22.26. Lines 33–53 define a constructor that takes three
arguments—two ints representing the left and right operands and a string that repre-
sents the arithmetic operation to perform. The constructor sets the Equation’s properties,
then calculates the appropriate result. The parameterless constructor (lines 26–30) calls
the three-argument constructor (lines 33–53) and passes default values.

Fig. 22.25 | Ticket reservation web-application sample execution. (Part 2 of 2.)

c) Attempting to reserve another seat

d) No seats match the requested type and class

iw3htp5_22_WCF.fm Page 859 Wednesday, November 16, 2011 11:52 AM

860 Chapter 22 Web Services in C#

1 // Fig. 22.26: Equation.cs
2 // Class Equation that contains information about an equation.
3 using System.Runtime.Serialization;
4
5
6 public class Equation
7 {
8 // automatic property to access the left operand
9

10 private int Left { get; set; }
11
12 // automatic property to access the right operand
13
14 private int Right { get; set; }
15
16 // automatic property to access the result of applying
17 // an operation to the left and right operands
18
19 private int Result { get; set; }
20
21 // automatic property to access the operation
22
23 private string Operation { get; set; }
24
25 // required default constructor
26 public Equation()
27 : this(0, 0, "add")
28 {
29 // empty body
30 } // end default constructor
31
32 // three-argument constructor for class Equation
33 public Equation(int leftValue, int rightValue, string type)
34 {
35 Left = leftValue;
36 Right = rightValue;
37
38 switch (type) // perform appropriate operation
39 {
40 case "add": // addition
41 Result = Left + Right;
42 Operation = "+";
43 break;
44 case "subtract": // subtraction
45 Result = Left - Right;
46 Operation = "-";
47 break;
48 case "multiply": // multiplication
49 Result = Left * Right;
50 Operation = "*";
51 break;
52 } // end switch
53 } // end three-argument constructor

Fig. 22.26 | Class Equation that contains information about an equation. (Part 1 of 2.)

[DataContract]

[DataMember]

[DataMember]

[DataMember]

[DataMember]

iw3htp5_22_WCF.fm Page 860 Wednesday, November 16, 2011 11:52 AM

22.11 Equation Generator: Returning User-Defined Types 861

Class Equation defines properties LeftHandSide (lines 64–74), RightHandSide (lines
78–88), Left (line 10), Right (line 14), Result (line 19) and Operation (line 23). The
web service client does not need to modify the values of properties LeftHandSide and
RightHandSide. However, a property can be serialized only if it has both a get and a set
accessor—even if the set accessor has an empty body. Each property is preceded by the
DataMember attribute to indicate that it should be serialized. LeftHandSide (lines 64–74)
returns a string representing everything to the left of the equals (=) sign in the equation,
and RightHandSide (lines 78–88) returns a string representing everything to the right of
the equals (=) sign. Left (line 10) returns the int to the left of the operator (known as the
left operand), and Right (lines 14) returns the int to the right of the operator (known as
the right operand). Result (line 19) returns the solution to the equation, and Operation
(line 23) returns the operator in the equation. The client in this case study does not use

54
55 // return string representation of the Equation object
56 public override string ToString()
57 {
58 return string.Format("{0} {1} {2} = {4}", Left, Operation,
59 Right, Result);
60 } // end method ToString
61
62 // property that returns a string representing left-hand side
63
64 private string LeftHandSide
65 {
66 get
67 {
68 return string.Format("{0} {1} {2}", Left, Operation, Right);
69 } // end get
70 set
71 {
72 // empty body
73 } // end set
74 } // end property LeftHandSide
75
76 // property that returns a string representing right-hand side
77
78 private string RightHandSide
79 {
80 get
81 {
82 return Result.ToString();
83 } // end get
84 set
85 {
86 // empty body
87 } // end set
88 } // end property RightHandSide
89 } // end class Equation

Fig. 22.26 | Class Equation that contains information about an equation. (Part 2 of 2.)

[DataMember]

[DataMember]

iw3htp5_22_WCF.fm Page 861 Wednesday, November 16, 2011 11:52 AM

862 Chapter 22 Web Services in C#

the RightHandSide property, but we included it in case future clients choose to use it.
Method ToString (lines 56–60) returns a string representation of the equation.

22.11.1 Creating the REST-Based XML EquationGenerator Web Service
Figures 22.27 and 22.28 present the interface and class for the EquationGenerator-
Service web service, which creates random, customized Equations. This web service con-
tains only method GenerateEquation (lines 9–26 of Fig. 22.28), which takes two
parameters—a string representing the mathematical operation ("add", "subtract" or
"multiply") and a string representing the difficulty level. When line 25 of Fig. 22.28 re-
turns the Equation, it is serialized as XML by default and sent to the client. We’ll do this
with JSON as well in Section 22.11.3. Recall from Section 22.7.2 that you must modify
the Web.config file to enable REST support as well.

1 // Fig. 22.27: IEquationGeneratorService.cs
2 // WCF REST service interface to create random equations based on a
3 // specified operation and difficulty level.
4 using System.ServiceModel;
5 using System.ServiceModel.Web;
6
7
8 public interface IEquationGeneratorService
9 {

10 // method to generate a math equation
11
12
13 Equation GenerateEquation(string operation, string level);
14 } // end interface IEquationGeneratorService

Fig. 22.27 | WCF REST service interface to create random equations based on a specified
operation and difficulty level.

1 // Fig. 22.28: EquationGeneratorService.cs
2 // WCF REST service to create random equations based on a
3 // specified operation and difficulty level.
4 using System;
5
6 public class EquationGeneratorService :
7 {
8 // method to generate a math equation
9 public Equation GenerateEquation(string operation, string level)

10 {
11 // calculate maximum and minimum number to be used
12 int maximum =
13 Convert.ToInt32(Math.Pow(10, Convert.ToInt32(level)));
14 int minimum =
15 Convert.ToInt32(Math.Pow(10, Convert.ToInt32(level) - 1));
16

Fig. 22.28 | WCF REST service to create random equations based on a specified operation and
difficulty level. (Part 1 of 2.)

[ServiceContract]

[OperationContract]
[WebGet(UriTemplate = "equation/{operation}/{level}")]

IEquationGeneratorService

iw3htp5_22_WCF.fm Page 862 Wednesday, November 16, 2011 11:52 AM

22.11 Equation Generator: Returning User-Defined Types 863

22.11.2 Consuming the REST-Based XML EquationGenerator Web
Service
The MathTutor application (Fig. 22.29) calls the EquationGenerator web service’s Gen-
erateEquation method to create an Equation object. The tutor then displays the left-
hand side of the Equation and waits for user input.

The default setting for the difficulty level is 1, but the user can change this by choosing
a level from the RadioButtons in the GroupBox labeled Difficulty. Clicking any of the levels
invokes the corresponding RadioButton’s CheckedChanged event handler (lines 112–133),
which sets integer level to the level selected by the user. Although the default setting for
the question type is Addition, the user also can change this by selecting one of the
RadioButtons in the GroupBox labeled Operation. Doing so invokes the corresponding
operation’s event handlers in lines 88–109, which assigns to string operation the string
corresponding to the user’s selection.

17 Random randomObject = new Random(); // generate random numbers
18
19 // create Equation consisting of two random
20 // numbers in the range minimum to maximum
21 Equation newEquation = new Equation(
22 randomObject.Next(minimum, maximum),
23 randomObject.Next(minimum, maximum), operation);
24
25 return newEquation;
26 } // end method GenerateEquation
27 } // end class EquationGeneratorService

1 // Fig. 22.29: MathTutor.cs
2 // Math tutor using EquationGeneratorServiceXML to create equations.
3 using System;
4 using System.Net;
5 using System.Windows.Forms;
6 using System.Xml.Linq;
7
8 namespace MathTutorXML
9 {

10 public partial class MathTutor : Form
11 {
12 private string operation = "add"; // the default operation
13 private int level = 1; // the default difficulty level
14 private string leftHandSide; // the left side of the equation
15 private int result; // the answer
16
17
18

Fig. 22.29 | Math tutor using EquationGeneratorServiceXML to create equations. (Part 1 of
4.)

Fig. 22.28 | WCF REST service to create random equations based on a specified operation and
difficulty level. (Part 2 of 2.)

private XNamespace xmlNamespace =
 XNamespace.Get("http://schemas.datacontract.org/2004/07/");

iw3htp5_22_WCF.fm Page 863 Wednesday, November 16, 2011 11:52 AM

864 Chapter 22 Web Services in C#

19 // object used to invoke service
20 private WebClient service = new WebClient();
21
22 public MathTutor()
23 {
24 InitializeComponent();
25
26 // add DownloadStringCompleted event handler to WebClient
27 service.DownloadStringCompleted +=
28 new DownloadStringCompletedEventHandler(
29 service_DownloadStringCompleted);
30 } // end constructor
31
32 // generates new equation when user clicks button
33 private void generateButton_Click(object sender, EventArgs e)
34 {
35 // send request to EquationGeneratorServiceXML
36 service.DownloadStringAsync(new Uri(
37 "http://localhost:49732/EquationGeneratorServiceXML" +
38 "/Service.svc/equation/" + operation + "/" + level));
39 } // end method generateButton_Click
40
41 // process web service response
42 private void service_DownloadStringCompleted(
43 object sender, DownloadStringCompletedEventArgs e)
44 {
45 // check if any errors occurred in retrieving service data
46 if (e.Error == null)
47 {
48
49
50
51
52
53
54
55
56
57 // display left side of equation
58 questionLabel.Text = leftHandSide;
59 okButton.Enabled = true; // enable okButton
60 answerTextBox.Enabled = true; // enable answerTextBox
61 } // end if
62 } // end method client_DownloadStringCompleted
63
64 // check user's answer
65 private void okButton_Click(object sender, EventArgs e)
66 {
67 if (!string.IsNullOrEmpty(answerTextBox.Text))
68 {

Fig. 22.29 | Math tutor using EquationGeneratorServiceXML to create equations. (Part 2 of
4.)

// parse response and get LeftHandSide and Result values
XDocument xmlResponse = XDocument.Parse(e.Result);
leftHandSide = xmlResponse.Element(
 xmlNamespace + "Equation").Element(
 xmlNamespace + "LeftHandSide").Value;
result = Convert.ToInt32(xmlResponse.Element(
 xmlNamespace + "Equation").Element(
 xmlNamespace + "Result").Value);

iw3htp5_22_WCF.fm Page 864 Wednesday, November 16, 2011 11:52 AM

22.11 Equation Generator: Returning User-Defined Types 865

69 // get user's answer
70 int userAnswer = Convert.ToInt32(answerTextBox.Text);
71
72 // determine whether user's answer is correct
73 if (result == userAnswer)
74 {
75 questionLabel.Text = string.Empty; // clear question
76 answerTextBox.Clear(); // clear answer
77 okButton.Enabled = false; // disable OK button
78 MessageBox.Show("Correct! Good job!", "Result");
79 } // end if
80 else
81 {
82 MessageBox.Show("Incorrect. Try again.", "Result");
83 } // end else
84 } // end if
85 } // end method okButton_Click
86
87 // set the operation to addition
88 private void additionRadioButton_CheckedChanged(object sender,
89 EventArgs e)
90 {
91 if (additionRadioButton.Checked)
92 operation = "add";
93 } // end method additionRadioButton_CheckedChanged
94
95 // set the operation to subtraction
96 private void subtractionRadioButton_CheckedChanged(object sender,
97 EventArgs e)
98 {
99 if (subtractionRadioButton.Checked)
100 operation = "subtract";
101 } // end method subtractionRadioButton_CheckedChanged
102
103 // set the operation to multiplication
104 private void multiplicationRadioButton_CheckedChanged(
105 object sender, EventArgs e)
106 {
107 if (multiplicationRadioButton.Checked)
108 operation = "multiply";
109 } // end method multiplicationRadioButton_CheckedChanged
110
111 // set difficulty level to 1
112 private void levelOneRadioButton_CheckedChanged(object sender,
113 EventArgs e)
114 {
115 if (levelOneRadioButton.Checked)
116 level = 1;
117 } // end method levelOneRadioButton_CheckedChanged
118

Fig. 22.29 | Math tutor using EquationGeneratorServiceXML to create equations. (Part 3 of
4.)

iw3htp5_22_WCF.fm Page 865 Wednesday, November 16, 2011 11:52 AM

866 Chapter 22 Web Services in C#

119 // set difficulty level to 2
120 private void levelTwoRadioButton_CheckedChanged(object sender,
121 EventArgs e)
122 {
123 if (levelTwoRadioButton.Checked)
124 level = 2;
125 } // end method levelTwoRadioButton_CheckedChanged
126
127 // set difficulty level to 3
128 private void levelThreeRadioButton_CheckedChanged(object sender,
129 EventArgs e)
130 {
131 if (levelThreeRadioButton.Checked)
132 level = 3;
133 } // end method levelThreeRadioButton_CheckedChanged
134 } // end class MathTutor
135 } // end namespace MathTutorXML

Fig. 22.29 | Math tutor using EquationGeneratorServiceXML to create equations. (Part 4 of
4.)

a) Generating a level 1 addition equation

b) Answering the question incorrectly

c) Answering the question correctly

iw3htp5_22_WCF.fm Page 866 Wednesday, November 16, 2011 11:52 AM

22.11 Equation Generator: Returning User-Defined Types 867

Line 20 defines the WebClient that is used to invoke the web service. Event handler
generateButton_Click (lines 33–39) invokes EquationGeneratorService method
GenerateEquation (line 36–38) asynchronously using the web service’s UriTemplate
specified at line 12 in Fig. 22.27. When the response arrives, the DownloadStringCom-
pleted event handler (lines 42–62) parses the XML response (line 49), uses XDocument’s
Element method to obtain the left side of the equation (lines 50–52) and stores the result
(lines 53–55). We define the XML response’s namespace in lines 16–17 as an XNamespace
to parse the XML response. Then, the handler displays the left-hand side of the equation
in questionLabel (line 58) and enables okButton so that the user can enter an answer.
When the user clicks OK, okButton_Click (lines 65–85) checks whether the user provided
the correct answer.

22.11.3 Creating the REST-Based JSON WCF EquationGenerator
Web Service
You can set the web service to return JSON data instead of XML. Figure 22.30 is a mod-
ified IEquationGeneratorService interface for a service that returns an Equation in
JSON format. The ResponseFormat property (line 12) is added to the WebGet attribute
and set to WebMessageFormat.Json. We don’t show the implementation of this interface
here, because it is identical to that of Fig. 22.28. This shows how flexible WCF can be.

22.11.4 Consuming the REST-Based JSON WCF EquationGenerator
Web Service
A modified MathTutor application (Fig. 22.31) accesses the URI of the EquationGenera-
tor web service to get the JSON object (lines 35–37). We define a JSON representation
of an Equation object for the serializer in Fig. 22.32. The JSON object is deserialized us-
ing the System.Runtime.Serialization.Json namespace’s DataContractJsonSerial-
izer (lines 48–49) and converted into an Equation object. We use the LeftHandSide field
of the deserialized object (line 55) to display the left side of the equation and the Result
field (line 67) to obtain the answer.

1 // Fig. 22.30: IEquationGeneratorService.cs
2 // WCF REST service interface to create random equations based on a
3 // specified operation and difficulty level.
4 using System.ServiceModel;
5 using System.ServiceModel.Web;
6
7
8 public interface IEquationGeneratorService
9 {

10 // method to generate a math equation
11
12
13
14 Equation GenerateEquation(string operation, string level);
15 } // end interface IEquationGeneratorService

Fig. 22.30 | WCF REST service interface to create random equations based on a specified
operation and difficulty level.

[ServiceContract]

[OperationContract]
[WebGet(ResponseFormat = WebMessageFormat.Json,
 UriTemplate = "equation/{operation}/{level}")]

iw3htp5_22_WCF.fm Page 867 Wednesday, November 16, 2011 11:52 AM

868 Chapter 22 Web Services in C#

1 // Fig. 22.31: MathTutorForm.cs
2 // Math tutor using EquationGeneratorServiceJSON to create equations.
3 using System;
4 using System.IO;
5 using System.Net;
6
7 using System.Text;
8 using System.Windows.Forms;
9

10 namespace MathTutorJSON
11 {
12 public partial class MathTutorForm : Form
13 {
14 private string operation = "add"; // the default operation
15 private int level = 1; // the default difficulty level
16
17
18
19
20
21 public MathTutorForm()
22 {
23 InitializeComponent();
24
25
26
27
28
29 } // end constructor
30
31 // generates new equation when user clicks button
32 private void generateButton_Click(object sender, EventArgs e)
33 {
34
35
36
37
38 } // end method generateButton_Click
39
40 // process web service response
41 private void service_DownloadStringCompleted(
42 object sender, DownloadStringCompletedEventArgs e)
43 {
44 // check if any errors occurred in retrieving service data
45 if (e.Error == null)
46 {
47
48
49
50
51
52

Fig. 22.31 | Math tutor using EquationGeneratorServiceJSON. (Part 1 of 4.)

using System.Runtime.Serialization.Json;

private Equation currentEquation; // represents the Equation

// object used to invoke service
private WebClient service = new WebClient();

// add DownloadStringCompleted event handler to WebClient
service.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler(
 service_DownloadStringCompleted);

// send request to EquationGeneratorServiceJSON
service.DownloadStringAsync(new Uri(
 "http://localhost:50238/EquationGeneratorServiceJSON" +
 "/Service.svc/equation/" + operation + "/" + level));

// deserialize response into an Equation object
DataContractJsonSerializer JSONSerializer =
 new DataContractJsonSerializer(typeof(Equation));
currentEquation =
 (Equation) JSONSerializer.ReadObject(new
 MemoryStream(Encoding.Unicode.GetBytes(e.Result)));

iw3htp5_22_WCF.fm Page 868 Wednesday, November 16, 2011 11:52 AM

22.11 Equation Generator: Returning User-Defined Types 869

53
54
55
56 okButton.Enabled = true; // enable okButton
57 answerTextBox.Enabled = true; // enable answerTextBox
58 } // end if
59 } // end method client_DownloadStringCompleted
60
61 // check user's answer
62 private void okButton_Click(object sender, EventArgs e)
63 {
64 if (!string.IsNullOrEmpty(answerTextBox.Text))
65 {
66 // determine whether user's answer is correct
67
68
69 {
70 questionLabel.Text = string.Empty; // clear question
71 answerTextBox.Clear(); // clear answer
72 okButton.Enabled = false; // disable OK button
73 MessageBox.Show("Correct! Good job!", "Result");
74 } // end if
75 else
76 {
77 MessageBox.Show("Incorrect. Try again.", "Result");
78 } // end else
79 } // end if
80 } // end method okButton_Click
81
82 // set the operation to addition
83 private void additionRadioButton_CheckedChanged(object sender,
84 EventArgs e)
85 {
86 if (additionRadioButton.Checked)
87 operation = "add";
88 } // end method additionRadioButton_CheckedChanged
89
90 // set the operation to subtraction
91 private void subtractionRadioButton_CheckedChanged(object sender,
92 EventArgs e)
93 {
94 if (subtractionRadioButton.Checked)
95 operation = "subtract";
96 } // end method subtractionRadioButton_CheckedChanged
97
98 // set the operation to multiplication
99 private void multiplicationRadioButton_CheckedChanged(
100 object sender, EventArgs e)
101 {
102 if (multiplicationRadioButton.Checked)
103 operation = "multiply";
104 } // end method multiplicationRadioButton_CheckedChanged

Fig. 22.31 | Math tutor using EquationGeneratorServiceJSON. (Part 2 of 4.)

// display left side of equation
questionLabel.Text = currentEquation.LeftHandSide;

if (currentEquation.Result ==
 Convert.ToInt32(answerTextBox.Text))

iw3htp5_22_WCF.fm Page 869 Wednesday, November 16, 2011 11:52 AM

870 Chapter 22 Web Services in C#

105
106 // set difficulty level to 1
107 private void levelOneRadioButton_CheckedChanged(object sender,
108 EventArgs e)
109 {
110 if (levelOneRadioButton.Checked)
111 level = 1;
112 } // end method levelOneRadioButton_CheckedChanged
113
114 // set difficulty level to 2
115 private void levelTwoRadioButton_CheckedChanged(object sender,
116 EventArgs e)
117 {
118 if (levelTwoRadioButton.Checked)
119 level = 2;
120 } // end method levelTwoRadioButton_CheckedChanged
121
122 // set difficulty level to 3
123 private void levelThreeRadioButton_CheckedChanged(object sender,
124 EventArgs e)
125 {
126 if (levelThreeRadioButton.Checked)
127 level = 3;
128 } // end method levelThreeRadioButton_CheckedChanged
129 } // end class MathTutorForm
130 } // end namespace MathTutorJSON

Fig. 22.31 | Math tutor using EquationGeneratorServiceJSON. (Part 3 of 4.)

a) Generating a level 2 multiplication equation

b) Answering the question incorrectly

iw3htp5_22_WCF.fm Page 870 Wednesday, November 16, 2011 11:52 AM

22.12 Web Resources 871

22.12 Web Resources
To learn more about web services, check out our web services Resource Centers at:

You’ll find articles, samples chapters and tutorials that discuss XML, web-services specifica-
tions, SOAP, WSDL, UDDI, .NET web services, consuming XML web services and web-
services architecture. You’ll learn how to build your own Yahoo! maps mashups and appli-
cations that work with the Yahoo! Music Engine. You’ll find information about Amazon’s
web services including the Amazon E-Commerce Service (ECS), Amazon historical pricing,
Amazon Mechanical Turk, Amazon S3 (Simple Storage Service) and the Scalable Simple
Queue Service (SQS). You’ll learn how to use web services from several other companies in-
cluding eBay, Google and Microsoft. You’ll find REST web services best practices and guide-
lines. You’ll also learn how to use REST web services with other technologies including
SOAP, Rails, Windows Communication Foundation (WCF) and more. You can view the
complete list of Deitel Resource Centers at www.deitel.com/ResourceCenters.html.

1 // Fig. 22.32: Equation.cs
2 // Equation class representing a JSON object.
3 using System;
4
5 namespace MathTutorJSON
6 {
7
8 class Equation
9 {

10 public int Left = 0;
11 public string LeftHandSide = null;
12 public string Operation = null;
13 public int Result = 0;
14 public int Right = 0;
15 public string RightHandSide = null;
16 } // end class Equation
17 } // end namespace MathTutorJSON

Fig. 22.32 | Equation class representing a JSON object.

www.deitel.com/WebServices/
www.deitel.com/RESTWebServices/

Fig. 22.31 | Math tutor using EquationGeneratorServiceJSON. (Part 4 of 4.)

c) Answering the question correctly

[Serializable]

iw3htp5_22_WCF.fm Page 871 Wednesday, November 16, 2011 11:52 AM

872 Chapter 22 Web Services in C#

Summary
Section 22.1 Introduction
• WCF is a set of technologies for building distributed systems in which system components com-

municate with one another over networks. WCF uses a common framework for all communica-
tion between systems, so you need to learn only one programming model to use WCF.

• WCF web services promote software reusability in distributed systems that typically execute
across the Internet.

• Simple Object Access Protocol (SOAP) is an XML-based protocol describing how to mark up
requests and responses so that they can be sent via protocols such as HTTP. SOAP uses a stan-
dardized XML-based format to enclose data in a message.

• Representational State Transfer (REST) is a network architecture that uses the web’s traditional
request/response mechanisms such as GET and POST requests. REST-based systems do not require
data to be wrapped in a special message format.

Section 22.2 WCF Services Basics
• WCF service has three key components—addresses, bindings and contracts.

• An address represents the service’s location or endpoint, which includes the protocol and net-
work address used to access the service.

• A binding specifies how a client communicates with the service, such as through SOAP protocol
or REST architecture. Bindings can also specify other options, such as security constraints.

• A contract is an interface representing the service’s methods and their return types. The service’s
contract allows clients to interact with the service.

• The machine on which the web service resides is referred to as a web service host.

Section 22.3 Simple Object Access Protocol (SOAP)
• The Simple Object Access Protocol (SOAP) is a platform-independent protocol that uses XML

to make remote procedure calls, typically over HTTP.

• Each request and response is packaged in a SOAP message—an XML message containing the in-
formation that a web service requires to process the message.

• SOAP messages are written in XML so that they’re computer readable, human readable and plat-
form independent.

• SOAP supports an extensive set of types—the primitive types, as well as DateTime, XmlNode and
others. SOAP can also transmit arrays of these types.

• When a program invokes a method of a SOAP web service, the request and all relevant informa-
tion are packaged in a SOAP message enclosed in a SOAP envelope and sent to the server on
which the web service resides.

• When a web service receives a SOAP message, it parses the XML representing the message, then
processes the message’s contents. The message specifies the method that the client wishes to ex-
ecute and the arguments the client passed to that method.

• After a web service parses a SOAP message, it calls the appropriate method with the specified ar-
guments (if any), and sends the response back to the client in another SOAP message. The client
parses the response to retrieve the method’s result.

Section 22.4 Representational State Transfer (REST)
• Representational State Transfer (REST) refers to an architectural style for implementing web ser-

vices. Such web services are often called RESTful web services. Though REST itself is not a stan-
dard, RESTful web services are implemented using web standards.

iw3htp5_22_WCF.fm Page 872 Wednesday, November 16, 2011 11:52 AM

 Summary 873

• Each operation in a RESTful web service is identified by a unique URL.

• REST can return data in formats such as XML, JSON, HTML, plain text and media files.

Section 22.5 JavaScript Object Notation (JSON)
• JavaScript Object Notation (JSON) is an alternative to XML for representing data.

• JSON is a text-based data-interchange format used to represent objects in JavaScript as collec-
tions of name/value pairs represented as strings.

• JSON is a simple format that makes objects easy to read, create and parse, and allows programs
to transmit data efficiently across the Internet because it is much less verbose than XML.

• Each value in a JSON array can be a string, a number, a JSON object, true, false or null.

Section 22.6 Publishing and Consuming SOAP-Based WCF Web Services
• Enabling a web service for client usage is also known as publishing the web service.

• Using a web service is also known as consuming the web service.

Section 22.6.1 Creating a WCF Web Service
• To create a SOAP-based WCF web service in Visual Web Developer, you first create a project

of type WCF Service. SOAP is the default protocol for WCF web services, so no special configu-
ration is required to create SOAP-based services.

• Visual Web Developer automatically generates files for a WCF Service project, including an SVC
file, which provides access to the service, and a Web.config file, which specifies the service’s bind-
ing and behavior, and code files for the WCF service class and any other code that is part of the
WCF service implementation. In the service class, you define the methods that your WCF web
service makes available to client applications.

Section 22.6.2 Code for the WelcomeSOAPXMLService
• The service interface describes the service’s contract—the set of methods and properties the client

uses to access the service.

• The ServiceContract attribute exposes a class that implements the service interface as a WCF
web service.

• The OperationContract attribute exposes a method for remote calls.

Section 22.6.3 Building a SOAP WCF Web Service
• By default, a new code-behind file implements an interface named IService that is marked with

the ServiceContract and OperationContract attributes. In addition, the IService.cs file de-
fines a class named CompositeType with a DataContract attribute. The interface contains two
sample service methods named GetData and GetDataUsingContract. The Service.cs file con-
tains the code that defines these methods.

• The Service.svc file, when accessed through a web browser, provides access to information
about the web service.

• When you display the SVC file in the Solution Explorer, you see the programming language in
which the web service’s code-behind file is written, the Debug attribute, the name of the service
and the code-behind file’s location.

• If you change the code-behind file name or the class name that defines the web service, you must
modify the SVC file accordingly.

Section 22.6.4 Deploying the WelcomeSOAPXMLService
• You can choose Build Web Site from the Build menu to ensure that the web service compiles with-

out errors. You can also test the web service directly from Visual Web Developer by selecting

iw3htp5_22_WCF.fm Page 873 Wednesday, November 16, 2011 11:52 AM

874 Chapter 22 Web Services in C#

Start Without Debugging from the Debug menu. This opens a browser window that contains the
SVC page. Once the service is running, you can also access the SVC page from your browser by
typing the URL in a web browser.

• By default, the ASP.NET Development Server assigns a random port number to each website it
hosts. You can change this behavior by going to the Solution Explorer and clicking on the project
name to view the Properties window. Set the Use dynamic ports property to False and specify the
port number you want to use, which can be any unused TCP port. You can also change the ser-
vice’s virtual path, perhaps to make the path shorter or more readable.

• Web services normally contain a service description that conforms to the Web Service Descrip-
tion Language (WSDL)—an XML vocabulary that defines the methods a web service makes
available and how clients interact with them. WSDL documents help applications determine
how to interact with the web services described in the documents.

• When viewed in a web browser, an SVC file presents a link to the service’s WSDL file and infor-
mation on using the utility svcutil.exe to generate test console applications.

• When a client requests the WSDL URL, the server autogenerates the WSDL that describes the
web service and returns the WSDL document.

• Many aspects of web-service creation and consumption—such as generating WSDL files and
proxy classes—are handled by Visual Web Developer, Visual C# 2010 and WCF.

Section 22.6.5 Creating a Client to Consume the WelcomeSOAPXMLService
• An application that consumes a SOAP-based web service consists of a proxy class representing

the web service and a client application that accesses the web service via a proxy object. The proxy
object passes arguments from the client application to the web service as part of the web-service
method call. When the method completes its task, the proxy object receives the result and parses
it for the client application.

• A proxy object communicates with the web service on the client’s behalf. The proxy object is part
of the client application, making web-service calls appear to interact with local objects.

• To add a proxy class, right click the project name in the Solution Explorer and select Add Service
Reference… to display the Add Service Reference dialog. In the dialog, enter the URL of the ser-
vice’s .svc file in the Address field. The tools will automatically use that URL to request the web
service’s WSDL document. You can rename the service reference’s namespace by changing the
Namespace field. Click the OK button to add the service reference.

• A proxy object handles the networking details and the formation of SOAP messages. Whenever the
client application calls a web method, the application actually calls a corresponding method in the
proxy class. This method has the same name and parameters as the web method that is being called,
but formats the call to be sent as a request in a SOAP message. The web service receives this request
as a SOAP message, executes the method call and sends back the result as another SOAP message.
When the client application receives the SOAP message containing the response, the proxy class
deserializes it and returns the results as the return value of the web method that was called.

Section 22.7.2 Creating a REST-Based XML WCF Web Service
• WebGet maps a method to a unique URL that can be accessed via an HTTP GET operation.

• WebGet’s UriTemplate property specifies the URI format that is used to invoke a method.

• You can test a REST-based service method using a web browser by going to the Service.svc file’s
network address and appending to the address the URI template with the appropriate arguments.

Section 22.7.3 Consuming a REST-Based XML WCF Web Service
• The WebClient class invokes a web service and receives its response.

iw3htp5_22_WCF.fm Page 874 Wednesday, November 16, 2011 11:52 AM

 Summary 875

• WebClient’s DownloadStringAsync method invokes a web service asynchronously. The Down-
loadStringCompleted event occurs when the WebClient receives the completed response from
the web service.

• If a service is invoked asynchronously, the application can continue executing and the user can
continue interacting with it while waiting for a response from the web service. DownloadString-
CompletedEventArgs contains the information returned by the web service. We can use this vari-
able’s properties to get the returned XML document and any errors that may have occurred
during the process.

Section 22.8.1 Creating a REST-Based JSON WCF Web Service
• By default, a web-service method with the WebGet attribute returns data in XML format. To re-

turn data in JSON format, set WebGet’s ResponseFormat property to WebMessageFormat.Json.

• Objects being converted to JSON must have Public properties. This enables the JSON serializa-
tion to create name/value pairs that represent each Public property and its corresponding value.

• The DataContract attribute exposes a class to the client access.

• The DataMember attribute exposes a property of this class to the client.

• When we test the web service using a web browser, the response prompts you to download a text
file containing the JSON formatted data. You can see the service response as a JSON object by
opening the file in a text editor such as Notepad.

Section 22.8.2 Consuming a REST-Based JSON WCF Web Service
• XML serialization converts a custom type into XML data format.

• JSON serialization converts a custom type into JSON data format.

• The System.Runtime.Serialization.Json library’s DataContractJsonSerializer class serializes
custom types as JSON objects. To use the System.Runtime.Serialization.Json library, you must
include a reference to the System.ServiceModel.Web assembly in the project.

• Attribute Serializable indicates that a class can be used in serialization.

• A MemoryStream object is used to encapsulate the JSON object so we can read data from the byte
array using stream semantics. The MemoryStream object is read by the DataContractJsonSerial-
izer and then converted into a custom type.

Section 22.9 Blackjack Web Service: Using Session Tracking in a SOAP-Based WCF
Web Service
• Using session tracking eliminates the need for information about the client to be passed between

the client and the web service multiple times.

Section 22.9.1 Creating a Blackjack Web Service
• Web services store session information to provide more intuitive functionality.

• A service’s interface uses a ServiceContract with the SessionMode property set to Required to
indicate that the service needs a session to run. The SessionMode property is Allowed by default
and can also be set to NotAllowed to disable sessions.

• Setting the ServiceBehavior’s InstanceContextMode property to PerSession creates a new in-
stance of the class for each session. The InstanceContextMode property can also be set to PerCall
or Single. PerCall uses a new object of the web-service class to handle every method call to the
service. Single uses the same object of the web-service class to handle all calls to the service.

iw3htp5_22_WCF.fm Page 875 Wednesday, November 16, 2011 11:52 AM

876 Chapter 22 Web Services in C#

Section 22.10 Airline Reservation Web Service: Database Access and Invoking a Ser-
vice from ASP.NET
• You can add a database and corresponding LINQ to SQL classes to create a DataContext object

to support database operations of your web service.

Section 22.11 Equation Generator: Returning User-Defined Types
• Instances of user-defined types can be passed to or returned from web-service methods.

Self-Review Exercises
22.1 State whether each of the following is true or false. If false, explain why.

a) The purpose of a web service is to create objects of a class located on a web service host.
This class then can be instantiated and used on the local machine.

b) You must explicitly create the proxy class after you add a service reference for a SOAP-
based service to a client application.

c) A client application can invoke only those methods of a web service that are tagged with
the OperationContract attribute.

d) To enable session tracking in a web-service method, no action is required other than
setting the SessionMode property to SessionMode.Required in the ServiceContract at-
tribute.

e) Operations in a REST web service are defined by their own unique URLs.
f) A SOAP-based web service can return data in JSON format.
g) For a client application to deserialize a JSON object, the client must define a Serial-

izable class with public instance variables or properties that match those serialized by
the web service.

22.2 Fill in the blanks for each of the following statements:
a) A key difference between SOAP and REST is that SOAP messages have data wrapped

in a(n) .
b) A WCF web service exposes its methods to clients by adding the and

 attributes to the service interface.
c) Web-service requests are typically transported over the Internet via the pro-

tocol.
d) To return data in JSON format from a REST-based web service, the prop-

erty of the WebGet attribute is set to .
e) transforms an object into a format that can be sent between a web service

and a client.
f) To parse a HTTP response in XML data format, the client application must import the

response’s .

Answers to Self-Review Exercises
22.1 a) False. Web services are used to execute methods on web service hosts. The web service
receives the arguments it needs to execute a particular method, executes the method and returns the
result to the caller. b) False. The proxy class is created by Visual C# or Visual Web Developer when
you add a Service Reference to your project. The proxy class itself is hidden from you. c) True.
d) True. e) True. f) False. A SOAP web service implicitly returns data in XML format. g) True.

22.2 a) envelope. b) ServiceContract, OperationContract. c) HTTP. d) ResponseFormat,
WebMessageFormat.Json. e) Serialization. f) namespace.

iw3htp5_22_WCF.fm Page 876 Wednesday, November 16, 2011 11:52 AM

 Exercises 877

Exercises
22.3 (Phone-Book Web Service) Create a REST-based web service that stores phone-book entries
in a database (PhoneBook.mdf, which is provided in the examples directory for this chapter) and a
client application that consumes this service. Give the client user the capability to enter a new con-
tact (service method AddEntry) and to find contacts by last name (service method GetEntries). Pass
only primitive types as arguments to the web service. Add a DataContext to the web-service project
to enable the web service to interact with the database. The GetEntries method should return an
array of strings that contains the matching phone-book entries. Each string in the array should
consist of the last name, first name and phone number for one phone-book entry separated by com-
mas. Build an ASP.NET client (Fig. 22.33) to interact with this web service. To use an asynchro-
nous web request from an ASP.NET client, you must set the Async property to true by adding
Async="true" to the .aspx page directive. Since the AddEntry method accepts a request and does
not return a response to the client, you can use WebClient’s OpenRead method to access the service
method. You can use the ToArray method on the LINQ query to return an array containing LINQ
query results.

22.4 (Phone-Book Web Service Modification) Modify Exercise 22.3 so that it uses a class named
PhoneBookEntry to represent a row in the database. The web service should return objects of type
PhoneBookEntry in XML format for the GetEntries service method, and the client application
should use XML document parsing to interpret the PhoneBookEntry object.

22.5 (Phone-Book Web Service with JSON) Modify Exercise 22.4 so that the PhoneBookEntry
class is passed to and from the web service as a JSON object. Use serialization to convert the JSON
object into an object of type PhoneBookEntry.

Fig. 22.33 | Template web form for phone book client.

iw3htp5_22_WCF.fm Page 877 Wednesday, November 16, 2011 11:52 AM

878 Chapter 22 Web Services in C#

22.6 (Blackjack Modification) Modify the blackjack web-service example in Section 22.9 to in-
clude class Card. Change service method DealCard so that it returns an object of type Card and mod-
ify method GetHandValue to receive an array of Cards. Also modify the client application to keep
track of what cards have been dealt by using Card objects. Your Card class should include properties
for the face and suit of the card. [Note: When you create the Card class, be sure to add the Data-
Contract attribute to the class and the DataMember attribute to the properties. Also, in a SOAP-based
service, you don’t need to define your own Card class on the client as well. The Card class will be
exposed to the client through the service reference that you add to the client. If the service reference
is named ServiceReference, you’ll access the card type as ServiceReference.Card.]

22.7 (Airline Reservation Web-Service Modification) Modify the airline reservation web service
in Section 22.10 so that it contains two separate methods—one that allows users to view all available
seats, and another that allows users to reserve a particular seat that is currently available. Use an ob-
ject of type Ticket to pass information to and from the web service. The web service must be able
to handle cases in which two users view available seats, one reserves a seat and the second user tries
to reserve the same seat, not knowing that it is now taken. The names of the methods that execute
should be Reserve and GetAllAvailableSeats.

iw3htp5_22_WCF.fm Page 878 Wednesday, November 16, 2011 11:52 AM

23Web App Development with
ASP.NET in Visual Basic

… the challenges are for the
designers of these applications:
to forget what we think we
know about the limitations of
the Web, and begin to imagine a
wider, richer range of
possibilities. It’s going to be fun.
—Jesse James Garrett

If any man will draw up his
case, and put his name at the
foot of the first page, I will give
him an immediate reply. Where
he compels me to turn over the
sheet, he must wait my leisure.
—Lord Sandwich

O b j e c t i v e s
In this chapter you’ll learn:

■ Web application
development using ASP.NET.

■ To handle the events from a
Web Form’s controls.

■ To use validation controls to
ensure that data is in the
correct format before it’s sent
from a client to the server.

■ To maintain user-specific
information.

■ To create a data-driven web
application using ASP.NET
and LINQ to SQL.

iw3htp5_23_ASP.NET.fm Page 879 Wednesday, November 16, 2011 11:52 AM

880 Chapter 23 Web App Development with ASP.NET in Visual Basic

23.1 Introduction
In this chapter, we introduce web-application development with Microsoft’s ASP.NET
technology. Web-based applications create web content for web-browser clients.

We present several examples that demonstrate web-application development using
Web Forms, web controls (also called ASP.NET server controls) and Visual Basic pro-
gramming. Web Form files have the file-name extension .aspx and contain the web page’s
GUI. You customize Web Forms by adding web controls including labels, textboxes,
images, buttons and other GUI components. The Web Form file represents the web page
that is sent to the client browser. We often refer to Web Form files as ASPX files.

An ASPX file created in Visual Studio has a corresponding class written in a .NET
language—we use Visual Basic in this book. This class contains event handlers, initializa-
tion code, utility methods and other supporting code. The file that contains this class is
called the code-behind file and provides the ASPX file’s programmatic implementation.

To develop the code and GUIs in this chapter, we used Microsoft’s Visual Web
Developer 2010 Express—a free IDE designed for developing ASP.NET web applica-
tions. The full version of Visual Studio 2010 includes the functionality of Visual Web
Developer, so the instructions we present for Visual Web Developer also apply to Visual
Studio 2010. The database example (Section 23.8) also requires SQL Server 2008 Express.
See the Before You Begin section of the book for additional information on this software.

In Chapter 25 (online), we present several additional web-application development
topics, including:

• master pages to maintain a uniform look-and-feel across the Web Forms in a web
application

• creating password-protected websites with registration and login capabilities

• using the Web Site Administration Tool to specify which parts of a website are pass-
word protected

23.1 Introduction

23.2 Web Basics

23.3 Multitier Application Architecture

23.4 Your First ASP.NET Application
23.4.1 Building the WebTime Application
23.4.2 Examining WebTime.aspx’s Code-

Behind File

23.5 Standard Web Controls: Designing a
Form

23.6 Validation Controls

23.7 Session Tracking
23.7.1 Cookies
23.7.2 Session Tracking with

HttpSessionState

23.7.3 Options.aspx: Selecting a
Programming Language

23.7.4 Recommendations.aspx:
Displaying Recommendations Based
on Session Values

23.8 Case Study: Database-Driven
ASP.NET Guestbook

23.8.1 Building a Web Form that Displays
Data from a Database

23.8.2 Modifying the Code-Behind File for
the Guestbook Application

23.9 Online Case Study: ASP.NET AJAX
23.10 Online Case Study: Password-

Protected Books Database
Application

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

iw3htp5_23_ASP.NET.fm Page 880 Wednesday, November 16, 2011 11:52 AM

23.2 Web Basics 881

• using ASP.NET AJAX to quickly and easily improve the user experience for your
web applications, giving them responsiveness comparable to that of desktop ap-
plications.

23.2 Web Basics
In this section, we discuss what occurs when a user requests a web page in a browser. In its
simplest form, a web page is nothing more than an HTML (HyperText Markup Language)
document (with the extension .html or .htm) that describes to a web browser the docu-
ment’s content and how to format it.

HTML documents normally contain hyperlinks that link to different pages or to other
parts of the same page. When the user clicks a hyperlink, a web server locates the requested
web page and sends it to the user’s web browser. Similarly, the user can type the address of
a web page into the browser’s address field and press Enter to view the specified page.

Web development tools like Visual Web Developer typically use a “stricter” version
of HTML called XHTML (Extensible HyperText Markup Language). ASP.NET produces
web pages as XHTML documents.

URIs and URLs
URIs (Uniform Resource Identifiers) identify resources on the Internet. URIs that start with
http:// are called URLs (Uniform Resource Locators). Common URLs refer to files, direc-
tories or server-side code that performs tasks such as database lookups, Internet searches
and business application processing. If you know the URL of a publicly available resource
anywhere on the web, you can enter that URL into a web browser’s address field and the
browser can access that resource.

Parts of a URL
A URL contains information that directs a browser to the resource that the user wishes to
access. Web servers make such resources available to web clients. Popular web servers in-
clude Microsoft’s Internet Information Services (IIS) and Apache’s HTTP Server.

Let’s examine the components of the URL

The http:// indicates that the HyperText Transfer Protocol (HTTP) should be used to
obtain the resource. HTTP is the web protocol that enables clients and servers to commu-
nicate. Next in the URL is the server’s fully qualified hostname (www.deitel.com)—the
name of the web server computer on which the resource resides. This computer is referred
to as the host, because it houses and maintains resources. The hostname www.deitel.com
is translated into an IP (Internet Protocol) address—a numerical value that uniquely
identifies the server on the Internet. A Domain Name System (DNS) server maintains a
database of hostnames and their corresponding IP addresses, and performs the translations
automatically.

The remainder of the URL (/books/downloads.html) specifies the resource’s loca-
tion (/books) and name (downloads.html) on the web server. The location could repre-
sent an actual directory on the web server’s file system. For security reasons, however, the
location is typically a virtual directory. The web server translates the virtual directory into
a real location on the server, thus hiding the resource’s true location.

http://www.deitel.com/books/downloads.html

iw3htp5_23_ASP.NET.fm Page 881 Wednesday, November 16, 2011 11:52 AM

882 Chapter 23 Web App Development with ASP.NET in Visual Basic

Making a Request and Receiving a Response
When given a URL, a web browser uses HTTP to retrieve and display the web page found
at that address. Figure 23.1 shows a web browser sending a request to a web server.
Figure 23.2 shows the web server responding to that request.

23.3 Multitier Application Architecture
Web-based applications are multitier applications (sometimes referred to as n-tier appli-
cations). Multitier applications divide functionality into separate tiers (that is, logical
groupings of functionality). Although tiers can be located on the same computer, the tiers
of web-based applications commonly reside on separate computers for security and scal-
ability. Figure 23.3 presents the basic architecture of a three-tier web-based application.

Information Tier
The information tier (also called the bottom tier) maintains the application’s data. This
tier typically stores data in a relational database management system. For example, a retail
store might have a database for storing product information, such as descriptions, prices
and quantities in stock. The same database also might contain customer information, such
as user names, billing addresses and credit card numbers. This tier can contain multiple
databases, which together comprise the data needed for an application.

Fig. 23.1 | Client requesting a resource from a web server.

Fig. 23.2 | Client receiving a response from the web server.

After it receives
the request, the
web server
searches its
system for the
resource

b)

The request is
sent from the
web client to the
web server

a)

Web server

Internet

Web client

The server
responds to the
request with
the resource's
contents

Web server

Internet

Web client

iw3htp5_23_ASP.NET.fm Page 882 Wednesday, November 16, 2011 11:52 AM

23.3 Multitier Application Architecture 883

Business Logic
The middle tier implements business logic, controller logic and presentation logic to
control interactions between the application’s clients and its data. The middle tier acts as
an intermediary between data in the information tier and the application’s clients. The
middle-tier controller logic processes client requests (such as requests to view a product
catalog) and retrieves data from the database. The middle-tier presentation logic then pro-
cesses data from the information tier and presents the content to the client. Web applica-
tions typically present data to clients as web pages.

Business logic in the middle tier enforces business rules and ensures that data is reliable
before the server application updates the database or presents the data to users. Business
rules dictate how clients can and cannot access application data, and how applications pro-
cess data. For example, a business rule in the middle tier of a retail store’s web-based appli-
cation might ensure that all product quantities remain positive. A client request to set a
negative quantity in the bottom tier’s product information database would be rejected by
the middle tier’s business logic.

Client Tier
The client tier, or top tier, is the application’s user interface, which gathers input and dis-
plays output. Users interact directly with the application through the user interface (typi-
cally viewed in a web browser), keyboard and mouse. In response to user actions (for
example, clicking a hyperlink), the client tier interacts with the middle tier to make re-
quests and to retrieve data from the information tier. The client tier then displays to the
user the data retrieved from the middle tier. The client tier never directly interacts with
the information tier.

Fig. 23.3 | Three-tier architecture.

Web server
Middle tier

(Business logic tier)

Bottom tier
(Information tier)

Top tier
(Client tier)

Browser

XHTML

LINQ

Business logic
implemented in
ASP.NET

User interface

DBMS
Database

iw3htp5_23_ASP.NET.fm Page 883 Wednesday, November 16, 2011 11:52 AM

884 Chapter 23 Web App Development with ASP.NET in Visual Basic

23.4 Your First ASP.NET Application
Our first example displays the web server’s time of day in a browser window (Fig. 23.4).
When this application executes—that is, a web browser requests the application’s web
page—the web server executes the application’s code, which gets the current time and dis-
plays it in a Label. The web server then returns the result to the web browser that made
the request, and the web browser renders the web page containing the time. We show this
application executing in the Internet Explorer and Firefox web browsers to show you that
the web page renders identically in each.

Testing the Application in Your Default Web Browser
To test this application in your default web browser, perform the following steps:

1. Open Visual Web Developer.

2. Select Open Web Site… from the File menu.

3. In the Open Web Site dialog (Fig. 23.5), ensure that File System is selected, then
navigate to this chapter’s examples, select the WebTime folder and click the Open
Button.

4. Select WebTime.aspx in the Solution Explorer, then type Ctrl + F5 to execute the
web application.

Testing the Application in a Selected Web Browser
If you wish to execute the application in another web browser, you can copy the web page’s
address from your default browser’s address field and paste it into another browser’s ad-
dress field, or you can perform the following steps:

Fig. 23.4 | WebTime web application running in Internet Explorer and Firefox.

iw3htp5_23_ASP.NET.fm Page 884 Wednesday, November 16, 2011 11:52 AM

23.4 Your First ASP.NET Application 885

1. In the Solution Explorer, right click WebTime.aspx and select Browse With… to
display the Browse With dialog (Fig. 23.6).

2. From the Browsers list, select the browser in which you’d like to test the web ap-
plication and click the Browse Button.

If the browser you wish to use is not listed, you can use the Browse With dialog to add items
to or remove items from the list of web browsers.

Fig. 23.5 | Open Web Site dialog.

Fig. 23.6 | Selecting another web browser to execute the web application.

iw3htp5_23_ASP.NET.fm Page 885 Wednesday, November 16, 2011 11:52 AM

886 Chapter 23 Web App Development with ASP.NET in Visual Basic

23.4.1 Building the WebTime Application
Now that you’ve tested the application, let’s create it in Visual Web Developer.

Step 1: Creating the Web Site Project
Select File > New Web Site... to display the New Web Site dialog (Fig. 23.7). In the left col-
umn of this dialog, ensure that Visual Basic is selected, then select Empty Web Site in the
middle column. At the bottom of the dialog you can specify the location and name of the
web application.

The Web location: ComboBox provides the following options:

• File System: Creates a new website for testing on your local computer. Such web-
sites execute in Visual Web Developer’s built-in ASP.NET Development Server
and can be accessed only by web browsers running on the same computer. You
can later “publish” your website to a production web server for access via a local
network or the Internet. Each example in this chapter uses the File System option,
so select it now.

• HTTP: Creates a new website on an IIS web server and uses HTTP to allow you
to put your website’s files on the server. IIS is Microsoft’s software that is used to
run production websites. If you own a website and have your own web server, you
might use this to build a new website directly on that server computer. You must
be an Administrator on the computer running IIS to use this option.

Fig. 23.7 | Creating an ASP.NET Web Site in Visual Web Developer.

iw3htp5_23_ASP.NET.fm Page 886 Wednesday, November 16, 2011 11:52 AM

23.4 Your First ASP.NET Application 887

• FTP: Uses File Transfer Protocol (FTP) to allow you to put your website’s files
on the server. The server administrator must first create the website on the server
for you. FTP is commonly used by so-called “hosting providers” to allow website
owners to share a server computer that runs many websites.

Change the name of the web application from WebSite1 to WebTime, then click the OK
Button to create the website.

Step 2: Adding a Web Form to the Website and Examining the Solution Explorer
A Web Form represents one page in a web application—we’ll often use the terms “page”
and “Web Form” interchangeably. A Web Form contains a web application’s GUI. To
create the WebTime.aspx Web Form:

1. Right click the project name in the Solution Explorer and select Add New Item...
to display the Add New Item dialog (Fig. 23.8).

2. In the left column, ensure that Visual Basic is selected, then select Web Form in
the middle column.

3. In the Name: TextBox, change the file name to WebTime.aspx, then click the Add
Button.

After you add the Web Form, the IDE opens it in Source view by default (Fig. 23.9).
This view displays the markup for the Web Form. As you become more familiar with
ASP.NET and building web sites in general, you might use Source view to perform high
precision adjustments to your design or to program in the JavaScript language that exe-
cutes in web browsers. For the purposes of this chapter, we’ll keep things simple by
working exclusively in Design mode. To switch to Design mode, you can click the Design
Button at the bottom of the code editor window.

Fig. 23.8 | Adding a new Web Form to the website with the Add New Item dialog.

iw3htp5_23_ASP.NET.fm Page 887 Wednesday, November 16, 2011 11:52 AM

888 Chapter 23 Web App Development with ASP.NET in Visual Basic

The Solution Explorer
The Solution Explorer (Fig. 23.10) shows the contents of the website. We expanded the
node for WebTime.aspx to show you its code-behind file WebTime.aspx.vb. Visual Web
Developer’s Solution Explorer contains several buttons that differ from Visual Basic Ex-
press. The View Designer button allows you to open the Web Form in Design mode. The
Copy Web Site button opens a dialog that allows you to move the files in this project to
another location, such as a remote web server. This is useful if you’re developing the ap-
plication on your local computer but want to make it available to the public from a differ-
ent location. Finally, the ASP.NET Configuration button takes you to a web page called the
Web Site Administration Tool, where you can manipulate various settings and security op-
tions for your application.

Fig. 23.9 | Web Form in Source view.

Fig. 23.10 | Solution Explorer window for an Empty Web Site project.

Source mode shows only
the Web Form’s markup

Split mode allows you to
view the Web Form’s markup

and design at the same time

Design mode allows you to
build a Web Form using

similar techniques to building
a Windows Form

Properties

Refresh

Nest Related Files

ASP.NET Configuration

Copy Web Site

View Code View Designer

ASPX page represents the
application’s user interface

Code-behind file that
contains the application’s

business logic

iw3htp5_23_ASP.NET.fm Page 888 Wednesday, November 16, 2011 11:52 AM

23.4 Your First ASP.NET Application 889

If the ASPX file is not open in the IDE, you can open it in Design mode three ways:

• double click it in the Solution Explorer

• select it in the Solution Explorer and click the View Designer () Button

• right click it in the Solution Explorer and select View Designer

To open the code-behind file in the code editor, you can

• double click it in the Solution Explorer

• select the ASPX file in the Solution Explorer, then click the View Code () Button

• right click the code-behind file in the Solution Explorer and select Open

The Toolbox
Figure 23.11 shows the Toolbox displayed in the IDE when the project loads. Part (a) dis-
plays the beginning of the Standard list of web controls, and part (b) displays the remain-
ing web controls and the list of other control groups. We discuss specific controls listed in
Fig. 23.11 as they’re used throughout the chapter. Many of the controls have similar or
identical names to Windows Forms controls presented earlier in the book.

The Web Forms Designer
Figure 23.12 shows the initial Web Form in Design mode. You can drag and drop controls
from the Toolbox onto the Web Form. You can also type at the current cursor location to
add so-called static text to the web page. In response to such actions, the IDE generates
the appropriate markup in the ASPX file.

Fig. 23.11 | Toolbox in Visual Web Developer.

a) b)

iw3htp5_23_ASP.NET.fm Page 889 Wednesday, November 16, 2011 11:52 AM

890 Chapter 23 Web App Development with ASP.NET in Visual Basic

Step 3: Changing the Title of the Page
Before designing the Web Form’s content, you’ll change its title to A Simple Web Form Ex-
ample. This title will be displayed in the web browser’s title bar (see Fig. 23.4). It’s typi-
cally also used by search engines like Google and Bing when they index real websites for
searching. Every page should have a title. To change the title:

1. Ensure that the ASPX file is open in Design view.

2. View the Web Form’s properties by selecting DOCUMENT, which represents the
Web Form, from the drop-down list in the Properties window.

3. Modify the Title property in the Properties window by setting it to A Simple Web
Form Example.

Designing a Page
Designing a Web Form is similar to designing a Windows Form. To add controls to the
page, drag-and-drop them from the Toolbox onto the Web Form in Design view. The Web
Form and each control are objects that have properties, methods and events. You can set
these properties visually using the Properties window or programmatically in the code-be-
hind file. You can also type text directly on a Web Form at the cursor location.

Controls and other elements are placed sequentially on a Web Form one after another
in the order in which you drag-and-drop them onto the Web Form. The cursor indicates
the insertion point in the page. If you want to position a control between existing text or
controls, you can drop the control at a specific position between existing page elements.
You can also rearrange controls with drag-and-drop actions in Design view. The positions
of controls and other elements are relative to the Web Form’s upper-left corner. This type
of layout is known as relative positioning and it allows the browser to move elements and
resize them based on the size of the browser window. Relative positioning is the default,
and we’ll use it throughout this chapter.

For precise control over the location and size of elements, you can use absolute posi-
tioning in which controls are located exactly where you drop them on the Web Form. If
you wish to use absolute positioning:

1. Select Tools > Options…., to display the Options dialog.

2. If it isn’t checked already, check the Show all settings checkbox.

Fig. 23.12 | Design mode of the Web Forms Designer.

Cursor’s current location in the documentCursor appears here by default

iw3htp5_23_ASP.NET.fm Page 890 Wednesday, November 16, 2011 11:52 AM

23.4 Your First ASP.NET Application 891

3. Next, expand the HTML Designer > CSS Styling node and ensure that the check-
box labeled Change positioning to absolute for controls added using Toolbox, paste
or drag and drop is selected.

Step 4: Adding Text and a Label
You’ll now add some text and a Label to the Web Form. Perform the following steps to
add the text:

1. Ensure that the Web Form is open in Design mode.

2. Type the following text at the current cursor location:

3. Select the text you just typed, then select Heading 2 from the Block Format Combo-
Box (Fig. 23.13) to format this text as a heading that will appear in a larger bold
font. In more complex pages, headings help you specify the relative importance
of parts of that content—like sections in a book chapter.

4. Click to the right of the text you just typed and press the Enter key to start a new
paragraph in the page. The Web Form should now appear as in Fig. 23.14.

5. Next, drag a Label control from the Toolbox into the new paragraph or double
click the Label control in the Toolbox to insert the Label at the current cursor
position.

6. Using the Properties window, set the Label’s (ID) property to timeLabel. This
specifies the variable name that will be used to programmatically change the
Label’s Text.

 Current time on the Web server:

Fig. 23.13 | Changing the text to Heading 2 heading.

Block Format ComboBox

iw3htp5_23_ASP.NET.fm Page 891 Wednesday, November 16, 2011 11:52 AM

892 Chapter 23 Web App Development with ASP.NET in Visual Basic

7. Because the Label’s Text will be set programmatically, delete the current value of
the Label’s Text property. When a Label does not contain text, its name is dis-
played in square brackets in Design view (Fig. 23.15) as a placeholder for design
and layout purposes. This text is not displayed at execution time.

Step 5: Formatting the Label
Formatting in a web page is performed with CSS (Cascading Style Sheets). It’s easy to use
CSS to format text and elements in a Web Form via the tools built into Visual Web De-
veloper. In this example, we’d like to change the Label’s background color to black, its
foreground color yellow and make its text size larger. To format the Label, perform the
following steps:

1. Click the Label in Design view to ensure that it’s selected.

2. Select View > Other Windows > CSS Properties to display the CSS Properties win-
dow at the left side of the IDE (Fig. 23.16).

3. Right click in the Applied Rules box and select New Style… to display the New
Style dialog (Fig. 23.17).

4. Type the new style’s name—.timeStyle—in the Selector: ComboBox. Styles that
apply to specific elements must be named with a dot (.) preceding the name.
Such a style is called a CSS class.

5. Each item you can set in the New Style dialog is known as a CSS attribute. To
change timeLabel’s foreground color, select the Font category from the Category
list, then select the yellow color swatch for the color attribute.

6. Next, change the font-size attribute to xx-large.

Fig. 23.14 | WebTime.aspx after inserting text and a new paragraph.

Fig. 23.15 | WebTime.aspx after adding a Label.

The cursor is
positioned here after

inserting a new
paragraph by

pressing Enter

Label control

iw3htp5_23_ASP.NET.fm Page 892 Wednesday, November 16, 2011 11:52 AM

23.4 Your First ASP.NET Application 893

7. To change timeLabel’s background color, select the Background category, then
select the black color swatch for the background-color attribute.

The New Style dialog should now appear as shown in Fig. 23.18. Click the OK Button to
apply the style to the timeLabel so that it appears as shown in Fig. 23.19. Also, notice that
the Label’s CssClass property is now set to timeStyle in the Properties window.

Fig. 23.16 | CSS Properties window.

Fig. 23.17 | New Style dialog.

Font category allows you to
style an element’s font

Background category allows
you to specify an element’s

background color or
background image

New style’s name

The new style will be applied to the
currently selected element in the page

Preview of what the
style will look like

iw3htp5_23_ASP.NET.fm Page 893 Wednesday, November 16, 2011 11:52 AM

894 Chapter 23 Web App Development with ASP.NET in Visual Basic

Step 6: Adding Page Logic
Now that you’ve designed the GUI, you’ll write code in the code-behind file to obtain the
server’s time and display it on the Label. First, open WebTime.aspx.vb by double clicking
its node in the Solution Explorer. In this example, you’ll add an event handler to the code-
behind file to handle the Web Form’s Init event, which occurs when the page is first re-
quested by a web browser. The event handler for this event—named Page_Init—initial-
ize the page. The only initialization required for this example is to set the timeLabel’s Text
property to the time on the web server computer. To create the Page_Init event handler:

1. Select (Page Events) from the left ComboBox at the top of the code editor window.

2. Select Init from the right ComboBox at the top of the code editor window.

Fig. 23.18 | New Style dialog after changing the Label’s font size, foreground color and
background color.

Fig. 23.19 | Design view after changing the Label’s style.

Bold category
names indicate the
categories in which

CSS attribute
values have been

changed

iw3htp5_23_ASP.NET.fm Page 894 Wednesday, November 16, 2011 11:52 AM

23.4 Your First ASP.NET Application 895

3. Complete the event handler by inserting the following code in the Page_Init
event handler:

Step 7: Setting the Start Page and Running the Program
To ensure that WebTime.aspx loads when you execute this application, right click it in the
Solution Explorer and select Set As Start Page. You can now run the program in one of sev-
eral ways. At the beginning of Fig. 23.4, you learned how to view the Web Form by typing
Ctrl + F5 to run the application. You can also right click an ASPX file in the Solution Ex-
plorer and select View in Browser. Both of these techniques execute the ASP.NET Devel-
opment Server, open your default web browser and load the page into the browser, thus
running the web application. The development server stops when you exit Visual Web De-
veloper.

If problems occur when running your application, you can run it in debug mode by
selecting Debug > Start Debugging, by clicking the Start Debugging Button () or by
typing F5 to view the web page in a web browser with debugging enabled. You cannot
debug a web application unless debugging is explicitly enabled in the application’s
Web.config file—a file that is generated when you create an ASP.NET web application.
This file stores the application’s configuration settings. You’ll rarely need to manually
modify Web.config. The first time you select Debug > Start Debugging in a project, a
dialog appears and asks whether you want the IDE to modify the Web.config file to enable
debugging. After you click OK, the IDE executes the application. You can stop debugging
by selecting Debug > Stop Debugging.

Regardless of how you execute the web application, the IDE will compile the project
before it executes. In fact, ASP.NET compiles your web page whenever it changes between
HTTP requests. For example, suppose you browse the page, then modify the ASPX file or
add code to the code-behind file. When you reload the page, ASP.NET recompiles the
page on the server before returning the response to the browser. This important behavior
ensures that clients always see the latest version of the page. You can manually compile an
entire website by selecting Build Web Site from the Debug menu in Visual Web Developer.

23.4.2 Examining WebTime.aspx’s Code-Behind File
Figure 23.20 presents the code-behind file WebTime.aspx.vb. Line 3 of Fig. 23.20 begins
the declaration of class WebTime. In Visual Basic, a class declaration can span multiple
source-code files—the separate portions of the class declaration in each file are known as
partial classes. The Partial modifier indicates that the code-behind file is part of a larger
class. Like Windows Forms applications, the rest of the class’s code is generated for you
based on your visual interactions to create the application’s GUI in Design mode. That
code is stored in other source code files as partial classes with the same name. The compiler
assembles all the partial classes that have the same into a single class declaration.

Line 4 indicates that WebTime inherits from class Page in namespace System.Web.UI.
This namespace contains classes and controls for building web-based applications. Class
Page represents the default capabilities of each page in a web application—all pages inherit
directly or indirectly from this class.

' display the server's current time in timeLabel
timeLabel.Text = DateTime.Now.ToString("hh:mm:ss")

iw3htp5_23_ASP.NET.fm Page 895 Wednesday, November 16, 2011 11:52 AM

896 Chapter 23 Web App Development with ASP.NET in Visual Basic

Lines 7–12 define the Page_Init event handler, which initializes the page in response
to the page’s Init event. The only initialization required for this page is to set the time-
Label’s Text property to the time on the web server computer. The statement in line 11
retrieves the current time (DateTime.Now) and formats it as hh:mm:ss. For example, 9 AM
is formatted as 09:00:00, and 2:30 PM is formatted as 02:30:00. As you’ll see, variable
timeLabel represents an ASP.NET Label control. The ASP.NET controls are defined in
namespace System.Web.UI.WebControls.

23.5 Standard Web Controls: Designing a Form
This section introduces some of the web controls located in the Standard section of the
Toolbox (Fig. 23.11). Figure 23.21 summarizes the controls used in the next example.

A Form Gathering User Input
Figure 23.22 depicts a form for gathering user input. This example does not perform any
tasks—that is, no action occurs when the user clicks Register. As an exercise, we ask you
to provide the functionality. Here we focus on the steps for adding these controls to a Web
Form and for setting their properties. Subsequent examples demonstrate how to handle
the events of many of these controls. To execute this application:

1 ' Fig. 23.20: WebTime.aspx.vb
2 ' Code-behind file for a page that displays the current time.
3 Partial Class WebTime
4 Inherits System.Web.UI.Page
5
6 ' initializes the contents of the page
7 Protected Sub (ByVal sender As Object, _
8 ByVal e As System.EventArgs) Handles
9

10
11
12 End Sub ' Page_Init
13 End Class ' WebTime

Fig. 23.20 | Code-behind file for a page that displays the web server’s time.

Web control Description

TextBox Gathers user input and displays text.
Button Triggers an event when clicked.
HyperLink Displays a hyperlink.
DropDownList Displays a drop-down list of choices from which a user can select an

item.
RadioButtonList Groups radio buttons.
Image Displays images (for example, PNG, GIF and JPG).

Fig. 23.21 | Commonly used web controls.

Page_Init
Me.Init

' display the server's current time in timeLabel
timeLabel.Text = DateTime.Now.ToString("hh:mm:ss")

iw3htp5_23_ASP.NET.fm Page 896 Wednesday, November 16, 2011 11:52 AM

23.5 Standard Web Controls: Designing a Form 897

1. Select Open Web Site… from the File menu.

2. In the Open Web Site dialog, ensure that File System is selected, then navigate to
this chapter’s examples, select the WebControls folder and click the Open Button.

3. Select WebControls.aspx in the Solution Explorer, then type Ctrl + F5 to execute
the web application in your default web browser.

Create the Web Site
To begin, follow the steps in Section 23.4.1 to create an Empty Web Site named WebCon-
trols, then add a Web Form named WebControls.aspx to the project. Set the document’s
Title property to "Web Controls Demonstration". To ensure that WebControls.aspx
loads when you execute this application, right click it in the Solution Explorer and select Set
As Start Page.

Fig. 23.22 | Web Form that demonstrates web controls.

Image control

TextBox control

DropDownList control

HyperLink control

RadioButtonList control

Button control

Heading 3 paragraph

Paragraph of plain text

A table containing four
Images and four TextBoxes

iw3htp5_23_ASP.NET.fm Page 897 Wednesday, November 16, 2011 11:52 AM

898 Chapter 23 Web App Development with ASP.NET in Visual Basic

Adding the Images to the Project
The images used in this example are located in the images folder with this chapter’s exam-
ples. Before you can display images in the Web Form, they must be added to your project.
To add the images folder to your project:

1. Open Windows Explorer.

2. Locate and open this chapter’s examples folder (ch23).

3. Drag the images folder from Windows Explorer into Visual Web Developer’s
Solution Explorer window and drop the folder on the name of your project.

The IDE will automatically copy the folder and its contents into your project.

Adding Text and an Image to the Form
Next, you’ll begin creating the page. Perform the following steps:

1. First create the page’s heading. At the current cursor position on the page, type
the text "Registration Form", then use the Block Format ComboBox in the IDE’s
toolbar to change the text to Heading 3 format.

2. Press Enter to start a new paragraph, then type the text "Please fill in all
fields and click the Register button".

3. Press Enter to start a new paragraph, then double click the Image control in the
Toolbox. This control inserts an image into a web page, at the current cursor po-
sition. Set the Image’s (ID) property to userInformationImage. The ImageUrl
property specifies the location of the image to display. In the Properties window,
click the ellipsis for the ImageUrl property to display the Select Image dialog. Se-
lect the images folder under Project folders: to display the list of images. Then
select the image user.png.

4. Click OK to display the image in Design view, then click to the right of the Image
and press Enter to start a new paragraph.

Adding a Table to the Form
Form elements are often placed in tables for layout purposes—like the elements that rep-
resent the first name, last name, e-mail and phone information in Fig. 23.22. Next, you’ll
create a table with two rows and two columns in Design mode.

1. Select Table > Insert Table to display the Insert Table dialog (Fig. 23.23). This di-
alog allows you to configure the table’s options.

2. Under Size, ensure that the values of Rows and Columns are both 2—these are
the default values.

3. Click OK to close the Insert Table dialog and create the table.

By default, the contents of a table cell are aligned vertically in the middle of the cell.
We changed the vertical alignment of all cells in the table by setting the valign property
to top in the Properties window. This causes the content in each table cell to align with
the top of the cell. You can set the valign property for each table cell individually or by
selecting all the cells in the table at once, then changing the valign property’s value.

iw3htp5_23_ASP.NET.fm Page 898 Wednesday, November 16, 2011 11:52 AM

23.5 Standard Web Controls: Designing a Form 899

After creating the table, controls and text can be added to particular cells to create a
neatly organized layout. Next, add Image and TextBox controls to each the four table cells
as follows:

1. Click the table cell in the first row and first column of the table, then double click
the Image control in the Toolbox. Set its (ID) property to firstNameImage and
set its ImageUrl property to the image fname.png.

2. Next, double click the TextBox control in the Toolbox. Set its (ID) property to
firstNameTextBox. As in Windows Forms, a TextBox control allows you to ob-
tain text from the user and display text to the user

3. Repeat this process in the first row and second column, but set the Image’s (ID)
property to lastNameImage and its ImageUrl property to the image lname.png,
and set the TextBox’s (ID) property to lastNameTextBox.

4. Repeat Steps 1 and 2 in the second row and first column, but set the Image’s (ID)
property to emailImage and its ImageUrl property to the image email.png, and
set the TextBox’s (ID) property to emailTextBox.

5. Repeat Steps 1 and 2 in the second row and second column, but set the Image’s
(ID) property to phoneImage and its ImageUrl property to the image phone.png,
and set the TextBox’s (ID) property to phoneTextBox.

Fig. 23.23 | Insert Table dialog.

iw3htp5_23_ASP.NET.fm Page 899 Wednesday, November 16, 2011 11:52 AM

900 Chapter 23 Web App Development with ASP.NET in Visual Basic

Creating the Publications Section of the Page
This section contains an Image, some text, a DropDownList control and a HyperLink con-
trol. Perform the following steps to create this section:

1. Click below the table, then use the techniques you’ve already learned in this sec-
tion to add an Image named publicationsImage that displays the publica-
tions.png image.

2. Click to the right of the Image, then press Enter and type the text "Which book
would you like information about?" in the new paragraph.

3. Hold the Shift key and press Enter to create a new line in the current paragraph,
then double click the DropDownList control in the Toolbox. Set its (ID) property
to booksDropDownList. This control is similar to the Windows Forms ComboBox
control, but doesn’t allow users to type text. When a user clicks the drop-down
list, it expands and displays a list from which the user can make a selection.

4. You can add items to the DropDownList using the ListItem Collection Editor,
which you can access by clicking the ellipsis next to the DropDownList’s Items
property in the Properties window, or by using the DropDownList Tasks smart-
tag menu. To open this menu, click the small arrowhead that appears in the up-
per-right corner of the control in Design mode (Fig. 23.24). Visual Web Devel-
oper displays smart-tag menus for many ASP.NET controls to facilitate common
tasks. Clicking Edit Items... in the DropDownList Tasks menu opens the ListItem
Collection Editor, which allows you to add ListItem elements to the DropDown-
List. Add items for "Visual Basic 2010 How to Program", "Visual C# 2008 How
to Program", "Java How to Program" and "C++ How to Program" by clicking the
Add Button four times. For each item, select it, then set its Text property to one
of the four book titles.

5. Click to the right of the DropDownList and press Enter to start a new paragraph,
then double click the HyperLink control in the Toolbox to add a hyperlink to the
web page. Set its (ID) property to booksHyperLink and its Text property to "Click
here to view more information about our books". Set the NavigateUrl property
to http://www.deitel.com. This specifies the resource or web page that will be re-
quested when the user clicks the HyperLink. Setting the Target property to _blank
specifies that the requested web page should open in a new browser window. By de-
fault, HyperLink controls cause pages to open in the same browser window.

Completing the Page
Next you’ll create the Operating System section of the page and the Register Button. This
section contains a RadioButtonList control, which provides a series of radio buttons from

Fig. 23.24 | DropDownList Tasks smart-tag menu.

iw3htp5_23_ASP.NET.fm Page 900 Wednesday, November 16, 2011 11:52 AM

23.6 Validation Controls 901

which the user can select only one. The RadioButtonList Tasks smart-tag menu provides
an Edit Items… link to open the ListItem Collection Editor so that you can create the items
in the list. Perform the following steps:

1. Click to the right of the HyperLink control and press Enter to create a new para-
graph, then add an Image named osImage that displays the os.png image.

2. Click to the right of the Image and press Enter to create a new paragraph, then
add a RadioButtonList. Set its (ID) property to osRadioButtonList. Use the
ListItem Collection Editor to add the items shown in Fig. 23.22.

3. Finally, click to the right of the RadioButtonList and press Enter to create a new
paragraph, then add a Button. A Button web control represents a button that
triggers an action when clicked. Set its (ID) property to registerButton and its
Text property to Register. As stated earlier, clicking the Register button in this
example does not do anything.

You can now execute the application (Ctrl + F5) to see the Web Form in your browser.

23.6 Validation Controls
This section introduces a different type of web control, called a validation control or vali-
dator, which determines whether the data in another web control is in the proper format.
For example, validators can determine whether a user has provided information in a re-
quired field or whether a zip-code field contains exactly five digits. Validators provide a
mechanism for validating user input on the client. When the page is sent to the client, the
validator is converted into JavaScript that performs the validation in the client web browser.
JavaScript is a scripting language that enhances the functionality of web pages and is typi-
cally executed on the client. Unfortunately, some client browsers might not support script-
ing or the user might disable it. For this reason, you should always perform validation on
the server. ASP.NET validation controls can function on the client, on the server or both.

Validating Input in a Web Form
The Web Form in Fig. 23.25 prompts the user to enter a name, e-mail address and phone
number. A website could use a form like this to collect contact information from visitors.
After the user enters any data, but before the data is sent to the web server, validators en-
sure that the user entered a value in each field and that the e-mail address and phone-num-
ber values are in an acceptable format. In this example, (555) 123-4567, 555-123-4567
and 123-4567 are all considered valid phone numbers. Once the data is submitted, the
web server responds by displaying a message that repeats the submitted information. A real
business application would typically store the submitted data in a database or in a file on
the server. We simply send the data back to the client to demonstrate that the server re-
ceived the data. To execute this application:

1. Select Open Web Site… from the File menu.

2. In the Open Web Site dialog, ensure that File System is selected, then navigate to
this chapter’s examples, select the Validation folder and click the Open Button.

3. Select Validation.aspx in the Solution Explorer, then type Ctrl + F5 to execute
the web application in your default web browser.

iw3htp5_23_ASP.NET.fm Page 901 Wednesday, November 16, 2011 11:52 AM

902 Chapter 23 Web App Development with ASP.NET in Visual Basic

In the sample output:

• Fig. 23.25(a) shows the initial Web Form

• Fig. 23.25(b) shows the result of submitting the form before typing any data in
the TextBoxes

• Fig. 23.25(c) shows the results after entering data in each TextBox, but specifying
an invalid e-mail address and invalid phone number

• Fig. 23.25(d) shows the results after entering valid values for all three TextBoxes
and submitting the form.

Fig. 23.25 | Validators in a Web Form that retrieves user contact information. (Part 1 of 2.)

a) Initial Web Form

b) Web Form after the user
presses the Submit Button

without having entered any data
in the TextBoxes; each

TextBox is followed by an error
message that was displayed by a

validation control

RequiredFieldValidator
controls

iw3htp5_23_ASP.NET.fm Page 902 Wednesday, November 16, 2011 11:52 AM

23.6 Validation Controls 903

Creating the Web Site
To begin, follow the steps in Section 23.4.1 to create an Empty Web Site named Valida-
tion, then add a Web Form named Validation.aspx to the project. Set the document’s
Title property to "Demonstrating Validation Controls". To ensure that Valida-
tion.aspx loads when you execute this application, right click it in the Solution Explorer
and select Set As Start Page.

Fig. 23.25 | Validators in a Web Form that retrieves user contact information. (Part 2 of 2.)

c) Web Form after the user enters a
name, an invalid e-mail address and an

invalid phone number in the
TextBoxes, then presses the Submit
Button; the validation controls display
error messages in response to the invalid

e-mail and phone number values

RegularExpressionValidator
controls

d) The Web Form
after the user enters

valid values for all
three TextBoxes

and presses the
Submit Button

iw3htp5_23_ASP.NET.fm Page 903 Wednesday, November 16, 2011 11:52 AM

904 Chapter 23 Web App Development with ASP.NET in Visual Basic

Creating the GUI
To create the page, perform the following steps:

1. Type "Please fill out all the fields in the following form:", then use the
Block Format ComboBox in the IDE’s toolbar to change the text to Heading 3 for-
mat and press Enter to create a new paragraph.

2. Insert a three row and two column table. You’ll add elements to the table mo-
mentarily.

3. Click below the table and add a Button. Set its (ID) property to submitButton
and its Text property to Submit. Press Enter to create a new paragraph. By de-
fault, a Button control in a Web Form sends the contents of the form back to the
server for processing.

4. Add a Label. Set its (ID) property to outputLabel and clear its Text property—
you’ll set it programmatically when the user clicks the submitButton. Set the
outputLabel’s Visible property to False, so the Label does not appear in the
client’s browser when the page loads for the first time. You’ll programmatically
display this Label after the user submits valid data.

Next you’ll add text and controls to the table you created in Step 2 above. Perform the
following steps:

1. In the left column, type the text "Name:" in the first row, "E-mail:" in the second
row and "Phone:" in the row column.

2. In the right column of the first row, add a TextBox and set its (ID) property to
nameTextBox.

3. In the right column of the second row, add a TextBox and set its (ID) property
to emailTextBox. Then type the text "e.g., email@domain.com" to the right of
the TextBox.

4. In the right column of the third row, add a TextBox and set its (ID) property to
phoneTextBox. Then type the text "e.g., (555) 555-1234" to the right of the
TextBox.

Using RequiredFieldValidator Controls
We use three RequiredFieldValidator controls (found in the Validation section of the
Toolbox) to ensure that the name, e-mail address and phone number TextBoxes are not
empty when the form is submitted. A RequiredFieldValidator makes an input control
a required field. If such a field is empty, validation fails. Add a RequiredFieldValidator
as follows:

1. Click to the right of the nameTextBox in the table and press Enter to move to the
next line.

2. Add a RequiredFieldValidator, set its (ID) to nameRequiredFieldValidator
and set the ForeColor property to Red.

3. Set the validator’s ControlToValidate property to nameTextBox to indicate that
this validator verifies the nameTextBox’s contents.

4. Set the validator’s ErrorMessage property to "Please enter your name". This is
displayed on the Web Form only if the validation fails.

iw3htp5_23_ASP.NET.fm Page 904 Wednesday, November 16, 2011 11:52 AM

23.6 Validation Controls 905

5. Set the validator’s Display property to Dynamic, so the validator occupies space
on the Web Form only when validation fails. When this occurs, space is allocated
dynamically, causing the controls below the validator to shift downward to ac-
commodate the ErrorMessage, as seen in Fig. 23.25(a)–(c).

Repeat these steps to add two more RequiredFieldValidators in the second and third
rows of the table. Set their (ID) properties to emailRequiredFieldValidator and phone-
RequiredFieldValidator, respectively, and set their ErrorMessage properties to "Please
enter your email address" and "Please enter your phone number", respectively.

Using RegularExpressionValidator Controls
This example also uses two RegularExpressionValidator controls to ensure that the e-
mail address and phone number entered by the user are in a valid format. Regular expres-
sions are beyond the scope of this book; however, Visual Web Developer provides several
predefined regular expressions that you can simply select to take advantage of this powerful
validation control. Add a RegularExpressionValidator as follows:

1. Click to the right of the emailRequiredFieldValidator in the second row of the
table and add a RegularExpressionValidator, then set its (ID) to emailRegu-
larExpressionValidator and its ForeColor property to Red.

2. Set the ControlToValidate property to emailTextBox to indicate that this vali-
dator verifies the emailTextBox’s contents.

3. Set the validator’s ErrorMessage property to "Please enter an e-mail address
in a valid format".

4. Set the validator’s Display property to Dynamic, so the validator occupies space
on the Web Form only when validation fails.

Repeat the preceding steps to add another RegularExpressionValidator in the third row
of the table. Set its (ID) property to phoneRequiredFieldValidator and its ErrorMes-
sage property to "Please enter a phone number in a valid format", respectively.

A RegularExpressionValidator’s ValidationExpression property specifies the reg-
ular expression that validates the ControlToValidate’s contents. Clicking the ellipsis next
to property ValidationExpression in the Properties window displays the Regular Expres-
sion Editor dialog, which contains a list of Standard expressions for phone numbers, zip
codes and other formatted information. For the emailRegularExpressionValidator, we
selected the standard expression Internet e-mail address. If the user enters text in the
emailTextBox that does not have the correct format and either clicks in a different text
box or attempts to submit the form, the ErrorMessage text is displayed in red.

For the phoneRegularExpressionValidator, we selected U.S. phone number to
ensure that a phone number contains an optional three-digit area code either in paren-
theses and followed by an optional space or without parentheses and followed by a
required hyphen. After an optional area code, a phone number must contain three digits,
a hyphen and another four digits. For example, (555) 123-4567, 555-123-4567 and 123-
4567 are all valid phone numbers.

Submitting the Web Form’s Contents to the Server
If all five validators are successful (that is, each TextBox is filled in, and the e-mail address
and phone number provided are valid), clicking the Submit button sends the form’s data

iw3htp5_23_ASP.NET.fm Page 905 Wednesday, November 16, 2011 11:52 AM

906 Chapter 23 Web App Development with ASP.NET in Visual Basic

to the server. As shown in Fig. 23.25(d), the server then responds by displaying the sub-
mitted data in the outputLabel.

Examining the Code-Behind File for a Web Form That Receives User Input
Figure 23.26 shows the code-behind file for this application. Notice that this code-behind
file does not contain any implementation related to the validators. We say more about this
soon. In this example, we respond to the page’s Load event to process the data submitted
by the user. This event occurs each time the page loads into a web browser—as opposed
to the Init event, which executes only the first time the page is requested by the user. The
event handler for this event is Page_Load (lines 7–30). To create the event handler, open
Validation.aspx.vb in the code editor and perform the following steps:

1. Select (Page Events) from the left ComboBox at the top of the code editor window.

2. Select Load from the right ComboBox at the top of the code editor window.

3. Complete the event handler by inserting the code from Fig. 23.26.

1 ' Fig. 23.26: Validation.aspx.vb
2 ' Code-behind file for the form demonstrating validation controls.
3 Partial Class Validation
4 Inherits System.Web.UI.Page
5
6 ' Page_Load event handler executes when the page is loaded
7 Protected Sub Page_Load(ByVal sender As Object,
8 ByVal e As System.EventArgs) Handles Me.Load
9

10 ' if this is not the first time the page is loading
11 ' (i.e., the user has already submitted form data)
12 If Then
13
14
15 If Then
16 ' retrieve the values submitted by the user
17 Dim name As String = nameTextBox.Text
18 Dim email As String = emailTextBox.Text
19 Dim phone As String = phoneTextBox.Text
20
21 ' create a table indicating the submitted values
22 outputLabel.Text = "Thank you for your submission
" &
23 "We received the following information:
"
24 outputLabel.Text &=
25 String.Format("Name: {0}{1}E-mail:{2}{1}Phone:{3}",
26 name, "
", email, phone)
27 outputLabel.Visible = True ' display the output message
28 End If
29 End If
30 End Sub ' Page_Load
31 End Class ' Validation

Fig. 23.26 | Code-behind file for a Web Form that obtains a user’s contact information.

IsPostBack
Validate() ' validate the form

IsValid

iw3htp5_23_ASP.NET.fm Page 906 Wednesday, November 16, 2011 11:52 AM

23.7 Session Tracking 907

Differentiating Between the First Request to a Page and a Postback
Web programmers using ASP.NET often design their web pages so that the current page
reloads when the user submits the form; this enables the program to receive input, process
it as necessary and display the results in the same page when it’s loaded the second time.
These pages usually contain a form that, when submitted, sends the values of all the con-
trols to the server and causes the current page to be requested again. This event is known
as a postback. Line 12 uses the IsPostBack property of class Page to determine whether
the page is being loaded due to a postback. The first time that the web page is requested,
IsPostBack is False, and the page displays only the form for user input. When the post-
back occurs (from the user clicking Submit), IsPostBack is True.

Server-Side Web Form Validation
Server-side Web Form validation must be implemented programmatically. Line 13 calls
the current Page’s Validate method to validate the information in the request. This vali-
dates the information as specified by the validation controls in the Web Form. Line 15
uses the IsValid property of class Page to check whether the validation succeeded. If this
property is set to True (that is, validation succeeded and the Web Form is valid), then we
display the Web Form’s information. Otherwise, the web page loads without any changes,
except any validator that failed now displays its ErrorMessage.

Processing the Data Entered by the User
Lines 17–19 retrieve the values of nameTextBox, emailTextBox and phoneTextBox. When
data is posted to the web server, the data that the user entered is accessible to the web ap-
plication through the web controls’ properties. Next, lines 22–27 set outputLabel’s Text
to display a message that includes the name, e-mail and phone information that was sub-
mitted to the server. In lines 22, 23 and 26, notice the use of
 rather than vbCrLf to
start new lines in the outputLabel—
 is the markup for a line break in a web page.
Line 27 sets the outputLabel’s Visible property to True, so the user can see the thank-
you message and submitted data when the page reloads in the client web browser.

23.7 Session Tracking
Originally, critics accused the Internet and business of failing to provide the customized
service typically experienced in “brick-and-mortar” stores. To address this problem, busi-
nesses established mechanisms by which they could personalize users’ browsing experienc-
es, tailoring content to individual users. Businesses achieve this level of service by tracking
each customer’s movement through the Internet and combining the collected data with
information provided by the consumer, including billing information, personal preferenc-
es, interests and hobbies.

Personalization
Personalization makes it possible for businesses to communicate effectively with their cus-
tomers and also improves users’ ability to locate desired products and services. Companies
that provide content of particular interest to users can establish relationships with custom-
ers and build on those relationships over time. Furthermore, by targeting consumers with
personal offers, recommendations, advertisements, promotions and services, businesses
create customer loyalty. Websites can use sophisticated technology to allow visitors to cus-

iw3htp5_23_ASP.NET.fm Page 907 Wednesday, November 16, 2011 11:52 AM

908 Chapter 23 Web App Development with ASP.NET in Visual Basic

tomize home pages to suit their individual needs and preferences. Similarly, online shop-
ping sites often store personal information for customers, tailoring notifications and
special offers to their interests. Such services encourage customers to visit sites more fre-
quently and make purchases more regularly.

Privacy
A trade-off exists between personalized business service and protection of privacy. Some
consumers embrace tailored content, but others fear the possible adverse consequences if
the info they provide to businesses is released or collected by tracking technologies. Con-
sumers and privacy advocates ask: What if the business to which we give personal data sells
or gives that information to another organization without our knowledge? What if we do
not want our actions on the Internet—a supposedly anonymous medium—to be tracked
and recorded by unknown parties? What if unauthorized parties gain access to sensitive
private data, such as credit-card numbers or medical history? These are questions that must
be addressed by programmers, consumers, businesses and lawmakers alike.

Recognizing Clients
To provide personalized services to consumers, businesses must be able to recognize clients
when they request information from a site. As we have discussed, the request/response sys-
tem on which the web operates is facilitated by HTTP. Unfortunately, HTTP is a stateless
protocol—it does not provide information that would enable web servers to maintain state
information regarding particular clients. This means that web servers cannot determine
whether a request comes from a particular client or whether the same or different clients
generate a series of requests.

To circumvent this problem, sites can provide mechanisms by which they identify indi-
vidual clients. A session represents a unique client on a website. If the client leaves a site and
then returns later, the client will still be recognized as the same user. When the user closes
the browser, the session ends. To help the server distinguish among clients, each client must
identify itself to the server. Tracking individual clients is known as session tracking. One
popular session-tracking technique uses cookies (discussed in Section 23.7.1); another uses
ASP.NET’s HttpSessionState object (used in Section 23.7.2). Additional session-tracking
techniques are beyond this book’s scope.

23.7.1 Cookies
Cookies provide you with a tool for personalizing web pages. A cookie is a piece of data
stored by web browsers in a small text file on the user’s computer. A cookie maintains in-
formation about the client during and between browser sessions. The first time a user visits
the website, the user’s computer might receive a cookie from the server; this cookie is then
reactivated each time the user revisits that site. The collected information is intended to
be an anonymous record containing data that is used to personalize the user’s future visits
to the site. For example, cookies in a shopping application might store unique identifiers
for users. When a user adds items to an online shopping cart or performs another task re-
sulting in a request to the web server, the server receives a cookie containing the user’s
unique identifier. The server then uses the unique identifier to locate the shopping cart
and perform any necessary processing.

iw3htp5_23_ASP.NET.fm Page 908 Wednesday, November 16, 2011 11:52 AM

23.7 Session Tracking 909

In addition to identifying users, cookies also can indicate users’ shopping preferences.
When a Web Form receives a request from a client, the Web Form can examine the
cookie(s) it sent to the client during previous communications, identify the user’s prefer-
ences and immediately display products of interest to the client.

Every HTTP-based interaction between a client and a server includes a header con-
taining information either about the request (when the communication is from the client
to the server) or about the response (when the communication is from the server to the
client). When a Web Form receives a request, the header includes information such as the
request type and any cookies that have been sent previously from the server to be stored
on the client machine. When the server formulates its response, the header information
contains any cookies the server wants to store on the client computer and other informa-
tion, such as the MIME type of the response.

The expiration date of a cookie determines how long the cookie remains on the
client’s computer. If you do not set an expiration date for a cookie, the web browser main-
tains the cookie for the duration of the browsing session. Otherwise, the web browser
maintains the cookie until the expiration date occurs. Cookies are deleted when they
expire.

23.7.2 Session Tracking with HttpSessionState
The next web application demonstrates session tracking using the .NET class Http-
SessionState. When you execute this application, the Options.aspx page
(Fig. 23.27(a)), which is the application’s Start Page, allows the user to select a program-
ming language from a group of radio buttons. When the user clicks Submit, the selection
is sent to the web server for processing. The web server uses an HttpSessionState object
to store the chosen language and the ISBN number for one of our books on that topic.
Each user that visits the site has a unique HttpSessionState object, so the selections made
by one user are maintained separately from all other users. After storing the selection, the
server returns the page to the browser (Fig. 23.27(b)) and displays the user’s selection and
some information about the user’s unique session (which we show just for demonstration
purposes). The page also includes links that allow the user to choose between selecting an-
other programming language or viewing the Recommendations.aspx page (Fig. 23.27(e)),
which lists recommended books pertaining to the programming language(s) that the user
selected previously. If the user clicks the link for book recommendations, the information
stored in the user’s unique HttpSessionState object is read and used to form the list of
recommendations. To test this application:

1. Select Open Web Site… from the File menu.

2. In the Open Web Site dialog, ensure that File System is selected, then navigate to
this chapter’s examples, select the Sessions folder and click the Open Button.

3. Select Options.aspx in the Solution Explorer, then type Ctrl + F5 to execute the
web application in your default web browser.

Portability Tip 23.1
Users may disable cookies in their web browsers to help ensure their privacy. Such users
will experience difficulty using web applications that depend on cookies to maintain state
information.

iw3htp5_23_ASP.NET.fm Page 909 Wednesday, November 16, 2011 11:52 AM

910 Chapter 23 Web App Development with ASP.NET in Visual Basic

Fig. 23.27 | ASPX file that presents a list of programming languages. (Part 1 of 2.)

a) User selects a language from
the Options.aspx page,

then presses Submit to send
the selection to the server

b) Options.aspx page is
updated to hide the controls for

selecting a language and to
display the user’s selection; the

user clicks the hyperlink to
return to the list of languages

and make another selection

c) User selects another
language from the

Options.aspx page, then
presses Submit to send the

selection to the server

iw3htp5_23_ASP.NET.fm Page 910 Wednesday, November 16, 2011 11:52 AM

23.7 Session Tracking 911

Creating the Web Site
To begin, follow the steps in Section 23.4.1 to create an Empty Web Site named Sessions,
then add two Web Forms named Options.aspx and Recommendations.aspx to the proj-
ect. Set the Options.aspx document’s Title property to "Sessions" and the Recommen-
dations.aspx document’s Title property to "Book Recommendations". To ensure that
Options.aspx is the first page to load for this application, right click it in the Solution Ex-
plorer and select Set As Start Page.

23.7.3 Options.aspx: Selecting a Programming Language
The Options.aspx page Fig. 23.27(a) contains the following controls arranged vertically:

1. A Label with its (ID) property set to promptLabel and its Text property set to
"Select a programming language:". We used the techniques shown in Step 5 of
Section 23.4.1 to create a CSS style for this label named .labelStyle, and set the
style’s font-size attribute to large and the font-weight attribute to bold.

Fig. 23.27 | ASPX file that presents a list of programming languages. (Part 2 of 2.)

d) Options.aspx page is
updated to hide the controls for

selecting a language and to
display the user’s selection; the
user clicks the hyperlink to get a

list of book recommendations

e) Recommendations.aspx
displays the list of

recommended books based on
the user’s selections

iw3htp5_23_ASP.NET.fm Page 911 Wednesday, November 16, 2011 11:52 AM

912 Chapter 23 Web App Development with ASP.NET in Visual Basic

2. The user selects a programming language by clicking one of the radio buttons in
a RadioButtonList. Each radio button has a Text property and a Value property.
The Text property is displayed next to the radio button and the Value property
represents a value that is sent to the server when the user selects that radio button
and submits the form. In this example, we’ll use the Value property to represent
the ISBN for the recommended book.
 Create a RadioButtonList with its (ID) property set to languageList. Use
the ListItem Collection Editor to add five radio buttons with their Text properties
set to Visual Basic, Visual C#, C, C++ and Java, and their Value properties set
to 0-13-215213-4, 0-13-605322-X, 0-13-512356-2, 0-13-611726-0 and 0-13-
605306-8, respectively

3. A Button with its (ID) property set to submitButton and its Text property set to
Submit. In this example, we’ll handle this Button’s Click event. You can create
its event handler by double clicking the Button in Design view.

4. A Label with its (ID) property set to responseLabel and its Text property set to
"Welcome to Sessions!". This Label should be placed immediately to the right
of the Button so that the Label appears at the top of the page when we hide the
preceding controls on the page. Reuse the CSS style you created in Step 1 by set-
ting this Label’s CssClass property to labelStyle.

5. Two more Labels with their (ID) properties set to idLabel and timeoutLabel,
respectively. Clear the text in each Label’s Text property—you’ll set these pro-
grammatically with information about the current user’s session.

6. A HyperLink with its (ID) property set to languageLink and its Text property
set to "Click here to choose another language". Set its NavigateUrl property
by clicking the ellipsis next to the property in the Properties window and selecting
Options.aspx from the Select URL dialog.

7. A HyperLink with its (ID) property set to recommendationsLink and its Text
property set to "Click here to get book recommendations". Set its NavigateUrl
property by clicking the ellipsis next to the property in the Properties window and
selecting Recommendations.aspx from the Select URL dialog.

8. Initially, the controls in Steps 4–7 will not be displayed, so set each control’s Vis-
ible property to False.

Session Property of a Page
Every Web Form includes a user-specific HttpSessionState object, which is accessible
through property Session of class Page. Throughout this section, we use this property to
manipulate the current user’s HttpSessionState object. When a page is first requested, a
unique HttpSessionState object is created by ASP.NET and assigned to the Page’s Ses-
sion property.

Code-Behind File for Options.aspx
Fig. 23.28 presents the code-behind file for the Options.aspx page. When this page is re-
quested, the Page_Load event handler (lines 9–40) executes before the response is sent to
the client. Since the first request to a page is not a postback, the code in lines 12–39 does
not execute the first time the page loads.

iw3htp5_23_ASP.NET.fm Page 912 Wednesday, November 16, 2011 11:52 AM

23.7 Session Tracking 913

Postback Processing
When the user presses Submit, a postback occurs. The form is submitted to the server and
the Page_Load event handler executes. Lines 15–19 display the controls shown in
Fig. 23.27(b) and lines 22–24 hide the controls shown in Fig. 23.27(a). Next, lines 27–
32 ensure that the user selected a language and, if so, display a message in the response-
Label indicating the selection. Otherwise, the message "You did not select a language"
is displayed.

1 ' Fig. 23.28: Options.aspx.vb
2 ' Process user's selection of a programming language by displaying
3 ' links and writing information in an HttpSessionState object.
4 Partial Class Options
5 Inherits System.Web.UI.Page
6
7 ' if postback, hide form and display links to make additional
8 ' selections or view recommendations
9 Protected Sub Page_Load(ByVal sender As Object,

10 ByVal e As System.EventArgs) Handles Me.Load
11
12 If IsPostBack Then
13 ' user has submitted information, so display message
14 ' and appropriate hyperlinks
15 responseLabel.Visible = True
16 idLabel.Visible = True
17 timeoutLabel.Visible = True
18 languageLink.Visible = True
19 recommendationsLink.Visible = True
20
21 ' hide other controls used to make language selection
22 promptLabel.Visible = False
23 languageList.Visible = False
24 submitButton.Visible = False
25
26 ' if the user made a selection, display it in responseLabel
27 If languageList.SelectedItem IsNot Nothing Then
28 responseLabel.Text &= " You selected " &
29 languageList.SelectedItem.Text
30 Else
31 responseLabel.Text &= "You did not select a language."
32 End If
33
34
35
36
37
38
39 End If
40 End Sub ' Page_Load
41

Fig. 23.28 | Process user's selection of a programming language by displaying links and writing
information in an HttpSessionState object. (Part 1 of 2.)

' display session ID
idLabel.Text = "Your unique session ID is: " & Session.SessionID

' display the timeout
timeoutLabel.Text = "Timeout: " & Session.Timeout & " minutes."

iw3htp5_23_ASP.NET.fm Page 913 Wednesday, November 16, 2011 11:52 AM

914 Chapter 23 Web App Development with ASP.NET in Visual Basic

The ASP.NET application contains information about the HttpSessionState object
(Session) for the current client. Property SessionID (displayed in line 35) contains the
unique session ID—a sequence of random letters and numbers. The first time a client
connects to the web server, a unique session ID is created for that client and a temporary
cookie is written to the client so the server can identify the client on subsequent requests.
When the client makes additional requests, the client’s session ID from that temporary
cookie is compared with the session IDs stored in the web server’s memory to retrieve the
client’s HttpSessionState object. HttpSessionState property Timeout (displayed in line
38) specifies the maximum amount of time that an HttpSessionState object can be inac-
tive before it’s discarded. By default, if the user does not interact with this web application
for 20 minutes, the HttpSessionState object is discarded by the server and a new one will
be created if the user interacts with the application again. Figure 23.29 lists some common
HttpSessionState properties.

Method submitButton_Click
In this example, we wish to store the user’s selection in an HttpSessionState object when
the user clicks the Submit Button. The submitButton_Click event handler (lines 43–52)
adds a key/value pair to the HttpSessionState object for the current user, specifying the

42 ' record the user's selection in the Session
43 Protected Sub submitButton_Click(ByVal sender As Object,
44 ByVal e As System.EventArgs) Handles submitButton.Click
45
46 ' if the user made a selection
47 If languageList.SelectedItem IsNot Nothing Then
48
49
50
51 End If
52 End Sub ' submitButton_Click
53 End Class ' Options

Properties Description

Count Specifies the number of key/value pairs in the Session object.
IsNewSession Indicates whether this is a new session (that is, whether the session was

created during loading of this page).
Keys Returns a collection containing the Session object’s keys.
SessionID Returns the session’s unique ID.
Timeout Specifies the maximum number of minutes during which a session can

be inactive (that is, no requests are made) before the session expires. By
default, this property is set to 20 minutes.

Fig. 23.29 | HttpSessionState properties.

Fig. 23.28 | Process user's selection of a programming language by displaying links and writing
information in an HttpSessionState object. (Part 2 of 2.)

' add name/value pair to Session
Session.Add(languageList.SelectedItem.Text,
 languageList.SelectedItem.Value)

iw3htp5_23_ASP.NET.fm Page 914 Wednesday, November 16, 2011 11:52 AM

23.7 Session Tracking 915

language chosen and the ISBN number for a book on that language. The HttpSession-
State object is a dictionary—a data structure that stores key/value pairs. A program uses
the key to store and retrieve the associated value in the dictionary.

The key/value pairs in an HttpSessionState object are often referred to as session
items. They’re placed in an HttpSessionState object by calling its Add method. If the user
made a selection (line 47), lines 49–50 get the selection and its corresponding value from
the languageList by accessing its SelectedItem’s Text and Value properties, respec-
tively, then call HttpSessionState method Add to add this name/value pair as a session
item in the HttpSessionState object (Session).

If the application adds a session item that has the same name as an item previously
stored in the HttpSessionState object, the session item is replaced—the names in session
items must be unique. Another common syntax for placing a session item in the HttpSes-
sionState object is Session(Name) = Value. For example, we could have replaced lines
49–50 with

23.7.4 Recommendations.aspx: Displaying Recommendations Based
on Session Values
After the postback of Options.aspx, the user may request book recommendations. The
book-recommendations hyperlink forwards the user to the page Recommendations.aspx
(Fig. 23.27(e)) to display the recommendations based on the user’s language selections.
The page contains the following controls arranged vertically:

1. A Label with its (ID) property set to recommendationsLabel and its Text prop-
erty set to "Recommendations:". We created a CSS style for this label named
.labelStyle, and set the font-size attribute to x-large and the font-weight
attribute to bold. (See Step 5 in Section 23.4.1 for information on creating a CSS
style.)

2. A ListBox with its (ID) property set to booksListBox. We created a CSS style
for this label named .listBoxStyle. In the Position category, we set the width
attribute to 450px and the height attribute to 125px. The px indicates that the
measurement is in pixels.

Session(languageList.SelectedItem.Text) =
 languageList.SelectedItem.Value

Software Engineering Observation 23.1
A Web Form should not use instance variables to maintain client state information,
because each new request or postback is handled by a new instance of the page. Instead,
maintain client state information in HttpSessionState objects, because such objects are
specific to each client.

Software Engineering Observation 23.2
A benefit of using HttpSessionState objects (rather than cookies) is that
HttpSessionState objects can store any type of object (not just Strings) as attribute
values. This provides you with increased flexibility in determining the type of state
information to maintain for clients.

iw3htp5_23_ASP.NET.fm Page 915 Wednesday, November 16, 2011 11:52 AM

916 Chapter 23 Web App Development with ASP.NET in Visual Basic

3. A HyperLink with its (ID) property set to languageLink and its Text property
set to "Click here to choose another language". Set its NavigateUrl property
by clicking the ellipsis next to the property in the Properties window and selecting
Options.aspx from the Select URL dialog. When the user clicks this link, the Op-
tions.aspx page will be reloaded. Requesting the page in this manner is not con-
sidered a postback, so the original form in Fig. 23.27(a) will be displayed.

Code-Behind File for Recommendations.aspx
Figure 23.30 presents the code-behind file for Recommendations.aspx. Event handler
Page_Init (lines 7–27) retrieves the session information. If a user has not selected a lan-
guage in the Options.aspx page, the HttpSessionState object’s Count property will be 0
(line 11). This property provides the number of session items contained in a HttpSes-
sionState object. If the Count is 0, then we display the text No Recommendations (line
20), clear the ListBox and hide it (lines 21–22), and update the Text of the HyperLink
back to Options.aspx (line 25).

If the user chose at least one language, the loop in lines 12–16 iterates through the
HttpSessionState object’s keys (line 12) by accessing the HttpSessionState’s Keys
property, which returns a collection containing all the keys in the session. Lines 14–15
concatenate the keyName, the String " How to Program. ISBN#: " and the key’s corre-

1 ' Fig. 23.30: Recommendations.aspx.vb
2 ' Creates book recommendations based on a Session object.
3 Partial Class Recommendations
4 Inherits System.Web.UI.Page
5
6 ' read Session items and populate ListBox with any book recommendations
7 Protected Sub Page_Init(ByVal sender As Object,
8 ByVal e As System.EventArgs) Handles Me.Init
9

10 ' determine whether Session contains any information
11 If <> 0 Then
12 For Each keyName In Session.Keys
13
14
15
16 Next
17 Else
18 ' if there are no session items, no language was chosen, so
19 ' display appropriate message and clear and hide booksListBox
20 recommendationsLabel.Text = "No Recommendations"
21 booksListBox.Items.Clear()
22 booksListBox.Visible = False
23
24 ' modify languageLink because no language was selected
25 languageLink.Text = "Click here to choose a language"
26 End If
27 End Sub ' Page_Init
28 End Class ' Recommendations

Fig. 23.30 | Session data used to provide book recommendations to the user.

Session.Count

' use keyName to display one of Session's name/value pairs
booksListBox.Items.Add(keyName &
 " How to Program. ISBN#: " & Session(keyName))

iw3htp5_23_ASP.NET.fm Page 916 Wednesday, November 16, 2011 11:52 AM

23.8 Case Study: Database-Driven ASP.NET Guestbook 917

sponding value, which is returned by Session(keyName). This String is the recommen-
dation that is added to the ListBox.

23.8 Case Study: Database-Driven ASP.NET Guestbook
Many websites allow users to provide feedback about the website in a guestbook. Typical-
ly, users click a link on the website’s home page to request the guestbook page. This page
usually consists of a form that contains fields for the user’s name, e-mail address, message/
feedback and so on. Data submitted on the guestbook form is then stored in a database
located on the server.

In this section, we create a guestbook Web Form application. The GUI (Fig. 23.31)
contains a GridView data control, which displays all the entries in the guestbook in tabular
format. This control is located in the Toolbox’s Data section. We explain how to create and
configure this data control shortly. The GridView displays abc in Design mode to indicate
data that will be retrieved from a data source at runtime. You’ll learn how to create and
configure the GridView shortly.

The Guestbook Database
The application stores the guestbook information in a SQL Server database called Guest-
book.mdf located on the web server. (We provide this database in the databases folder
with this chapter’s examples.) The database contains a single table named Messages.

Testing the Application
To test this application:

1. Select Open Web Site… from the File menu.

Fig. 23.31 | Guestbook application GUI in Design mode.

GridView
control

iw3htp5_23_ASP.NET.fm Page 917 Wednesday, November 16, 2011 11:52 AM

918 Chapter 23 Web App Development with ASP.NET in Visual Basic

2. In the Open Web Site dialog, ensure that File System is selected, then navigate to
this chapter’s examples, select the Guestbook folder and click the Open Button.

3. Select Guestbook.aspx in the Solution Explorer, then type Ctrl + F5 to execute
the web application in your default web browser.

Figure 23.32(a) shows the user submitting a new entry. Figure 23.32(b) shows the new en-
try as the last row in the GridView.

Fig. 23.32 | Sample execution of the Guestbook application.

a) User enters
data for the

name, e-mail and
message, then

presses Submit
to send the data

to the server

b) Server stores
the data in the
database, then

refreshes the
GridView with
the updated data

iw3htp5_23_ASP.NET.fm Page 918 Wednesday, November 16, 2011 11:52 AM

23.8 Case Study: Database-Driven ASP.NET Guestbook 919

23.8.1 Building a Web Form that Displays Data from a Database
We now explain how to build this GUI and set up the data binding between the GridView
control and the database. We discuss the code-behind file in Section 23.8.2. To build the
guestbook application, perform the following steps:

Step 1: Creating the Web Site
To begin, follow the steps in Section 23.4.1 to create an Empty Web Site named Guestbook
then add a Web Form named Guestbook.aspx to the project. Set the document’s Title
property to "Guestbook". To ensure that Guestobook.aspx loads when you execute this
application, right click it in the Solution Explorer and select Set As Start Page.

Step 2: Creating the Form for User Input
In Design mode, add the text Please leave a message in our guestbook:, then use the
Block Format ComboBox in the IDE’s toolbar to change the text to Heading 3 format. Insert
a table with four rows and two columns, configured so that the text in each cell aligns with
the top of the cell. Place the appropriate text (see Fig. 23.31) in the top three cells in the
table’s left column. Then place TextBoxes named nameTextBox, emailTextBox and mes-
sageTextBox in the top three table cells in the right column. Configure the TextBoxes as
follows:

• Set the nameTextBox’s width to 300px.

• Set the emailTextBox’s width to 300px.

• Set the messageTextBox’s width to 300px and height to 100px. Also set this con-
trol’s TextMode property to MultiLine so the user can type a message containing
multiple lines of text.

Finally, add Buttons named submitButton and clearButton to the bottom-right table
cell. Set the buttons’ Text properties to Submit and Clear, respectively. We discuss the
buttons’ event handlers when we present the code-behind file. You can create these event
handlers now by double clicking each Button in Design view.

Step 3: Adding a GridView Control to the Web Form
Add a GridView named messagesGridView that will display the guestbook entries. This
control appears in the Data section of the Toolbox. The colors for the GridView are speci-
fied through the Auto Format... link in the GridView Tasks smart-tag menu that opens when
you place the GridView on the page. Clicking this link displays an AutoFormat dialog with
several choices. In this example, we chose Professional. We show how to set the GridView’s
data source (that is, where it gets the data to display in its rows and columns) shortly.

Step 4: Adding a Database to an ASP.NET Web Application
To use a SQL Server Express database file in an ASP.NET web application, you must first
add the file to the project’s App_Data folder. For security reasons, this folder can be ac-
cessed only by the web application on the server—clients cannot access this folder over a
network. The web application interacts with the database on behalf of the client.

The Empty Web Site template does not create the App_Data folder. To create it, right
click the project’s name in the Solution Explorer, then select Add ASP.NET Folder >

iw3htp5_23_ASP.NET.fm Page 919 Wednesday, November 16, 2011 11:52 AM

920 Chapter 23 Web App Development with ASP.NET in Visual Basic

App_Data. Next, add the Guestbook.mdf file to the App_Data folder. You can do this in
one of two ways:

• Drag the file from Windows Explorer and drop it on the App_Data folder.

• Right click the App_Data folder in the Solution Explorer and select Add Existing
Item… to display the Add Existing Item dialog, then navigate to the databases fold-
er with this chapter’s examples, select the Guestbook.mdf file and click Add.
[Note: Ensure that Data Files is selected in the ComboBox above or next to the Add
Button in the dialog; otherwise, the database file will not be displayed in the list
of files.]

Step 5: Creating the LINQ to SQL Classes
You’ll use LINQ to interact with the database. To create the LINQ to SQL classes for the
Guestbook database:

1. Right click the project in the Solution Explorer and select Add New Item… to dis-
play the Add New Item dialog.

2. In the dialog, select LINQ to SQL Classes, enter Guestbook.dbml as the Name, and
click Add. A dialog appears asking if you would like to put your new LINQ to
SQL classes in the App_Code folder; click Yes. The IDE will create an App_Code
folder and place the LINQ to SQL classes information in that folder.

3. In the Database Explorer window, drag the Guestbook database’s Messages table
from the Database Explorer onto the Object Relational Designer. Finally, save your
project by selecting File > Save All.

Step 6: Binding the GridView to the Messages Table of the Guestbook Database
You can now configure the GridView to display the database’s data.

1. Open the GridView Tasks smart-tag menu, then select <New data source...> from
the Choose Data Source ComboBox to display the Data Source Configuration Wiz-
ard dialog.

2. In this example, we use a LinqDataSource control that allows the application to
interact with the Guestbook.mdf database through LINQ. Select LINQ, then set
the ID of the data source to messagesLinqDataSource and click OK to begin the
Configure Data Source wizard.

3. In the Choose a Context Object screen, ensure that GuestbookDataContext is se-
lected in the ComboBox, then click Next >.

4. The Configure Data Selection screen (Fig. 23.33) allows you to specify which data
the LinqDataSource should retrieve from the data context. Your choices on this
page design a Select LINQ query. The Table drop-down list identifies a table in
the data context. The Guestbook data context contains one table named Messag-
es, which is selected by default. If you haven’t saved your project since creating your
LINQ to SQL classes (Step 5), the list of tables will not appear. In the Select pane,
ensure that the checkbox marked with an asterisk (*) is selected to indicate that
you want to retrieve all the columns in the Messages table.

iw3htp5_23_ASP.NET.fm Page 920 Wednesday, November 16, 2011 11:52 AM

23.8 Case Study: Database-Driven ASP.NET Guestbook 921

5. Click the Advanced… button, then select the Enable the LinqDataSource to per-
form automatic inserts CheckBox and click OK. This configures the LinqData-
Source control to automatically insert new data into the database when new data
is inserted in the data context. We discuss inserting new guestbook entries based
on users’ form submissions shortly.

6. Click Finish to complete the wizard.

A control named messagesLinqDataSource now appears on the Web Form directly
below the GridView (Fig. 23.34). This control is represented in Design mode as a gray box
containing its type and name. It will not appear on the web page—the gray box simply
provides a way to manipulate the control visually through Design mode—similar to how
the objects in the component tray are used in Design mode for a Windows Forms appli-
cation.

The GridView now has column headers that correspond to the columns in the Mes-
sages table. The rows each contain either a number (which signifies an autoincremented
column) or abc (which indicates string data). The actual data from the Guestbook.mdf
database file will appear in these rows when you view the ASPX file in a web browser.

Step 7: Modifying the Columns of the Data Source Displayed in the GridView
It’s not necessary for site visitors to see the MessageID column when viewing past guest-
book entries—this column is merely a unique primary key required by the Messages table
within the database. So, let’s modify the GridView to prevent this column from displaying
on the Web Form.

1. In the GridView Tasks smart tag menu, click Edit Columns to display the Fields
dialog (Fig. 23.35).

Fig. 23.33 | Configuring the query used by the LinqDataSource to retrieve data.

iw3htp5_23_ASP.NET.fm Page 921 Wednesday, November 16, 2011 11:52 AM

922 Chapter 23 Web App Development with ASP.NET in Visual Basic

2. Select MessageID in the Selected fields pane, then click the Button. This re-
moves the MessageID column from the GridView.

3. Click OK to return to the main IDE window, then set the Width property of the
GridView to 650px.

The GridView should now appear as shown in Fig. 23.31.

Fig. 23.34 | Design mode displaying LinqDataSource control for a GridView.

Fig. 23.35 | Removing the MessageID column from the GridView.

LinqDataSource
control

iw3htp5_23_ASP.NET.fm Page 922 Wednesday, November 16, 2011 11:52 AM

23.8 Case Study: Database-Driven ASP.NET Guestbook 923

23.8.2 Modifying the Code-Behind File for the Guestbook Application
After building the Web Form and configuring the data controls used in this example, dou-
ble click the Submit and Clear buttons in Design view to create their corresponding Click
event handlers in the code-behind file (Fig. 23.36). The IDE generates empty event han-
dlers, so we must add the appropriate code to make these buttons work properly. The
event handler for clearButton (lines 36–41) clears each TextBox by setting its Text prop-
erty to an empty string. This resets the form for a new guestbook submission.

1 ' Fig. 23.36: Guestbook.aspx.vb
2 ' Code-behind file that defines event handlers for the guestbook.
3 Partial Class Guestbook
4 Inherits System.Web.UI.Page
5
6 ' Submit Button adds a new guestbook entry to the database,
7 ' clears the form and displays the updated list of guestbook entries
8 Protected Sub submitButton_Click(ByVal sender As Object, _
9 ByVal e As System.EventArgs) Handles submitButton.Click

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 ' clear the TextBoxes
27 nameTextBox.Text = String.Empty
28 emailTextBox.Text = String.Empty
29 messageTextBox.Text = String.Empty
30
31 ' update the GridView with the new database table contents
32 messagesGridView.DataBind()
33 End Sub ' submitButton_Click
34
35 ' Clear Button clears the Web Form's TextBoxes
36 Protected Sub clearButton_Click(ByVal sender As Object, _
37 ByVal e As System.EventArgs) Handles clearButton.Click
38 nameTextBox.Text = String.Empty
39 emailTextBox.Text = String.Empty
40 messageTextBox.Text = String.Empty
41 End Sub ' clearButton_Click
42 End Class ' Guestbook

Fig. 23.36 | Code-behind file for the guestbook application.

' create dictionary of parameters for inserting
Dim insertParameters As New ListDictionary()

’ add current date and the user's name, e-mail address and message
’ to dictionary of insert parameters
insertParameters.Add("Date", Date.Now.ToShortDateString())
insertParameters.Add("Name", nameTextBox.Text)
insertParameters.Add("Email", emailTextBox.Text)
insertParameters.Add("Message", messageTextBox.Text)

' execute an INSERT LINQ statement to add a new entry to the
' Messages table in the Guestbook data context that contains the
' current date and the user's name, e-mail address and message
messagesLinqDataSource.Insert(insertParameters)

iw3htp5_23_ASP.NET.fm Page 923 Wednesday, November 16, 2011 11:52 AM

924 Chapter 23 Web App Development with ASP.NET in Visual Basic

Lines 8–33 contain submitButton’s event-handling code, which adds the user’s infor-
mation to the Guestbook database’s Messages table. To use the values of the TextBoxes on
the Web Form as the parameter values inserted into the database, we must create a List-
Dictionary of insert parameters that are key/value pairs.

Line 12 creates a ListDictionary object. Lines 16–19 used the ListDictionary’s
Add method to store key/value pairs that represent each of the four insert parameters—the
current date and the user’s name, e-mail address, and message. Invoking the LinqData-
Source method Insert (line 24) inserts the data in the data context, adding a row to the
Messages table and automatically updating the database. We pass the ListDictionary
object as an argument to the Insert method to specify the insert parameters. After the data
is inserted into the database, lines 27–29 clear the TextBoxes, and line 32 invokes messag-
esGridView’s DataBind method to refresh the data that the GridView displays. This causes
messagesLinqDataSource (the GridView’s source) to execute its Select command to
obtain the Messages table’s newly updated data.

23.9 Online Case Study: ASP.NET AJAX
In Chapter 24 (online), you learn the difference between a traditional web application and
an Ajax (Asynchronous JavaScript and XML) web application. You also learn how to use
ASP.NET AJAX to quickly and easily improve the user experience for your web applica-
tions, giving them responsiveness comparable to that of desktop applications. To demon-
strate ASP.NET AJAX capabilities, you enhance the validation example by displaying the
submitted form information without reloading the entire page. The only modifications to
this web application appear in Validation.aspx file. You use Ajax-enabled controls to
add this feature.

23.10 Online Case Study: Password-Protected Books
Database Application
In Chapter 24 (online), we include a web application case study in which a user logs into
a password-protected website to view a list of publications by a selected author. The appli-
cation consists of several pages and provides website registration and login capabilities.
You’ll learn about ASP.NET master pages, which allow you to specify a common look-
and-feel for all the pages in your app. We also introduce the Web Site Administration Tool
and use it to configure the portions of the application that can be accessed only by users
who are logged into the website.

Summary
Section 23.1 Introduction
• ASP.NET technology is Microsoft’s technology for web-application development.

• Web Form files have the file-name extension .aspx and contain the web page’s GUI. A Web
Form file represents the web page that is sent to the client browser.

• The file that contains the programming logic of a Web Form is called the code-behind file.

iw3htp5_23_ASP.NET.fm Page 924 Wednesday, November 16, 2011 11:52 AM

 Summary 925

Section 23.2 Web Basics
• URIs (Uniform Resource Identifiers) identify documents on the Internet. URIs that start with

http:// are called URLs (Uniform Resource Locators).

• A URL contains information that directs a browser to the resource that the user wishes to access.
Computers that run web server software make such resources available.

• In a URL, the hostname is the name of the server on which the resource resides. This computer
usually is referred to as the host, because it houses and maintains resources.

• A hostname is translated into a unique IP address that identifies the server. This translation is
performed by a domain-name system (DNS) server.

• The remainder of a URL specifies the location and name of a requested resource. For security
reasons, the location is normally a virtual directory. The server translates the virtual directory into
a real location on the server.

• When given a URL, a web browser performs uses HTTP to retrieve and display the web page
found at that address.

Section 23.3 Multitier Application Architecture
• Multitier applications divide functionality into separate tiers—logical groupings of functional-

ity—that commonly reside on separate computers for security and scalability.

• The information tier (also called the bottom tier) maintains data pertaining to the application.
This tier typically stores data in a relational database management system.

• The middle tier implements business logic, controller logic and presentation logic to control in-
teractions between the application’s clients and the application’s data. The middle tier acts as an
intermediary between data in the information tier and the application’s clients.

• Business logic in the middle tier enforces business rules and ensures that data is reliable before
the server application updates the database or presents the data to users.

• The client tier, or top tier, is the application’s user interface, which gathers input and displays
output. Users interact directly with the application through the user interface (typically viewed
in a web browser), keyboard and mouse. In response to user actions, the client tier interacts with
the middle tier to make requests and to retrieve data from the information tier. The client tier
then displays to the user the data retrieved from the middle tier.

Section 23.4.1 Building the WebTime Application
• File System websites are created and tested on your local computer. Such websites execute in Vi-

sual Web Developer’s built-in ASP.NET Development Server and can be accessed only by web
browsers running on the same computer. You can later “publish” your website to a production
web server for access via a local network or the Internet.

• HTTP websites are created and tested on an IIS web server and use HTTP to allow you to put
your website’s files on the server. If you own a website and have your own web server computer,
you might use this to build a new website directly on that server computer.

• FTP websites use File Transfer Protocol (FTP) to allow you to put your website’s files on the serv-
er. The server administrator must first create the website on the server for you. FTP is commonly
used by so called “hosting providers” to allow website owners to share a server computer that runs
many websites.

• A Web Form represents one page in a web application and contains a web application’s GUI.

• You can view the Web Form’s properties by selecting DOCUMENT in the Properties window. The
Title property specifies the title that will be displayed in the web browser’s title bar when the
page is loaded.

iw3htp5_23_ASP.NET.fm Page 925 Wednesday, November 16, 2011 11:52 AM

926 Chapter 23 Web App Development with ASP.NET in Visual Basic

• Controls and other elements are placed sequentially on a Web Form one after another in the or-
der in which you drag-and-drop them onto the Web Form. The cursor indicates the insertion
point in the page. This type of layout is known as relative positioning. You can also use absolute
positioning in which controls are located exactly where you drop them on the Web Form.

• When a Label does not contain text, its name is displayed in square brackets in Design view as a
placeholder for design and layout purposes. This text is not displayed at execution time.

• Formatting in a web page is performed with Cascading Style Sheets (CSS).

• A Web Form’s Init event occurs when the page is first requested by a web browser. The event
handler for this event—named Page_Init—initialize the page.

Section 23.4.2 Examining WebTime.aspx’s Code-Behind File
• A class declaration can span multiple source-code files—the separate portions of the class decla-

ration in each file are known as partial classes. The Partial modifier indicates that the class in a
particular file is part of a larger class.

• Every Web Form class inherits from class Page in namespace System.Web.UI. Class Page repre-
sents the default capabilities of each page in a web application.

• The ASP.NET controls are defined in namespace System.Web.UI.WebControls.

Section 23.5 Standard Web Controls: Designing a Form
• An Image control’s ImageUrl property specifies the location of the image to display.

• By default, the contents of a table cell are aligned vertically in the middle of the cell. You can
change this with the cell’s valign property.

• A TextBox control allows you to obtain text from the user and display text to the user.

• A DropDownList control is similar to the Windows Forms ComboBox control, but doesn’t allow
users to type text. You can add items to the DropDownList using the ListItem Collection Editor,
which you can access by clicking the ellipsis next to the DropDownList’s Items property in the
Properties window, or by using the DropDownList Tasks menu.

• A HyperLink control adds a hyperlink to a Web Form. The NavigateUrl property specifies the
resource or web page that will be requested when the user clicks the HyperLink.

• A RadioButtonList control provides a series of radio buttons from which the user can select only
one. The RadioButtonList Tasks smart-tag menu provides an Edit Items… link to open the ListItem

Collection Editor so that you can create the items in the list.

• A Button control triggers an action when clicked.

Section 23.6 Validation Controls
• A validation control determines whether the data in another web control is in the proper format.

• When the page is sent to the client, the validator is converted into JavaScript that performs the
validation in the client web browser.

• Some client browsers might not support scripting or the user might disable it. For this reason,
you should always perform validation on the server.

• A RequiredFieldValidator control ensures that its ControlToValidate is not empty when the
form is submitted. The validator’s ErrorMessage property specifies what to display on the Web
Form if the validation fails. When the validator’s Display property is set to Dynamic, the validator
occupies space on the Web Form only when validation fails.

• A RegularExpressionValidator uses a regular expression to ensure data entered by the user is in
a valid format. Visual Web Developer provides several predefined regular expressions that you can

iw3htp5_23_ASP.NET.fm Page 926 Wednesday, November 16, 2011 11:52 AM

 Summary 927

simply select to validate e-mail addresses, phone numbers and more. A RegularExpressionVali-
dator’s ValidationExpression property specifies the regular expression to use for validation.

• A Web Form’s Load event occurs each time the page loads into a web browser. The event handler
for this event is Page_Load.

• ASP.NET pages are often designed so that the current page reloads when the user submits the
form; this enables the program to receive input, process it as necessary and display the results in
the same page when it’s loaded the second time.

• Submitting a web form is known as a postback. Class Page’s IsPostBack property returns True if
the page is being loaded due to a postback.

• Server-side Web Form validation must be implemented programmatically. Class Page’s Validate
method validates the information in the request as specified by the Web Form’s validation con-
trols. Class Page’s IsValid property returns True if validation succeeded.

Section 23.7 Session Tracking
• Personalization makes it possible for e-businesses to communicate effectively with their custom-

ers and also improves users’ ability to locate desired products and services.

• To provide personalized services to consumers, e-businesses must be able to recognize clients
when they request information from a site.

• HTTP is a stateless protocol—it does not provide information regarding particular clients.

• Tracking individual clients is known as session tracking.

Section 23.7.1 Cookies
• A cookie is a piece of data stored in a small text file on the user’s computer. A cookie maintains

information about the client during and between browser sessions.

• The expiration date of a cookie determines how long the cookie remains on the client’s comput-
er. If you do not set an expiration date for a cookie, the web browser maintains the cookie for the
duration of the browsing session.

Section 23.7.2 Session Tracking with HttpSessionState
• Session tracking is implemented with class HttpSessionState.

Section 23.7.3 Options.aspx: Selecting a Programming Language
• Each radio button in a RadioButtonList has a Text property and a Value property. The Text

property is displayed next to the radio button and the Value property represents a value that is
sent to the server when the user selects that radio button and submits the form.

• Every Web Form includes a user-specific HttpSessionState object, which is accessible through
property Session of class Page.

• HttpSessionState property SessionID contains a client’s unique session ID. The first time a cli-
ent connects to the web server, a unique session ID is created for that client and a temporary
cookie is written to the client so the server can identify the client on subsequent requests. When
the client makes additional requests, the client’s session ID from that temporary cookie is com-
pared with the session IDs stored in the web server’s memory to retrieve the client’s HttpSes-
sionState object.

• HttpSessionState property Timeout specifies the maximum amount of time that an Http-
SessionState object can be inactive before it’s discarded. Twenty minutes is the default.

• The HttpSessionState object is a dictionary—a data structure that stores key/value pairs. A pro-
gram uses the key to store and retrieve the associated value in the dictionary.

iw3htp5_23_ASP.NET.fm Page 927 Wednesday, November 16, 2011 11:52 AM

928 Chapter 23 Web App Development with ASP.NET in Visual Basic

• The key/value pairs in an HttpSessionState object are often referred to as session items. They’re
placed in an HttpSessionState object by calling its Add method. Another common syntax for
placing a session item in the HttpSessionState object is Session(Name) = Value.

• If an application adds a session item that has the same name as an item previously stored in the
HttpSessionState object, the session item is replaced—session items names must be unique.

Section 23.7.4 Recommendations.aspx: Displaying Recommendations Based on Ses-
sion Values
• The Count property returns the number of session items stored in an HttpSessionState object.

• HttpSessionState’s Keys property returns a collection containing all the keys in the session.

Section 23.8 Case Study: Database-Driven ASP.NET Guestbook
• A GridView data control displays data in tabular format. This control is located in the Toolbox’s

Data section.

Section 23.8.1 Building a Web Form that Displays Data from a Database
• To use a SQL Server Express database file in an ASP.NET web application, you must first add

the file to the project’s App_Data folder. For security reasons, this folder can be accessed only by
the web application on the server—clients cannot access this folder over a network. The web ap-
plication interacts with the database on behalf of the client.

• A LinqDataSource control allows a web application to interact with a database through LINQ.

Section 23.8.2 Modifying the Code-Behind File for the Guestbook Application
• To insert data into a database using a LinqDataSource, you must create a ListDictionary of in-

sert parameters that are formatted as key/value pairs.

• A ListDictionary’s Add method stores key/value pairs that represent each insert parameter.

• A GridView’s DataBind method refreshes the data that the GridView displays.

Self-Review Exercises
23.1 State whether each of the following is true or false. If false, explain why.

a) Web Form file names end in .aspx.
b) App.config is a file that stores configuration settings for an ASP.NET web application.
c) A maximum of one validation control can be placed on a Web Form.
d) A LinqDataSource control allows a web application to interact with a database.

23.2 Fill in the blanks in each of the following statements:
a) Web applications contain three basic tiers: , , and .
b) The web control is similar to the ComboBox Windows control.
c) A control which ensures that the data in another control is in the correct format is called

a(n) .
d) A(n) occurs when a page requests itself.
e) Every ASP.NET page inherits from class .
f) The file contains the functionality for an ASP.NET page.

Answers to Self-Review Exercises
23.1 a) True. b) False. Web.config is the file that stores configuration settings for an ASP.NET
web application. c) False. An unlimited number of validation controls can be placed on a Web
Form. d) True.

iw3htp5_23_ASP.NET.fm Page 928 Wednesday, November 16, 2011 11:52 AM

 Exercises 929

23.2 a) bottom (information), middle (business logic), top (client). b) DropDownList. c) valida-
tor. d) postback. e) Page. f) code-behind.

Exercises
23.3 (WebTime Modification) Modify the WebTime example in Section 23.4 to contain drop-down
lists that allow the user to modify such Label properties as BackColor, ForeColor and Font-Size.
Configure these drop-down lists so that a postback occurs whenever the user makes a selection.
When the page reloads, it should reflect the specified changes to the properties of the Label display-
ing the time.

23.4 (Page Hit Counter) Create an ASP.NET page that uses session tracking to keep track of
how many times the client computer has visited the page. Set the HttpSession object’s Timeout
property to DateTime.Now.AddDays(1) to keep the session in effect for one day into the future. Dis-
play the number of page hits every time the page loads.

23.5 (Guestbook Application Modification) Add validation to the guestbook application in
Section 23.8. Use validation controls to ensure that the user provides a name, a valid e-mail address
and a message.

23.6 (WebControls Modification) Modify the example of Section 23.5 to add functionality to the
Register Button. When the user clicks the Button, validate all of the input fields to ensure that the
user has filled out the form completely, and entered a valid email address and phone number. If any
of the fields are not valid, appropriate messages should be displayed by validation controls. If the
fields are all valid, direct the user to another page that displays a message indicating that the regis-
tration was successful followed by the registration information that was submitted from the form.

23.7 (Project: Web-Based Address Book) Using the techniques you learned in Section 23.8, cre-
ate a web-based Address book. Display the address book’s contents in a GridView. Allow the user to
search for entries with a particular last name.

iw3htp5_23_ASP.NET.fm Page 929 Wednesday, November 16, 2011 11:52 AM

A
HTML Special Characters

The table of Fig. A.1 shows many commonly used XHTML special characters—called char-
acter entity references by the World Wide Web Consortium. For a complete list of charac-
ter entity references, see the site www.w3.org/TR/REC-html40/sgml/entities.html.

Character XHTML encoding Character XHTML encoding

non-breaking space ê ê

§ § ì ì

© © í í

® ® î î

¼ ¼ ñ ñ

½ ½ ò ò

¾ ¾ ó ó

à à ô ô

á á õ õ

â â ÷ ÷

ã ã ù ù

å å ú ú

ç ç û û

è è • •

é é ™ ™

Fig. A.1 | XHTML special characters.

iw3htp5_AppA_HTMLSpecChars.fm Page 930 Wednesday, November 16, 2011 1:06 PM

B
HTML Colors

Colors may be specified by using a standard name (such as aqua) or a hexadecimal RGB
value (such as #00FFFF for aqua). Of the six hexadecimal digits in an RGB value, the first
two represent the amount of red in the color, the middle two represent the amount of
green in the color, and the last two represent the amount of blue in the color. For example,
black is the absence of color and is defined by #000000, whereas white is the maximum
amount of red, green and blue and is defined by #FFFFFF. Pure red is #FF0000, pure green
(which the standard calls lime) is #00FF00 and pure blue is #00FFFF. Note that green in
the standard is defined as #008000. Figure 4.2 contains the HTML standard color set.
Figure B.1 contains the HTML extended color set.

Color name Value Color name Value

aliceblue #F0F8FF cyan #00FFFF

antiquewhite #FAEBD7 darkblue #00008B

aquamarine #7FFFD4 darkcyan #008B8B

azure #F0FFFF darkgoldenrod #B8860B

beige #F5F5DC darkgray #A9A9A9

bisque #FFE4C4 darkgreen #006400

blanchedalmond #FFEBCD darkkhaki #BDB76B

blueviolet #8A2BE2 darkmagenta #8B008B

brown #A52A2A darkolivegreen #556B2F

burlywood #DEB887 darkorange #FF8C00

cadetblue #5F9EA0 darkorchid #9932CC

chartreuse #7FFF00 darkred #8B0000

chocolate #D2691E darksalmon #E9967A

coral #FF7F50 darkseagreen #8FBC8F

cornflowerblue #6495ED darkslateblue #483D8B

cornsilk #FFF8DC darkslategray #2F4F4F

crimson #DC143C darkturquoise #00CED1

Fig. B.1 | HTML extended colors and hexadecimal RGB values. (Part 1 of 3.)

iw3htp5_AppB_HTMLColors.fm Page 931 Wednesday, November 16, 2011 1:06 PM

932 Appendix B HTML Colors

darkviolet #9400D3 linen #FAF0E6

deeppink #FF1493 magenta #FF00FF

deepskyblue #00BFFF mediumaquamarine #66CDAA

dimgray #696969 mediumblue #0000CD

dodgerblue #1E90FF mediumorchid #BA55D3

firebrick #B22222 mediumpurple #9370DB

floralwhite #FFFAF0 mediumseagreen #3CB371

forestgreen #228B22 mediumslateblue #7B68EE

gainsboro #DCDCDC mediumspringgreen #00FA9A

ghostwhite #F8F8FF mediumturquoise #48D1CC

gold #FFD700 mediumvioletred #C71585

goldenrod #DAA520 midnightblue #191970

greenyellow #ADFF2F mintcream #F5FFFA

honeydew #F0FFF0 mistyrose #FFE4E1

hotpink #FF69B4 moccasin #FFE4B5

indianred #CD5C5C navajowhite #FFDEAD

indigo #4B0082 oldlace #FDF5E6

ivory #FFFFF0 olivedrab #6B8E23

khaki #F0E68C orange #FFA500

lavender #E6E6FA orangered #FF4500

lavenderblush #FFF0F5 orchid #DA70D6

lawngreen #7CFC00 palegoldenrod #EEE8AA

lemonchiffon #FFFACD palegreen #98FB98

lightblue #ADD8E6 paleturquoise #AFEEEE

lightcoral #F08080 palevioletred #DB7093

lightcyan #E0FFFF papayawhip #FFEFD5

lightgoldenrodyellow #FAFAD2 peachpuff #FFDAB9

lightgreen #90EE90 peru #CD853F

lightgrey #D3D3D3 pink #FFC0CB

lightpink #FFB6C1 plum #DDA0DD

lightsalmon #FFA07A powderblue #B0E0E6

lightseagreen #20B2AA rosybrown #BC8F8F

lightskyblue #87CEFA royalblue #4169E1

lightslategray #778899 saddlebrown #8B4513

lightsteelblue #B0C4DE salmon #FA8072

lightyellow #FFFFE0 sandybrown #F4A460

limegreen #32CD32 seagreen #2E8B57

Color name Value Color name Value

Fig. B.1 | HTML extended colors and hexadecimal RGB values. (Part 2 of 3.)

iw3htp5_AppB_HTMLColors.fm Page 932 Wednesday, November 16, 2011 1:06 PM

HTML Colors 933

seashell #FFF5EE tan #D2B48C

sienna #A0522D thistle #D8BFD8

skyblue #87CEEB tomato #FF6347

slateblue #6A5ACD turquoise #40E0D0

slategray #708090 violet #EE82EE

snow #FFFAFA wheat #F5DEB3

springgreen #00FF7F whitesmoke #F5F5F5

steelblue #4682B4 yellowgreen #9ACD32

Color name Value Color name Value

Fig. B.1 | HTML extended colors and hexadecimal RGB values. (Part 3 of 3.)

iw3htp5_AppB_HTMLColors.fm Page 933 Wednesday, November 16, 2011 1:06 PM

C
JavaScript Operator Precedence Chart

This appendix contains the operator precedence chart for JavaScript/ECMAScript
(Fig. C.1). The operators are shown in decreasing order of precedence from top to bottom.

Operator Type Associativity

.
[]
()

member access
array indexing
function calls

left to right

++
--

-
~
!
delete

new

typeof

void

increment
decrement
unary minus
bitwise complement
logical NOT
deletes an array element or object property
creates a new object
returns the data type of its argument
prevents an expression from returning a value

right to left

*
/
%

multiplication
division
modulus

left to right

+

-

+

addition
subtraction
string concatenation

left to right

<<
>>
>>>

left shift
right shift with sign extension
right shift with zero extension

left to right

<
<=
>
>=
instanceof

less than
less than or equal
greater than
greater than or equal
type comparison

left to right

Fig. C.1 | JavaScript/ECMAScript operator precedence and associativity. (Part 1 of 2.)

iw3htp5_AppC_OpPrec.fm Page 934 Wednesday, November 16, 2011 1:06 PM

JavaScript Operator Precedence Chart 935

==

!=

===

!==

equals
does not equal
strict equals (no type conversions allowed)
strict does not equal (no type conversions allowed)

left to right

& bitwise AND left to right

^ bitwise XOR left to right

| bitwise OR left to right

&& logical AND left to right

|| logical OR left to right

?: conditional right to left

=

+=
-=

*=

/=

%=

&=

^=

|=

<<=

>>=

>>>=

assignment
addition assignment
subtraction assignment
multiplication assignment
division assignment
modulus assignment
bitwise AND assignment
bitwise exclusive OR assignment
bitwise inclusive OR assignment
bitwise left shift assignment
bitwise right shift with sign extension assignment
bitwise right shift with zero extension assignment

right to left

Operator Type Associativity

Fig. C.1 | JavaScript/ECMAScript operator precedence and associativity. (Part 2 of 2.)

iw3htp5_AppC_OpPrec.fm Page 935 Wednesday, November 16, 2011 1:06 PM

D
ASCII Character Set

In Fig. D.1, the digits at the left of the table are the left digits of the decimal equivalent
(0–127) of the character code, and the digits at the top of the table are the right digits of
the character code—e.g., the character code for “F” is 70, and the character code for “&”
is 38.

Most users of this book are interested in the ASCII character set used to represent
English characters on many computers. The ASCII character set is a subset of the Unicode
character set used by scripting languages to represent characters from most of the world’s
languages. For more information on the Unicode character set, see Appendix F.

ASCII character set

0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht

1 nl vt ff cr so si dle dc1 dc2 dc3

2 dc4 nak syn etb can em sub esc fs gs

3 rs us sp ! " # $ % & ‘

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ^ _ ’ a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ del

Fig. D.1 | ASCII character set.

iw3htp5_AppD_CharSet.fm Page 936 Wednesday, November 16, 2011 1:06 PM

Symbols
- range separator 712
- subtraction operator 232
-- operator 271, 272
^ metacharacter 712
_ SQL wildcard character 657, 658
:hover pseudo-class 195
:nth-child selectors 203
! logical NOT or logical negation

operator 300, 302, 305
!= not equal to operator 235, 709
!== strict does not equal operator 238
? PHP quantifier 713
?: conditional operator 252
. PHP concatenation operator 702
. PHP metacharacter 712
’ single quote 712
" double quote 699
[] for array indexing 706
[] for bracket expressions 712
{m,n} quantifier 712
{n,} quantifier 712
{n} quantifier 712
@ XPath attribute symbol 574
* multiplication 578
* multiplication operator 232
* quantifier 712, 713
* SQL wildcard character 656
*/ ending comment delimiter 699
*/ multiline comment delimiter 227
*= multiplication assignment operator

271, 702
/ division operator 232
/ forward slash in end tags 545
/ XPath root selector 574
/* beginning comment delimiter 699
/* multiline comment delimiter 227
// single-line comment 699
/= division assignment operator 271
\ escape character 719
\’ single quote escape sequence 224
\" double-quote escape sequence 224
\\ backslash escape sequence 224
\n newline escape sequence 224
\t tab escape sequence 224
&& logical AND operator 300, 301
% operator 232, 233
% SQL wildcard character 657
%= operator 271
+ addition operator 230, 232
+ quantifier 713
+ string concatenation 228
++ increment operator 270
< less than operator 709
<!--…--> XML comment tags 548

<? and ?> XML processing instruction
delimiters 572

<?php ?> PHP script delimiters 698
<= less than or equal to operator 235, 709
<> angle brackets for XML elements 545
= assignment operator 227
-= subtraction assignment operator 271
== is equal to operator 235, 709
=== strict equals operator 238
=> PHP associative array operator 709
> greater than operator 709
>= greater than or equal to operator 235,

709
|| logical OR operator 300, 302
$ for PHP variables 698
$ metacharacter 712
$$ notation for variable variables 732

Numerics
15 Puzzle exercise 541
404 error 76

A
a (anchor) element 75

href attribute 75, 99
href property 443

abbreviating assignment expressions 270
abort event 473
abort method of the XMLHttpRequest

object 615
abs 394
absolute addressing (XPath) 574
absolute attribute value (position)

150
absolute positioning 149, 149, 150, 751,

890
absolute-length measurement 146, 167
abstraction 409
Accept request header 629
access rule in ASP.NET 799
action 219, 247
action attribute of a form element 92,

717
action symbol 248
action/decision model of programming

251
Adaptive Path 609
add a database to a project 678
Add Connection dialog 678
Add method of class

HttpSessionState 775, 915
addColorStop method of canvas 491,

492
addEventListener method of a DOM

node 322, 456

addition 233
addition assignment operator (+=) 270
addition operator (+) 230, 232
addition script 229
address in memory 371
address of a WCF service 823
advertisement 768, 907
Airline Reservation Web Service

Modification exercise 878
Ajax 51
Ajax (Asynchronous JavaScript and

XML) 53, 604, 606, 609, 784, 924
Ajax (Asynchronous Javascript and XML)

809
toolkits 604
web application 606, 784, 809, 924

alert dialog 223, 321
alert method of window object 223
algebraic equation marked up with

MathML and displayed in the Amaya
browser 567

algorithm 247, 263
all XML Schema element 565
alphabetical order 411
alt attribute of img element 79
Alt key 461
alternate background colors 414
altKey property of an event object 461
Amazon 35
Amazon EC2 (Amazon Elastic Compute

Cloud) 37
Amazon Simple Storage Service (Amazon

S3) 37
AMBER Alert 36
Analog Clock exercise 540
ancestor element 143
ancestor node 579
anchor 75
anchors collection of the document

object 441
and 357
AND (in SQL) 663
Android 59

Android Market 59
app 52
Market 59
operating system 57, 59, 67
smartphone 59, 67

angle bracket (<>) for XML elements 545
animation 191, 540

frame-by-frame 521
Animation exercise 540
animation property 193, 196
animation-delay property 193
animation-direction property 193
animation-duration property 193

Index

iw3htp5_printonlyIX.fm Page 937 Wednesday, November 16, 2011 1:06 PM

938 Index

animation-iteration-count
property 193

animation-name property 193
animation-play-state property 193
animation-timing-function

property 193
anonymous function 450, 468
anonymous type 673
Any extension method of interface

IEnumerable<T> 673
Apache Derby 688
Apache HTTP Server 45, 638, 643, 881
Apache Software Foundation 58, 643
API (application programming interface)

477
appendChild method of a DOM node

438
appendChild method of a Node 591
appendChild method of the document

object 619
Apple 35

App Store 59
Apple Inc. 58
Apple Macintosh 58
Apple TV 38
application programming interface (API)

477
Apps

Favorite Twitter Searches 411,
413

arc method of canvas 482
architecture of participation 50
arcs in canvas 482
argument 220, 312, 313, 393
arial 142
arithmetic assignment operators: +=, -=,

*=, /= and %= 271
arithmetic calculation 232
arithmetic mean (average) 234
arithmetic operator 232
ARPANET 43
array 706

elements 357
index 357
name 357
position number 357
zeroth element 357

array data structure 357
array function 708
array manipulation 706
Array object 311, 359, 362, 363

indexOf method 376
join method 373
lastIndexOf method 376
length property 357, 361, 366
sort method 375, 375

array of strings containing the token 402
Array with 12 elements 358
arrow 256
article element 128
article.xml displayed by Internet

Explorer 549
as keyword 709
ascending modifier of a LINQ

orderby clause 668
ascending order 578

ASC in SQL 658, 659

ASCII (American Standard Code for
Information Interchange) character
set 56

ASCII character set 375
appendix 936

aside element 128
ASP.NET 605, 741, 880

AJAX 784, 924
Ajax 809
Ajax Control Toolkit 812
ASP.NET Web Site template 791
Development Server 747, 826, 886
login 784, 924
membership capabilities 793
Page_Init event handler 895
registration 784, 924
server control 741, 880
start page 755, 758, 764, 770, 779,

895, 897, 903, 911, 919
validation control 761, 901

ASP.NET Web Site template 791
aspect-ratio media feature 162
ASPX file 741, 880
ASPX file that takes reservation

information 857
.aspx filename extension 741, 880
assembler 59
assembly language 59
assign a value to a variable 228
assignment 227, 228
assignment operator 227, 234, 273
assignment operator = associates right to

left 239
associate from left to right 238, 273
associate from right to left 233, 239, 273
associative array 708
associativity of operators 233, 239, 273,

303
asterisk (*) indicates multiplication 232
asterisk (*) occurrence indicator 557
asterisk (*) SQL wildcard character 656
Asynchronous JavaScript and XML

(Ajax) 604
asynchronous page updates (Ajax) 609
asynchronous request 606, 810
AsyncPostBackTrigger class 814
ATTLIST attribute-list declaration

(DTD) 557
Attr object 590
attribute 72, 78

in the UML 63
of a class 61
of an object 63

attribute element 565
attribute in XML 552
attribute-list declaration 557
attribute node 574
attribute selector 414
attribute value in XML 552
attributes (data) 220
attributes property of a Node 590
audio element 311, 333, 516

ended event 335
play method 335
preload attribute 333

audio/mpeg MIME type 333
audio/ogg MIME type 333
authenticating a user 795
author 143

author style 165
author style overriding user style 166
authorISBN table of books database

652, 653
authors table of books database 652
autocomplete attribute 119
autofocus attribute 112
autoincremented 652, 662
Automatic Jigsaw Puzzle Generator

exercise 540
AutoPostBack property of a

DropDownList ASP.NET control
806

average calculation 261

B
background-attachment property

153
Background Audio exercise 540
background color 178
background-color property 152
background colors

alternate 414
background property 182
background-image property 152, 153
background-origin property 186
background-position property 153,

186
background-repeat property 153
backslash (\) escape character 224
bandwidth 44
base 341
base 2 logarithm of e 394
base attribute of element extension

565
base case 342
base e 394
base of a natural logarithm 394
base type (XML Schema) 565
basic HTML colors 462
beginPath method of canvas 480, 489
behavior

of a class 61
behaviors (methods) 220
Berners-Lee, Tim 44
bevel lineJoin of canvas 480
Bezier curve in canvas 488
bezierCurveTo method of canvas 488
binary digit (bit) 56
binary format 341
binary operator 228, 232, 302
binding of a WCF service 823
BindingNavigator class 682
BindingSource class 682

DataSource property 684
EndEdit method 684
MoveFirst method 686

bit 42
bit (binary digit) 56
BlackBerry OS 57
blackjack 841
Blackjack game WCF web service 843
Blackjack Web Service Modification

exercise 878
blink speed 539
block 237, 254, 266, 340
block dimension 152
block display value 162

iw3htp5_printonlyIX.fm Page 938 Wednesday, November 16, 2011 1:06 PM

Index 939

block-level element 157, 152
blogging 51
blur event 465
blur radius 175, 178
body element 72, 313
body of a for 289
body of a loop 256, 288
body property of the document object

444
body section 72
<body> tag 219
bold value (font-weight property) 142
bolder value (font-weight property)

142
books database 652

table relationships 654
boolean expression 250
Boolean object 408, 409
border 155
border attribute of canvas 479
border attribute of table element 86
border properties 157
border-box 186
border-collapse CSS property 290
border-collapse property 459
border-color property 156, 157
border-image property 188
border-image-repeat property 190
border-image-slice property 190,

191
border-image-source 189, 191
border-left-color property 157
border-radius property 176
Borders of block-level elements 156
border-style property 156, 157
border-top-style property 157
border-width property 156, 157
boss function/worker function 312
bottom margin 150, 153
bottom tier 48, 642, 743, 882
box model 155
Box model for block-level elements 156
box shadow 178
box-orient property 200
box-reflect property 187
box-shadow property 178
br (line break) element 89
braces ({}) 254
bracket expressions 712
brackets that enclose subscript of an array

358
braille media type 159
break statement 295
break statement in a for statement 298,

305
bricks-and-mortar store 767, 907
Brin, Sergey 51
browser 39
browser prefix 183
browser request 90
browser window 44
bubbling 461
Build Web Site command in Visual Web

Developer 756, 895
building blocks 247
building-block approach to creating

programs 63
built-in data types 564
business letter marked up as XML 550

business logic 49, 642, 718, 744, 883
business publications 63
business rule 49, 642, 718, 744, 883
butt lineCap of canvas 481, 482
Button ASP.NET web control 761, 901
button input element 321
byte 56

C
C programming language 60, 70
C# programming language 60
C++ programming language 60, 70
cache 48, 641
calculation 232
calculus expression marked up with

MathML and displayed in the Amaya
browser 568

callback function 606, 614, 811
called function 312
caller 312
Calling Attention to an Image exercise

540
calling function 312
Cancel button 230
cancel event bubbling 470, 472
cancelBubble property of an event

object 461, 470, 472
Cannon Game app 514
canvas element 477

35D 531
addColorStop method 491, 492
arc 482
arc method 482
arcs 482
beginPath method 480, 489
bevel lineJoin 480
Bezier curve 488
bezierCurveTo method 488
border attribute 479
butt lineCap 481
canvasID 479
circle 482
clearRect method 503
closePath method 482
compositing 511
context object 479
create a canvas 479
createLinearGradient method

489
createPattern method 499
createRadialGradient method

491
drawImage method 493
ellipses 500
fallback text 479
fill method 499
fillRect method 479, 492, 509
fillStyle attribute 479, 492, 506
fillText method 507
font attribute 506
getElementById method 479
getImageData method 498
globalAlpha attribute 509
globalCompositeOperation at-

tribute 511
image manipulation 495
lineCap attribute 481
lineJoin 480

canvas element (cont.)
lines 480
lineTo method 480
lineWidth attribute 479, 480
miter lineJoin 480, 482
moveTo method 480, 489
paths 480
putImageData method 499
quadratic curve 486
quadraticCurveTo method 486
rectangle 478
resize a canvas to fill the window

508
restore method 528, 530
rotate method 502, 503
round lineJoin 480, 482
save method 528, 530
scale method 501
shadowBlur attribute 484, 485
shadowColor attribute 484, 486
shadowOffsetX attribute 484, 486
shadowOffsetY attribute 484, 486
square lineCap 482
state of the canvas 528
stroke method 482
strokeRect method 479
strokeStyle attribute 479
strokeStyle method 482
subpath 480
textAlign attribute 507
textBaseline attribute 507
transform method 504, 504
transformation matrix 500, 502
transformations 500
translate method 500, 502

caption element (table) 86
caret metacharacter (^) 712
cascade 143
Cascading Style Sheets (CSS) 39, 50,

753, 892
Cascading Style Sheets 3 (CSS3) 39, 138
case label 295, 295, 304
case sensitive 221, 226
cases in which switch cases would

run together 295
casting 701
catch block 613
catch clause 613
catch keyword 613
CDATA keyword (DTD) 557
ceil method 394
center horizontally 153
center value (background-position

property) 153
center value (text-align property)

155
centralized control 43
chance 318
change event 473
character 56, 395

set 56
character classes 713
character data in XML 557
character entity reference 81, 558
character entity references 930
character-processing capabilities 395
character-processing methods of String

object 397, 398
charAt 397

iw3htp5_printonlyIX.fm Page 939 Wednesday, November 16, 2011 1:06 PM

940 Index

charAt method of String object 395,
397

charCodeAt method of String object
396, 397, 398

checkbox input element 96
checked attribute 97
Chemical Markup Language (CML) 570
child 143, 428
child element 549, 552
child node (DOM tree) 579
childNodes property of a Node 590
children (DOM tree) 579
Choose Data Source dialog 678
Cisco 35
class 62

instance variable 63
Partial 895
partial 756
partial class 756, 895

class 56
class attribute 143, 145
class-average problem 257, 262
class-average program with counter-

controlled repetition 257
Classes

BindingNavigator 682
BindingSource 682, 684
DataContext 676, 680
DataContractJsonSerializer

839, 839
DataGridView 677
DownloadStringCompletedE-

ventArgs 837
DropDownList 760, 806, 900
GridView 808
HttpSessionState 769, 774, 775,

776, 909, 914, 915, 916
Image 758, 898
List(Of T) 846
ListDictionary 783, 924
Page 756, 767, 772, 895, 907, 912
Uri 837
WebClient 836

classified listings 44
clear method of the localStorage

object 416
clear method of the sessionStorage

object 416
clearInterval method of the window

object 445, 450
clearRect method of canvas 503
click event 322
click event 321, 334, 472, 473
Client interacting with web server. Step 1:

The GET request 639
Client interacting with web server. Step 2:

The HTTP response 640
client of an object 220
client-side scripting 49, 643
Client that consumes the

WelcomeRESTXMLService 836
Client that consumes

WelcomeSOAPXMLService 832
client tier 49, 67, 642, 744, 883
clientX property of an event object

461
clientY property of an event object

461
clock 540

close a dialog 223
closePath method of canvas 482
cloud computing 37
cm (centimeter) 146
CML (Chemical Markup Language) 545
code-behind file 741, 880
Code-behind file for a page that updates

the time every minute 896
coin tossing 318
collaboration 50
collection 441
collection initializers 675
collective intelligence 51
collision detection 521, 524
colon (:) 139, 142
color 177
color input element 112, 112
color manipulation 479
color name 139
color picker control 112
color property 139
Coloring Black-and-White Photographs

and Images exercise 542
color-stop 180, 182
cols attribute (table) 93
colspan attribute 89
column 379, 651, 651, 652
column number in a result set 656
column-count property 203, 209
column-gap property 203, 209
column-rule property 203, 209
ComboBox control

SelectedIndexChanged event
handler 686

comma 407
comma operator 289
comma-separated list 238
comma-separated list of variable names

226
comment 71
Common Programming Errors overview

26
CommonJS 39
community 50
comparator function 375
comparison operators 709
compiler 59
complex content in XML Schema 564
complexType XML Schema element

563
component 61
component tray 682
compositing in canvas 511
compound assignment operator 270
compound interest 290
computer-assisted instruction (CAI) 354,

354
concat method 396
concatenation 395
concatenation operator (.) 702
concatenation operator (+) 396
condition 234, 300
condition is false 234
condition is true 234
conditional AND (&&) operator 673
conditional expression 252
conditional operator (?:) 252, 273
confirm method of the window object

469

confusing equality operator == with
assignment operator = 234

connect to a database 677, 678
connector symbol 248
constant 393
constructor 405, 408, 409
consuming a web service 825
container element 549
containing block-level element 150
content 566
content attribute of meta element 99,

100, 104
Content MathML 566
content networks 51
content of a document 38
content page in ASP.NET 793
content-box 186
context node (XPath) 578
context object of a canvas 479
continue statement 298, 299, 305
continue statement in a for statement

299, 300
contract of a WCF service 823
control statement 284
control structure 248
control variable 286
controller logic 49, 642, 744, 883
controlling expression of a switch 295
Controls

BindingNavigator 682
Button 761, 901
DataGridView 677
DropDownList 760, 900
HyperLink 760, 900
Image 758, 898
LinqDataSource 780, 920
RadioButtonList 761, 900
RegularExpressionValidator

765, 905
RequiredFieldValidator 764,

765, 904, 905
ScriptManager 813
TabContainer 813
ToolkitScriptManager 813
ValidatorCalloutExtender 815

controls attribute of the video
element 337

control-statement nesting 250
control-statement stacking 250
ControlToValidate property of an

ASP.NET validation control 765,
904, 905

convert to an integer 231
converting strings to all uppercase or

lowercase letters 395
cookie 410, 723, 768, 769, 908, 909

deletion 769, 909
expiration 769, 909
expiration date 769, 909
header 769, 909

$_COOKIE superglobal 714, 725, 726
coordinate system 477
Coordinated Universal Time (UTC) 403,

408
coordinates (0, 0) 478
coordinates of mouse cursor inside client

area 461
© entity reference 83
cos method 394

iw3htp5_printonlyIX.fm Page 940 Wednesday, November 16, 2011 1:06 PM

Index 941

cosine 394
count downward 288
Count extension method of interface

IEnumerable<T> 673
count function 706
Count property of class

HttpSessionState 774, 776, 916
Count property of HttpSessionState

class 914
counter 257
counter-controlled repetition 257, 257,

265, 266, 284, 285, 286, 298
with the for statement 286

Courier font 142
CraigsList (www.craigslist.org) 44,

52
craps 328
Craps game simulation 328
create 518
create properties on an Objects 518
createAttribute method 591
createElement method (XML DOM)

591
createElement method of the

document object 437, 460, 619
createLinearGradient method of

canvas 489
createPattern method of canvas 499
createRadialGradient method of

canvas 491
createTextNode method (XML

DOM) 591
createTextNode method of the

document object 437, 451
Creating a WCF Service in Visual Web

Developer 827
Critter font 142
cross-site scripting (XSS) 610
Crossword exercise 541
crossword puzzle generator 426
CSS (Cascading Style Sheets) 50, 604

attribute 753, 892
border-collapse property 290
class 753, 892
comment 147
drop-down menu 162
property 139
rule 141
selector 141

CSS3 (Cascading Style Sheets 3) 39, 70,
72, 138

CSS3 (Cascasind Style Sheets 3) 39
CSS3 attribute selector 414
CSS3 selectors

:first-child 414
:nth-child 414

Ctrl key 461
ctrlKey property of an event object

461, 461
curly brace ({}) 142
cursive font 142
cursor 224

D
dangling-else problem 254
dashed value (border-style property)

157
data 220

data binding 677
data cells 88
data hierarchy 55
data method of a Text node 592
data source 667
Data Source Configuration Wizard

680
Data Sources window 681
data tier 48, 642
database 57, 70, 650, 655

add to a project 678
connection 678
handle 720
PHP 719
saving changes in LINQ to SQL 684
schema 676
table 650

Database Explorer window 678
database management system (DBMS)

650
DataBind method of a GridView 784,

924
DataContext class 676, 680

SubmitChanges method 676, 684
DataContract attribute 838
DataContractJsonSerializer class

839
DataGridView class 677
datalist element 122
DataMember attribute 838, 861
DataSource property

BindingSource class 684
data-type attribute (XPath) 578
date and time control 114
date and time manipulations 403
date control 114
date input type 114
date manipulation 311
Date object 235, 403, 408, 423
Date object methods 403
Date object’s get methods for the local

time zone 405
Date object’s set methods for the local

time zone 407
Date.parse 407, 408
Date.UTC 407, 408
datetime input type 114
DateTime structure

Now property 756, 896
datetime-local input type 114
dblclick event 473
debug a web application in Visual Web

Developer 755, 895
decimal digit 56
decision making 293
decision symbol 249, 250
declaration 225, 226
declaration block 194
declarative programming 667
declare variables in the parameter list of a

function 314
decoration 145
decreasing order of precedence 238
decrement 284
decrement operator (--) 271
dedicated communications line 43
deep indentation 253
default action for an event 470

default case in a switch statement
295, 327

default namespace 555
default namespaces demonstration 555
default string to display a text field 227
deferred execution 675
define function 702
definite repetition 257
del element 83
DELETE SQL statement 655, 663
delimiter 401
delimiter string 402
Dell 35
δ entity reference (MathML) 569
descendant elements 143
descendant node 579
descending modifier of a LINQ

orderby clause 668
descending sort (DESC) 658, 659
destructive read in 232
details element 128, 133
device-aspect-ratio media feature

162
device-height media feature 162
device-width media feature 162
dialog 223
dialog boxes 223
diamond symbol 249, 250, 251, 256, 288
dictionary 775, 915
die function 719, 720
differences between preincrementing and

postincrementing 272
digit 395
Digital Clock exercise 539
digital divide 36
disabled property of an input element

334
disabling event bubbling 470, 472
disc (bullet for unordered lists) 83, 84
disk 35
dismiss (or hide) a dialog 223
display CSS property

inline-block value 414
display property 162, 164
Display property of an ASP.NET

validation control 765, 905
displaying the cookie’s contents 726
displaying the MailingList database

733
Distinct extension method of interface

IEnumerable<T> 673
distributed computing 823
div element 152
divide and conquer 311, 317
division 233
division by zero 262
division operator (/) 232
DNS (Domain Name System) server 45,

639, 742, 881
do…while repetition statement 249,

296, 297, 298
flowchart 298

Dock property of class Control 682
DOCTYPE element 71
DOCTYPE parts 551
document 38, 409

content 38
structure 38

iw3htp5_printonlyIX.fm Page 941 Wednesday, November 16, 2011 1:06 PM

942 Index

DOCUMENT (representing a Web Form in
the Visual Web Developer Properties
window) 751

Document object 590
document object 220, 230, 322

anchors collection 441
appendChild method 619
body property 444
createElement method 437, 460,

619
createTextNode method 437, 451
forms collection 441
getElementById method 322,

428, 436, 614
getElementsByTagName method

619
images collection 441
links collection 441, 442
setAttribute method 619
write method 221

document object methods and properties
410

Document Object Model (DOM) 220,
428, 604
innerHtml property 614
tree 579

DOCUMENT property of a Web Form 890
document root 574
document type declaration 71
Document Type Definition (DTD) 546,

551, 556
for a business letter 556

document.writeln method 272
Dojo Ajax library 604
dollar amount 292
dollar sign ($) 226
dollar-sign metacharacter 712
DOM (Document Object Model) 604

tree 579
DOM API (Application Programming

Interface) 580
DOM collection

item method 443
length property 442
namedItem method 443

DOM element
getAttribute method 436
setAttribute method 323, 436

DOM node 428
addEventListener method 322,

322, 456
appendChild method 438
firstChild property 589
innerHTML property 327, 335
insertBefore method 438
lastChild property 590
nextSibling property 589
nodeName property 589
nodeType property 589
nodeValue property 589
parentNode property 438, 590
removeChild method 439, 451
removeEventListener method

457
replaceChild method 439

DOM parser 579
DOM tree 428
domain name system (DNS) server 45,

639, 742, 881

dot (.) for accessing object properties and
methods 393

dotted value (border-style property)
157

double click 473
double data type 699
double equals 234
double quotation mark (") 219, 224, 552
double-selection structure 249, 267
double value (border-style property)

157
Dougherty, Dale 50
downloadable fonts 198
downloading 45
DownloadStringCompletedEventAr

gs class 837
draw text on a canvas 506
drawImage method of canvas 493
DropDownList ASP.NET web control

760, 900
DTD (Document Type Definition) 546,

551
.dtd filename extension 551
DTD repository 556
dummy value 260
Dynamic Audio and Graphical

Kaleidoscope exercise 540
dynamic form using PHP 727
dynamic style 443, 444
dynamic web pages 224

E
Eastern Standard Time 408
eBay 35
EBNF (Extended Backus-Naur Form)

grammar 556
Eclipse Foundation 58
ECMA International 39, 218
ECMAScript 39, 218
ECMAScript standard

(www.ecma-internation-
al.org/publications/stan-
dards/ECMA-262.htm) 218

electronic mail 43
element (XML) 545
Element dimensions and text alignment

154
ELEMENT element type declaration

(DTD) 557
element gains the focus 465
element loses focus 465
element name restrictions (XML) 548
Element object 590
element of chance 318
element type declaration 557
element XML Schema element 562
Elements

audio 311, 333
source 333, 337
video 311, 336, 337

elements 72
elements of an array 357, 706
em (M-height of font) 146, 167
em element 142
em measurement for text size 167
emacs text editor 70
e-mail 37, 76
e-mail anchor 76

email input type 115
embedded style sheet 140, 141, 142
embedded system 58
Employee class with FirstName,

LastName and MonthlySalary
properties 670

employee identification number 56
empty array 361
empty body 220
empty element 552
EMPTY keyword (DTD) 558
empty statement 238, 255
empty string 303, 305, 395, 398
en.wikipedia.org/wiki/EBNF 557
Enable Paging setting for an ASP.NET

GridView 808
Enable Sorting setting for an ASP.NET

GridView 808
encapsulation 63
end of a script 220
“end of data entry” 260
end tag 72, 545
ended event of an audio element 335
EndEdit method of class

BindingSource 684
ending angle 482
ending index 402
endpoint (of a WCF service) 823, 872
endpointBehaviors element in

web.config 834
Englishlike abbreviations 59
entity

& 558
> 558
< 558

entity reference (MathML) 569
entity reference ⁢l in

MathML 568
entity-relationship diagram 654
$_ENV superglobal 714
environment variable 714
equal priority 233
equality and relational operators 235
equality operator 300, 301, 305
equality operators 234, 709
equality operators and Strings 395
equals equals 234
Eratosthenes 390
e-reader device 59
error 404 76
error message 221
Error property of

DownloadStringCompletedEvent
Args 837

ErrorMessage property of an ASP.NET
validation control 765, 904, 905

escape character 224, 662
escape sequence 224, 719
EST for Eastern Standard Time 408
evaluate method of a Firefox 2 XML

document object 595
event 322
event bubbling 461, 470, 472
event-driven programming 322
event handler 322, 456
event handling 321
event model 455
event object 457, 460

altKey property 461

iw3htp5_printonlyIX.fm Page 942 Wednesday, November 16, 2011 1:06 PM

Index 943

event object (cont.)
cancelBubble property 461, 470
clientX property 461
clientY property 461
ctrlKey property 461
keyCode property 461
screenX property 461
screenY property 461
shiftKey property 461
target property (FF) 461, 465
type property 461

events
abort 473
blur 465
change 473
click 473
dblclick 473
focus 465, 473
inline model 457
keydown 473
keypress 473
load 455
load 473
mousedown 473
mousemove 457, 460, 473
mouseout 461, 473, 609
mouseover 461, 465, 473, 609
mouseup 473
onkeyup 473
reset 468, 473
resize 473
select 473
submit 468
traditional model 457
unload 473

ex (“x-height” of the font) 146
ex value 284
exception 613
exception handler 613
exception handling 613
exp method 394
expiration date of a cookie 769, 909
exponentiation 233
expression marked up with MathML and

displayed in the Amaya browser 567
extend an XML Schema data type 565
Extended Backus-Naur Form (EBNF)

grammar 556
extender 815
eXtensible Business Reporting Language

(XBRL) 566
eXtensible HyperText Markup Language

(XHTML) 39, 742, 881
eXtensible Hypertext Markup Language

(XHTML) 545
eXtensible Markup Language (XML) 50,

829
eXtensible Stylesheet Language (XSL)

547, 555, 570
eXtensible User Interface Language

(XUL) 566, 570
extension 50, 643
extension element

base attribute 565
extension method 673
extension XML Schema element 565
external DTD 551
external style sheet 146, 146

F
Facebook 35, 44, 51, 54, 58, 61
Factorial 343
Fahrenheit temperature 353
false 234
false 250
fantasy fonts 142
fatal logic error 255
Favorite Twitter Searches app 411,

413
FBLM (Flexible Box Layout Module)

200
field 56
field of a class 56
47 puzzle 452
figcaption element 128
figure element 128
file 56
file transfer protocol (FTP) 37
fill method of canvas 499
fillRect method of canvas 479, 492
fillStyle attribute of canvas 479,

492, 506
fillText method of canvas 507
filter a collection using LINQ 667
final value of the control variable 284,

286, 288
Firefox

DOM Inspector add-on 428
firewall 823
Fireworks Designer exercise 541
:first-child CSS3 selector 414
First extension method of interface

IEnumerable<T> 673
first program in JavaScript 219
first refinement 261
firstChild property of a DOM node

589
firstChild property of a Node 590
#FIXED keyword (DTD) 557
Fixedsys font 142
flag value 260
Flexible Box Layout Module (FBLM) 200
Flickr 44
float property 157
Floating elements 158
floating-point number 260
floor 394, 421
floor method of the Math object 318,

327
Floor Planner exercise 541
flow text around div element 157
flowchart 248, 298
flowcharting JavaScript’s sequence

statement 248
flowcharting the do…while repetition

statement 298
flowcharting the double-selection

if…else statement 252
flowcharting the for repetition statement

288
flowcharting the single-selection if

statement 251
flowcharting the while repetition

statement 256
flowlines 248
focus 115, 465
focus event 465, 473
font attribute of canvas 506

font-family property 142
font manipulation 479
font-size property 139, 142, 284
font-style property 154
font-weight property 142
@font-face rule 198, 200
footer element 130
for repetition statement 249, 285, 287
for repetition statement flowchart 288
for statement 706
for statement header 286
for…in repetition statement 249, 366,

366, 382, 383
foreach statement 709
foreign key 653, 655
form 90, 321
form element 92

action attribute 92
option element 97

form field 465
form GUI component 227
form handler 92
Form including radio buttons and a drop-

down list 122
form resets 473
form to query a MySQL database 719
form validation 718
formatting percentages 327
formnovalidate attribute 114
forms 70
forms authentication 794
forms collection of the document object

441
forward slash character (/) 79
forward slash character (/) in end tags

545, 574
Foursquare 35, 44, 54, 61
¼ entity reference 83
fractional parts of dollars 292
frame-by-frame animation 521
from clause of a LINQ query 667
FROM SQL clause 655
fromCharCode method of the String

object 396, 397, 398
FTP (file transfer protocol) 37
function 230, 311
function (or local) scope 338
function body 315
function call 312, 313
function-call operator 313
function parameter 314
function parseInt 230
futura 142

G
G.I.M.P. 77
gambling casino 318
game of craps 328, 336
Game of Pool exercise 541
game playing 318
game programming 38
games

Call of Duty 2: games
Modern Warfare 38

Farmville 38
Mafia Wars 38
social gaming 38

Garrett, Jesse James 609

iw3htp5_printonlyIX.fm Page 943 Wednesday, November 16, 2011 1:06 PM

944 Index

gathering data to be written as a cookie
724

GDI+ coordinate system 478
generating LINQ to SQL classes 679
Generating Mazes Randomly exercise 541
generic font family 142
geneva font 142
Geography Markup Language (GML)

570
georgia font 142
GET HTTP request 46, 640
GET method of the XMLHttpRequest

object 615
get request (HTTP) 833
get request type 92
$_GET superglobal 714, 717
getAllResponseHeaders method of

the XMLHttpRequest object 615
getAttribute method of a DOM

element 436
getAttribute method of an Element

591
getAttributeNode method of an

Element 591
getDate method of the Date object 403
getDay method of the Date object 403
getDocumentElement method 591
getElementById method of the

document object 322, 428, 436, 479,
589, 614

getElementsByTagName method of the
document object 591, 619

getFullYear method of the Date
object 403, 405

getHours method of the Date object
403

getImageData method of canvas 498
getItem method of the localStorage

object 414
getItem method of the

sessionStorage object 414
getMilliseconds method of the Date

object 403
getMinutes method of the Date object

403
getMonth method of the Date object

403
getResponseHeader method of the

XMLHttpRequest object 615
gets 234
gets the value of 234
getSeconds method of the Date object

403
getTime method of the Date object 404
getTimeZone method of the Date

object 405
getTimezoneOffset method of the

Date object 404
gettype function 701
getUTCDate method of the Date object

403
getUTCDay method of the Date object

403
getUTCFullYear method of the Date

object 403
getUTCHours method of the Date

object 403
getUTCMilliSeconds method of the

Date object 403

getUTCMinutes method of the Date
object 403

getUTCMonth method of the Date
object 403

getUTCSeconds method of the Date
object 403

global functions 340
Global object 341
Global Positioning System (GPS) 37
global scope 338
global variable 338
globalAlpha attribute of canvas 509
globalCompositeOperation attribute

of canvas 511
$GLOBALS superglobal 714
GML (Geography Markup Language)

570
GML website (www.opengis.org) 570
GMT (Greenwich Mean Time) 403, 408
Good Programming Practices overview

xxvi
Google 35, 51, 51, 52

Goggles 52
Maps 52
TV 38

Google web fonts 199
Gosling, James 60
goto elimination 248
goto statement 248
GPS (Global Positioning System) 37
gradient 180

direction 182
gradient-line 182
linear 180
radial 183

gradient line 180
gradient-line 182
graphical representation of an algorithm

248
Graphical User Interface (GUI) 58
grayscale 495
Greenwich Mean Time (GMT) 403, 408
GridView ASP.NET data control 777,

917
GridView class

DataBind method 784, 924
groove value (border-style property)

157
GROUP BY 655
grouping element 152
Groupon 35, 44, 54
Guestbook Application Modification

exercise 789, 929
guestbook on a website 777, 917
GUI (Grahical User Interface) 58
GUI component 227

H
h1-h6 heading elements 73
handheld media type 159
handle an event in a child element 470
hardware 59
<head> tag 219
head element 72, 141
head section 72
header cell 88
header element 128
heading element 297

heading elements 73
height attribute of img element 78
height media feature 162
height property 155
Hewlett Packard 35
hex 83
hexadecimal 341
hexadecimal code 112
hexadecimal value 83
hidden input 93
hidden value (border-style property)

157
hide global variable names 338
hiding of implementation details 312
hierarchy 548
high-level language 59
high-precision floating-point value 260
horizontal coordinate 478
horizontal positioning 153
horizontal rule 83, 83
horizontal tab 224
Horse Race exercise 541
host 45, 639, 742, 881
hostname 45, 639, 742, 881
hours since midnight 403
HousingMaps.com

(www.housingmaps.com) 52
hover pseudo-class 146, 162
hovering 464
<hr> element (horizontal rule) 83
href attribute of a element 75, 99
href property of an a node 443
HSL (hue, saturation and lightness) 178
HSL (hue, saturation, lightness, alpha)

178
.htm (HTML5 filename extension) 70
.html (HTML5 filename extension) 70
HTML (HyperText Markup Language)

44, 45, 638, 742, 881
HTML (Hypertext Markup Language)

50
colors 462
comment 71
comment delimiters 71
documents 70
form 90, 321

html element 72
HTML5 70, 109
HTML5 Elements

audio 311, 333
audio element 516
input types 109
source 333, 337
video 311, 336, 337

HTML5 Test 39
HTTP (HyperText Transfer Protocol)

44, 45, 638, 639, 742, 768, 881, 908
being used with firewalls 823
header 47, 640
method 46, 640
request type 47, 47, 641, 833

http:// 44
http://www.w3.org/2001/

XMLSchema (XML Schema URI) 561
HTTPS (HyperText Transfer Protocol

Secure) 44
https:// 44
HttpSessionState class 769, 774,

775, 776, 909, 914, 915, 916

iw3htp5_printonlyIX.fm Page 944 Wednesday, November 16, 2011 1:06 PM

Index 945

HttpSessionState class (cont.)
Add method 775, 915
Count property 774
Counts property 914
IsNewSession property 774, 914
Keys property 774, 776, 914, 916
SessionID property 774, 914
Timeout property 774, 914

hue 178
Human Genome Project 36
hyperlink 45, 74
HyperLink ASP.NET web control 760,

900
HyperText Markup Language (HTML)

44, 45, 638, 742, 881
HyperText Transfer Protocol (HTTP)

44, 45, 47, 638, 639, 641, 742, 768,
833, 881, 908

HyperText Transfer Protocol Secure
(HTTPS) 44

I
IBM 35
id attribute 152
id CSS selector 142
identifier 226
identifier element (MathML) 568
IEnumerable(Of T) interface 676
IEnumerable<T> interface 669

Any extension method 673
Count extension method 673
Distinct extension method 673
First extension method 673

if selection statement 249, 250, 251,
254

if single-selection statement 234, 293
if…else double-selection statement

249, 251, 270, 293
IIS Express

install 646
IIS Express (Internet Information

Services Express) 638
Image ASP.NET web control 758, 898
image format 77
image hyperlink 80
image manipulation in canvas 495
Image object 464

src property 465
images collection of the document

object 441
images in Web pages 77
ImageUrl property of an Image web

control 758, 898
img element 78, 79, 80, 150

alt attribute 79
height attribute 78
src attribute 323

imperative programming 667
implicit conversions

prevent 238
implicitly typed local variable 667, 669,

674
#IMPLIED keyword (DTD) 557
in (inches) 146
increment 284
increment control variable 284, 288
increment expression 287
increment operator (++) 271

indefinite repetition 261
indent statement in body of if statement

237
index 395
index in an array 357
index value 722
index.html 76
indexOf method of an Arrayobject 376
indexOf method of the String object

396, 398, 398, 399, 422
indices for the characters in a string 397
infer a local variable’s type 667
infinite loop 256, 266, 298
infinity symbol 655
information hiding 63
information tier 48, 642, 743, 882
inherit a style 143
inheritance 63
Inheritance in style sheets 144
Init event of a Web Form 755, 894
Init event of an ASP.NET web page

756, 896
initial value 284
initial value of control variable 284, 288
initialization 287
initialization phase 262
initialize 259
initializer list 362
initializer method for an object 405
Initializing the elements of an array 364
Inkscape 77
inline-level element 152
inline model (events) 457
inline scripting 219
inline style 138, 142
inline styles override any other styles 138
inline-block 462
inline-block value for the display

CSS property 414
inner for statement 382
INNER JOIN SQL clause 655, 660
innerHtml property (DOM) 614
innerHTML property of a DOM node

327, 335
input element 92, 112, 377

button 321
disabled property 334
maxlength attribute 93
name attribute 93
radio type 96

input type
autocomplete element 119
date 114
datetime 114
datetime-local 114
default para font> 117
email 115
month 116
number 116
search 117
tel 118
time 118
url 119
week 119

INSERT SQL statement 655, 661
insertBefore method of a DOM node

438
insertBefore method of a Node 590

inset value (border-style property)
157

install IIS Express 646
install WebMatrix 646
instance 62
instance variable 63
InstanceContextMode property of

ServiceBehavior attribute 842
instant message 37
∫ entity reference (MathML) 569
integer 699
integers 228
integral symbol (MathML) 568
Intel 35
IntelliSense 667, 676, 692
interaction between a web service client

and a web service 830
interest rate 290
interface 650
Interface Builder 58
Interfaces

IEnumerable 676
IEnumerable<T> 669
IQueryable 676

internal hyperlink 99
internal linking 70, 97
internal pointer 708
Internet 42, 43
Internet Explorer browser 183
Internet Information Services (IIS) 45,

881
Internet Information Services Express

(IIS Express) 638, 646
Internet Protocol (IP) 43
Internet Server Application Program

Interface (ISAPI) 50, 643
Internet telephony 44
Internet TV 38
interpolation 699, 712
interpret 219
interpret <body> 228
interpret <head> 228
interpreter 60
interval timer 519
invoked 312
inward offset 190
iOS 57
IP (Internet Protocol) 43
IP address 43, 45, 639, 742, 881
iPhone 52, 55
iPod Touch 59, 65
IPv6 43
IQueryable interface 676
ISAPI (Internet Server Application

Program Interface) 50, 643
isFinite function 336, 341
isNaN 409
isNaN function 341
IsNewSession property of class

HttpSessionState 774, 914
IsPostBack property of class Page 767,

907
isset function 727, 727
IsValid property of class Page 767, 907
italic value (font-style property)

154
item method of a DOM collection 443
item method of a NodeList 591
iterating through the array’s elements 362

iw3htp5_printonlyIX.fm Page 945 Wednesday, November 16, 2011 1:06 PM

946 Index

iteration of the loop 284, 286
iteration through an array 708
iterative solution 342
iTunes 38

J
Java DB 688
Java programming language 59, 60, 67,

70
Java Script Object Notation (JSON) 417
JavaScript 34, 39, 49, 60, 61, 72, 604,

643, 761, 901
events 455
interpreter 218
keywords 249
libraries 34, 40
link to a document 359
Object 518
sever side 39

JavaScript library
jQuery 40

JavaScript Object Notation (JSON) 619,
824

JavaScript reserved words 249
JavaScript scripting language 218
JavaServer Faces (JSF) 605
Jaxer 39
Jobs, Steve 58
join method of an Array object 373
joining database tables 653, 660
JPEG (Joint Photographic Experts

Group) 77
jQuery 34
jQuery JavaScript Library 40
.js file name extension 359
JSON (JavaScript Object Notation) 619,

824
JSON serialization 839

K
kernel 57
key function 708
key method of the localStorage

object 414
key method of the sessionStorage

object 414
key-value pair 410, 775, 915
keyCode property of an event object

461
keydown event 473
@keyframes rule 193, 194, 197
keypress event 473
Keys property of HttpSessionState

class 774, 776, 914, 916
keyup event 473
keyword 225, 249
Keywords

catch 613
Partial 895
partial 756
try 613
var 667

keywords 249
keywords in PHP 704

L
Language Integrated Query (LINQ) 667
large relative font size 142
larger 394
larger relative font size 142
lastChild property of a DOM node

590
lastChild property of a Node 590
lastIndexOf method of an

Arrayobject 376
lastIndexOf method of the String

object 396, 398, 400, 422
LaTeX software package 566
layer overlapping elements 150
left margin 150, 153
left value (text-align property) 155
left-hand-side expression 273
legacy code 83
length method of a Text node 592
length property of a DOM collection

442
length property of a NodeList 591
length property of an Array 357
length property of an Array object

357, 361, 366
length property of the localStorage

object 414
length property of the

sessionStorage object 414
Lerdorf, Rasmus (PHP creator) 697
let clause of a LINQ query 675
letter 56, 395
letters 226
li (list item) element 83
library

JavaScript 40
lighter value (font-weight property)

142
lightness 178
lightweight business models 53
LIKE operator (SQL) 657
LIKE SQL clause 658, 659
limericks 422
line break 89
linear gradient 180

color-stop 180
gradient-line 182

lineCap attribute of canvas 481
lineJoin attribute in canvas 480
line-through value (text-

decoration) 145
lineTo method of canvas 480
lineWidth attribute in canvas 480
lineWidth attribute of canvas 479
link a script to a document 359
link element 147
linking external style sheets 146, 147
links 74
links collection of the document object

441, 442
LINQ (Language Integrated Query) 667

anonymous type 673
ascending modifier 668
deferred execution 675
descending modifier 668
from clause 667
let clause 675
LINQ to Objects 667
orderby clause 668

LINQ (Language Integrated Query)
(cont.)
query expression 667
range variable 667
select clause 668
where clause 668

LINQ to Objects 667
using a List<T> 674
using an array of Employee objects

670
LINQ to SQL

data binding 677
DataContext class 676, 680
Designer 676
generating classes 679
Object data source 680
saving changes back to a database 684

LINQ to SQL classes
generating 679

LinqDataSource ASP.NET data
control 780, 920

Linux 39, 57, 644
Linux operating system 57, 58
list 295
list item 83
List(Of T) class 846
ListDictionary class 783, 924
listen for events 322
list-style-type CSS property 295
literal characters 712
Load event 766
load event 322, 455, 473
Load event of an ASP.NET web page

766, 906
local 338
local time zone method 403
local variable 317, 340
local variable names 338
local web servers 643
localhost 643
localStorage object

clear method 416
getItem method 414
key method 414
length property 414
removeItem method 417
setItem method 414, 417

localStorage property of the window
object 410, 413, 414

location in memory 225, 231
location-based services 51
log 394
Log property of a data context 686
LOG10E 394
logarithm 394
logic error 230, 232, 255, 262
logical AND (&&) operator 300, 301, 302
logical negation (!) operator 300, 302,

305, 305
logical NOT (!) operator 300
logical operator 300, 301, 303, 305
logical OR (||) operator 300, 301, 302,

305
login (ASP.NET) 784, 924
loop 255
loop-continuation condition 284, 287,

288, 296, 298, 304
loop-continuation test 297, 299, 305
loop counter 284

iw3htp5_printonlyIX.fm Page 946 Wednesday, November 16, 2011 1:06 PM

Index 947

loopback address 643
loosely typed 699
loosely typed language 232
lose focus 473
lowercase letter 56, 221, 226
< special character 81, 83
lvalue 273

M
m-by-n array 379
Mac OS X 57, 59, 644
machine language 59
Macintosh 58
mailto: URL 76
manual frame-by-frame animation 521
many-to-many relationship 655
margin 155
margin property (block-level elements)

159
margin-bottom property 159
margin-left property 159
margin-right property 159
margins for individual sides of an element

159
margin-top property 159
mark element 130
markup in XML 544, 547
markup language 38, 70
mashups 52
master page in ASP.NET 793
master pages 784, 924
match attribute 574
Math method round 421
Math object 303, 305, 393, 393

floor method 318, 327
max method 317
pow method 311
random method 318, 327

Math object methods 393
Math tutor using

EquationGeneratorServiceXML
to create equations 863

Math.E 394
Math.LN10 394
Math.LN2 394
Math.LOG10E 394
Math.LOG2E 394
Math.PI 394, 483
Math.random 389
Math.sqrt 393
Math.SQRT1_2 394
Math.SQRT2 394
mathematical calculation 311, 393
mathematical constant 393
Mathematical Markup Language

(MathML) 566
MathML 545, 566

.mml filename extension 567
δ entity reference 569
∫ entity reference 569
entity reference 569
entity reference &Invisible-

Times; 568
identifier element 568
integral symbol 568
mfrac element 568
mi element 568
mn element 567

MathML (cont.)
mo element 567
mrow element 569
msqrt element 569
msubsup element 569
msup element 568
square-root symbol 568
symbolic representation 568

Matsumoto, Yukihiro “Matz” 61
max 394
max attribute 116, 117
max method of the Math object 317
max-device-width 206
maximum function 315, 317
maxlength attribute of input element

93
maxOccurs XML Schema attribute 563
Maze Generator and Walker exercise 540
Maze Traversal Using Recursive

Backtracking exercise 540
Mazes of Any Size exercise 541
mean (average) 234
media feature 162
media query 162, 205

@media-rule 206
@media rule 206
@media screen rule 200
media type 159, 160, 162, 171
medium relative font size 142
medium value 157
membership capabilities (ASP.NET) 793
memory 35
merge records from tables 660
message dialog 321
message window 45
meta 70
meta element 99, 101

content attribute 99, 100, 104
name attribute 99

metacharacters 712
meter element 129
method 62, 220, 230, 311, 341
method = "get" 92
method = "post" 92, 717
method attribute 92
method call 63
method prompt 230
method UTC 408
method writeln 230
metric conversion program 425
mfrac MathML element 568
mi MathML element 568
microblogging 44, 54
Microsoft 35

Image Cup 67
Microsoft Bing 51
middle tier 48, 642, 744, 883
MIME (Multipurpose Internet Mail

Extensions) 47, 141, 147, 170, 640,
769, 909

MIME types
audio/mpeg 333
audio/ogg 333
video/mp4 337
video/webm 337

min attribute 116, 117
minInclusive XML Schema element

565
minOccurs XML Schema attribute 563

miter lineJoin of canvas 480, 482
mm (millimeters) 146
.mml filename extension for MathML

documents 567
mn element 569
mn MathML element 567
mo MathML element 567
mobile check-in 44
module 50, 311, 643
monetization 51
monospace 142
month input type 116
Moore’s Law 35
Motorola 35
mouse button pressed down 473
mouse button released 473
mouse cursor 223, 223
mouse cursor over an element 146
mouse pointer 224
mousedown event 473
mousemove event 457, 460, 473
mouseout 465
mouseout event 461, 465, 473, 609
mouseover event 461, 465, 473, 609
mouseup event 473
MoveFirst method of class

BindingSource 686
moveTo method of canvas 480, 489
moving the mouse 455
Mozilla browsers 183
Mozilla Foundation 58
Mozilla project 570
mrow MathML element 569
msqrt MathML element 569
msubsup element 569
msubsup MathML element 569
msup MathML element 568
multicolumn layout 203
multidimensional array 379
multiline comment 226, 699
multiple background images 185
multiple conditions 300
multiple-selection structure 296
multiple-selection statement 249
multiplication assignment operator (*=)

702
multiplication operator (*) 232
Multipurpose Internet Mail Extensions

(MIME) 47, 640, 769, 909
type 141, 147, 170

multitier application 48, 642, 743, 882
MySQL 664, 666, 697, 719

Community Edition 664
user account 665

MySQL reference manual 664
mysql_close function 722
mysql_connect function 720
mysql_error function 722
mysql_fetch_row function 722
mysql_num_rows function 722
mysql_query function 722
mysql_real_escape_string function

732
mysql_select_db function 720

N
n-tier application 48, 642, 743, 882
name attribute (XPath) 578

iw3htp5_printonlyIX.fm Page 947 Wednesday, November 16, 2011 1:06 PM

948 Index

name attribute of input element 93
name attribute of meta element 99
name node-set function 578
name of a variable 231
name of an array 357
name of an attribute 72
name property of an Attr object 592
name XML Schema attribute 562
named constant 702
namedItem method of a DOM

collection 443
namespace 553

System.Linq 667
System.Web.UI 756, 895
System.Web.UI.WebControls

756, 896
namespace prefix 553, 555, 565
naming collision 553
NaN 341, 396, 398, 409
NaN (not a number) 230, 260
natural logarithm 394
nav element 128
NavigateUrl property of a HyperLink

control 761, 900
navigation bar on a website 802
 entity reference 589
nested element 72, 548
nested for statement 383
nested for…in statement 382
nested if or if…else statement 300
nested if statement 237, 254
nested if…else statements 252
nested list 84, 146
.NET WCF web service client after web

service reference has been added 830
network of networks 43
new Date object 405
new operator 235, 359, 362, 405
newline character (\n) 224
next function 708
NeXT Inc. 58
nextSibling property of a DOM node

589
nextSibling property of a Node 590
NeXTSTEP operating system 58
no-repeat property 153
node (DOM tree) 579
Node object 590, 590
Node object methods 590
node-set function 578
node set of an xsl

for-each element 574
Node.js 39
NodeList object 590, 591
NodeList object methods 591
nodeName property of a DOM node 589
nodeName property of a Node 590
nodeType property of a DOM node 589
nodeType property of a Node 590
nodeValue property of a DOM node

589
nodeValue property of a Node 590
nonbreaking space () 589
non-validating XML parser 546
none value (border-style property)

157
none value (font-style property) 154
nonfatal logic error 255

normal value (font-weight property)
142

not a number (NaN) 230
not a number (NaN) 260
Notepad text editor 70
:nth-child CSS3 selector 414
null 227, 232
number input type 116
Number object 230, 292, 408

toFixed method 292
Number.MAX_VALUE 409
Number.MIN_VALUE 409
Number.NaN 409
Number.NEGATIVE_INFINITY 341,

409
Number.POSITIVE_INFINITY 341,

409
numbered list 295
numeric character reference 83
Nutrition Information XML Document

exercise 602
Nutrition Information XML Schema

exercise 602
Nutrition Information XSL Style Sheet

exercise 602

O
O’Reilly Media 50
object 61, 220, 341, 393
Object (JavaScript) 518

create properties 518
object (or instance) 63
Object data source 680
object hierarchy 428
object-oriented programming (OOP) 58,

60
Object Relational Designer window

679
object wrappers 408
Objective-C 58
Objective-C programming language 60
oblique value (font-style property)

154
obtaining user input through forms 717
occurrence indicator 557
octal 341
Odersky, Martin 61
off-by-one error 286
offline access 410
offset 187
OK button 223
ol element 84, 102
ON clause 660
One-Armed Bandit exercise 541
One Laptop Per Child (OLPC) 36
one-to-many relationship 655
onload attribute of an HTML5 element

457
onload property of an HTML5 element

457
onmouseover event 464
onReadyStateChange property of the

XMLHttpRequest object 614
opacity 194
Open Handset Alliance 59
open method of the XMLHttpRequest

object 588, 615
open source 57, 59, 644, 664, 697

open source software 51, 53
open technology 544
OpenGIS Consortium 570
Opera browser 183
operand 228
operating system 57, 59
OperationContract attribute 825,

827
operator precedence 233
operator precedence chart 705
operators

! (logical NOT or logical negation)
operator 300

!== 238
&& (logical AND) operator 300
=== 238
|| (logical OR) operator 300
conditional AND, && 673
function-call operator 313
new 359

operators of equal priority 233
option element (form) 97
order attribute 578
ORDER BY SQL clause 655, 658, 659
order in which actions are executed 247
orderby clause of a LINQ query 668

ascending modifier 668
descending modifier 668

ordered list 84
ordering of records 655
orientation media feature 162
OS X 59
outset value (border-style property)

157
oval symbol 248
overflow 203
overflow boundaries 155
overflow property 155
overline value (text-decoration)

145

P
p element 72
packet 43
packet switching 43
padding 155
padding-bottom property 159
padding for individual sides of an element

159
padding-left property 159
padding property (block-level elements)

159
padding-right property 159
padding-top property 159
Page class 756, 767, 772, 895, 907, 912

Session property 772, 912
Page Hit Counter exercise 789, 929
Page_Init event handler 755, 756, 894,

896
Page_Init event handler (ASP.NET)

895
Page_Load event handler 766, 906
Page, Larry 51
PageSize property of a GridView

ASP.NET control 808
paragraph element 72
parent 428
parent element 143, 549

iw3htp5_printonlyIX.fm Page 948 Wednesday, November 16, 2011 1:06 PM

Index 949

parent node 579
parent/child relationships between data

548
parentheses 301
parentheses in JavaScript 233
parentNode property of a DOM node

438, 590
parentNode property of a Node 590
parse 407, 408
parsed character data 557
parseFloat function 260, 312, 317,

341
parseInt function 230, 260, 317, 341

radix 231
parser 546
partial class 756, 895
Partial modifier 895
partial modifier 756
partial page update 606, 811
pass-by-reference 371
pass-by-value 371
passing arrays 374
Passing arrays and individual array

elements to functions 374
password input 96
paths in canvas 480
pattern matching 657
pattern of 33s and 32s 56
pc (picas—1 pc = 12 pt) 146
#PCDATA keyword (DTD) 557
PDML (Product Data Markup

Language) 566, 566
PerCall setting of

InstanceContextMode property
843

percent (%) SQL wildcard character 657
percent sign (%) remainder operator 232
percentage 146

formatting 327
Perl-compatible regular expressions 710
PerSession setting of

InstanceContextMode property
843

persistent cookie 723
personalization 768, 907
Phone Book Web Service exercise 877
Phone Book Web Service Modification

exercise 877
photo sharing 44
Photoshop Express 77
PHP 60, 61, 605
PHP (PHP: Hypertext Preprocessor) 697
.php extension 698
PHP: Hypertext Preprocessor (PHP) 697
PI 394
PI (processing instruction) 572
picture element (pixel) 146
Pig Latin 422
pixel 78
place holder in an initializer list 362
placeholder attribute 115
placeholder text 115
play method of an audio element 335
plus sign (+) occurrence indicator 557
PM 408
PNG (Portable Network Graphics) 77
Portability Tips overview xxvi
Portable Network Graphics (PNG) 77
position number 357

position property 148
post request (HTTP) 833
post request type 717
post request type 92
$_POST superglobal 714, 717
postback event of an ASP.NET page 767,

907
postdecrement operator 271
postincrement operator 271, 273
pow method of Math object 292, 304,

311, 394
power 394
pre element 224
precedence 233, 259, 273
precedence and associativity of operators

239, 273, 303
precedence chart 233
Precedence of arithmetic operators 233
predecrement operator 271, 271
predicate 656, 668
prefix 183

-moz- 183
-ms- 183
-o- 183
-webkit- 183

preg_match function 710, 712
preg_replace function 713
preincrement operator 271, 273
preload attribute of the audio element

333
preloading images 464
prepackaged function 311
presentation 566
presentation logic 49, 642, 744, 883
Presentation MathML 566
press a key 473
pressing keys 455
prevent implicit conversions 238
previousSibling property of a Node

590
primary key 651, 655
prime 353
prime integer 390
principal 290
print function 699
print media type 159, 160, 162
printing dates in various formats 423
printing one line with separate statements

222
priority 233
privacy protection 768, 908
probability 318
procedure 247
processing instruction (PI) 572
processing instruction target 572
processing instruction value 572
processing phase 262
processor 546
Product Data Markup Language

(PDML) 566
program 218
program control 247
program development tools 263
programmer-defined function 311

maximum 315
square 313

projection 674
prolog (XML) 548
promotion 768, 907

prompt 227
prompt box used on a welcome screen

225
prompt dialog 224, 227, 228, 230, 317,

321
prompt method of window object 227
prompt to a user 227
properties of the Math object 394
properties separated by a semicolon 139
Properties window 751, 890
protocol 91
protocolMapping element in

web.config 835
proxy class for a web service 830
pseudo-class 145
pseudocode 247, 263
pseudocode for examination-results

problem 268
pseudocode If statement 250
pseudocode If…Else statement 252
pt (points) 142, 146
pt measurement for text size 165
publishing a web service 825
putImageData method of canvas 499
Python programming language 61

Q
quadratic curve in canvas 486
quadraticCurveTo method of canvas

486
qualified name 661
quantifier 712
query 650, 651, 667
query expression (LINQ) 667
query string 47, 641, 833
querying a database and displaying the

results 720
question mark (?) occurrence indicator

557
quirks mode 71
quotation mark (’) 219

R
radial gradient 183
radial-gradient property 183
radians 482, 533
radio input type 96
RadioButtonList ASP.NET web

control 761, 900
radix 341, 409
radix of function parseInt 231
Random image generation using arrays

370
random image generator 319
Random Interimage Transition exercise

540
random method of the Math object 318,

318, 327
Randomly Erasing an Image exercise 539
range input type 117
range variable of a LINQ query 667
“raw” Ajax 604
RDBMS (relational database

management system) 48, 642, 664
Reaction Time/Reaction Precision Tester

exercise 542
readability 71

iw3htp5_printonlyIX.fm Page 949 Wednesday, November 16, 2011 1:06 PM

950 Index

readyState property of the
XMLHttpRequest object 614

readystatechange property of the
XMLHttpRequest object 614

recognizing clients 768, 908
record 56
rectangle symbol 248, 256
recursion 341
Recursion Exercises

Generating Mazes Randomly 541
Maze Traversal Using Recursive

Backtracking 540
Mazes of Any Size 541

recursion step 342
recursive base case 342
recursive call 342
recursive descent 578
recursive function 341
redundant parentheses 234
refinement 261, 267
reflection 187
registering an event handler 322, 456
registration (ASP.NET) 784, 924
regular expression 710, 710
regular expressions in PHP 710
RegularExpressionValidator

ASP.NET validation control 765, 905
reinventing the wheel 63
relational database 650
relational database management system

(RDBMS) 48, 642, 664, 743, 882
relational database table 650
relational operator 234, 235, 300, 301,

305, 709
strings 395

relationship between documents 147
relative addressing (XPath) 574
relative-length measurement 146, 155,

167
relative path 78
relative positioning 150, 751, 890
relative positioning of elements 151
relative value (position property)

150
release a key 473
reload an entire web page 605
remainder 233
remainder after division 233
remainder operator (%) 232
remote web servers 643
removeAttribute method of an

Element 591
removeChild method of a DOM node

439, 451
removeChild method of a Node 591
removeEventListener method of a

DOM node 457
removeItem method of the

localStorage object 417
removeItem method of the

sessionStorage object 417
render a webpage 70
repeat value (background-repeat

property) 153
repeat-x value (background-repeat

property) 153
repeat-y value (background-repeat

property) 153
repeating infinitely 260

repetition statement 262
repetition structure 248, 255, 256, 297,

298
replace method of the String object

396
replaceChild method of a DOM node

439
replaceChild method of a Node 591
Representational State Transfer (REST)

822, 824
request method 47, 641, 833
#REQUIRED keyword (DTD) 557
required attribute 116
RequiredFieldValidator ASP.NET

validation control 764, 765, 904, 905
Research Information Exchange Markup

Language (RIXML) 570
reserved words 249
reset event 468, 473
reset function 708
reset input 93
resize event 473
resolution 478
resources 70
responding to user interaction 455
ResponseFormat property of the

WebGet attribute 837, 867
responseText property of the

XMLHttpRequest object 614
responseXML property of the

XMLHttpRequest object 614
RESTful web services 824
restore method of canvas 528, 530
restriction on built-in XML Schema data

type 564, 565
result 656
Result property of

DownloadStringCompletedEvent
Args 837

Result property of
LinqDataSourceSelect
EventArgs class 805

result tree (XSLT) 571
return 312
return by reference 371
return statement 314, 315
return value of an event handler 470
reusability 317
reusable software components 61
reuse 62
RGB 177
RGB to grayscale 499
RGBA 177
Rich Internet Applications (RIAs) 51,

604, 604
ridge value (border-style property)

157
right margin 150, 153
right value (text-align property) 155
Ritchie, Dennis 60
RIXML (Research Information Exchange

Markup Language) 570
RIXML website (www.rixml.org) 570
robot 37
rolling a six-sided die 318
rollover effect 461, 464
rollover images 461
root element (XML) 545, 548, 551
root node 429, 579

rotate an image 195
rotate method of canvas 502, 503
rotate transformation function 195
Rotating Images exercise 542
round 394
round lineJoin of canvas 480, 482
rounded corners 176
row 379, 651, 654, 655, 656, 657, 658,

661, 662
row objects 676
rows attribute (textarea) 93
rows to be retrieved 655
rowspan attribute (tr) 89
Ruby on Rails 61
Ruby programming language 61
rule in CSS 194
Rule of Entity Integrity 654
Rule of Referential Integrity 653

S
Salesforce 44
same origin policy (SOP) 610
sans-serif fonts 142
saturation 178
save data on the iPhone 411
save method of canvas 528, 530
saving changes back to a database in

LINQ to SQL 684
savings account 290
Scala programming language 61
Scalable Vector Graphics (SVG) 566
scalars (scalar quantities) 372
scale method of canvas 501
scale transformation function 196
scaling factor 318, 328
scaling the range of random numbers 318
schema 546, 558
schema element 561
schema invalid document 560
schema repository 556
schema valid XML document 560
schema-valid XML document describing

a list of books 560
scope 338
scope rules 338
scoping 338
Scoping example 338
screen coordinate system 461
screen media type 159
screen resolution 146
screenX property of an event object

461
screenY property of an event object

461
<script> tag 219
script 72, 218

link to a document 359
script development tools 263
script font 142
script interpreter 221
scripting host 49, 643
scripting language 60, 218, 219
script-level variables 338
ScriptManager control 813
scroll up or down the screen 152
scroll value (background-position

property) 154
scroll value (overflow property) 155

iw3htp5_printonlyIX.fm Page 950 Wednesday, November 16, 2011 1:06 PM

Index 951

Scrolling Image Marquee exercise 540
Scrolling Marquee Sign exercise 540
scrolling the browser window 153
search engine 72, 99
search engine optimization (SEO) 99, 99
search field 117
search input type 117
second refinement 261, 262, 268
secondary storage 35
section element 128
sectioning elements

article element 128
aside element 128
details element 128, 133
figcaption element 128
figure element 128
footer element 130
header element 128
meter element 129
nav element 128
section element 128
summary element 128, 135
wbr element 130

select attribute (XPath) 578
select attribute of xsl:for-each

element 574
select clause of a LINQ query 668
select element 97
select event 473
SELECT SQL keyword 656, 657, 658,

659
selected attribute 97
SelectedIndexChanged event handler

ComboBox class 686
selecting data from a table 651
Selecting event of LinqDataSource

ASP.NET data control 805
selection criteria 656
selection structure 248
selectNodes method of MSXML 595
selector 141, 143, 194, 197, 202
self validation 113
self-documenting 226
Semantic Web 51
semicolon (;) 139, 142, 220, 222, 226
semicolon on line by itself 238
semicolon resulting logic error 237
send a message to an object 63
send method of the XMLHttpRequest

object 588, 615
sentinel value 260, 262, 266
sentinel-controlled repetition 262, 263,

265
sentinel-controlled repetition to calculate

a class average 264
separation of structure from content 138
separator 373
sequence structure 248, 261
sequential execution 247
Serializable attribute 839
serialization 839
serif fonts 142
server 35
server response 48, 641, 833
server-side form handler 47, 641, 833
server-side script 49, 643
$_SERVER supergloball 714
server-side form handler 47, 641, 833

server-side JavaScript 39
CommonJS 39
Jaxer 39
Node.js 39

server-side proxy 610
service description for a web service 829
Service references

adding a service reference to a project
in Visual C# 2010 Express 831

Service.svc 825
ServiceBehavior attribute 842
ServiceContract attribute 825, 827
session 768, 908
session cookie 723
session item 775, 915
Session property of Page class 772, 912
session tracking 768, 769, 908, 909

in web services 841
SessionID property of

HttpSessionState class 774, 914
SessionMode property of

ServiceContract attribute 842
sessionStorage object

clear method 416
getItem method 414
key method 414
length property 414
removeItem method 417
setItem method 414, 417

sessionStorage property of the
window object 411, 411, 413, 414

SET SQL clause 663
setAttribute method of a DOM

element 323, 436
setAttribute method of an Element

591
setAttribute method of the

document object 619
setAttributeNode method of an

Element 591
setcookie function 723
setDate 404
setFullYear 404, 407
setHours 404
setInterval method of the window

object 449, 456
setItem method of the localStorage

object 414, 417
setItem method of the

sessionStorage object 414, 417
setMilliSeconds 404
setMinutes 404
setMonth 404
setRequestHeader method of the

XMLHttpRequest object 615
setSeconds 404
setTime 404
settype function 699, 701
setUTCDate 404
setUTCFullYear 404
setUTCHours 404
setUTCMilliseconds 404
setUTCMinutes 404
setUTCMonth 404
setUTCSeconds 404
shadowBlur attribute 484, 485
shadowBlur attribute of canvas 484
shadowColor attribute of canvas 484,

486

shadowOffsetX attribute 484, 486
shadowOffsetX attribute of canvas

484
shadowOffsetY attribute 486
shadowOffsetY attribute of canvas

484
Shakespeare 423
Shift key 461
shift the range of numbers 318
shifted and scaled random integers 318
shifting value 328
shiftKey property of an event object

461
short-circuit evaluation 302
shorthand assignments of borders 159
Shuffleboard exercise 541
sibling node 579
siblings 428, 549
side effect 371
Sieve of Eratosthenes 390
signal value 260
simple condition 300
simple content in XML Schema 564
simple drawing program 458
Simple Object Access Protocol (SOAP)

822, 824
simple PHP program 698
simple type 564
simpleContent XML Schema element

565
simpleType XML Schema element 565
simulation and game playing 318
sin method 394
single quote (’) 220, 226, 228, 552, 657,

699
Single setting of

InstanceContextMode property
843

single-entry/single-exit control statement
250

single-entry/single-exit structure 251
single-selection if statement 249, 250
Site.css 802
size attribute (input) 93
skew 196
skinning 146
Skype 44
slice method of the String object 396
slider control 117
small circle symbol 248, 256
small relative font size 142
smaller value 394
smart tag menu 685, 760, 900
smartphone 59
SMIL (Synchronized Multimedia

Integration Language) 570
SMIL website (www.w3.org/

AudioVideo) 570
SOAP (Simple Object Access Protocol)

822, 823, 824
envelope 824
message 823

social commerce 44, 54
social networking 44, 50, 51
software development 51
Software Engineering Observations

overview xxvi
software reusability 317
software reuse 63

iw3htp5_printonlyIX.fm Page 951 Wednesday, November 16, 2011 1:06 PM

952 Index

solid value (border-style property)
157

Some common escape sequences 224
Some useful global arrays. 714
sort method of an Arrayobject 375,

375
Sorting an array with sort 376
sorting data 375
sorting in XSL 578
Sorting XSLT Modification exercise 602
source element 333, 337
source string 396
source tree (XSLT) 571
SourceForge 58
span as a generic grouping element 152
span element 152
special character 81, 83, 395, 712
Special Section: Advanced String-

Manipulation Exercises 423
special symbol 56
specificity 144, 162
speech device 86
speechmedia type 159
speech synthesizer 79
spell checker 425
spinner control 114, 116
split 401
split 401
split method of the String object 396
splitting a statement in the middle of an

identifier 226
SQL 650, 651, 655, 656, 662

DELETE statement 655, 663
FROM clause 655
GROUP BY 655
INNER JOIN clause 655, 660
INSERT statement 655, 661
LIKE clause 658
ON clause 660
ORDER BY clause 655, 658, 659
SELECT query 656, 657, 658, 659
SET clause 663
UPDATE statement 655
VALUES clause 662
WHERE clause 656

.sql 666
SQL keyword 655
SQL script 666
SQL Server Express 678
sqrt 394
SQRT1_2 394
SQRT2 394
square brackets [] 357
square root 393
square-root symbol (MathML) 568
src attribute 78, 80
src attribute of an img element 323
src attribute of the script element 359
src property of an Image object 465
stacked control structures 263
standards mode 71
start page for a web application 755, 758,

764, 770, 779, 895, 897, 903, 911,
919

start tag 72, 545, 552
starting angle 482
starting index 402
StartsWith method of class string

675

stateless protocol 768, 908
statement 220
statement terminator 220
status property of the

XMLHttpRequest object 614
statusText property of the

XMLHttpRequest 614
step attribute 116
StepStone 58
straight-line form 233
strcmp function 709
strict does not equal (!==) operator 238
strict equals (===) operator 238
string 219
string assigned to a variable in a

declaration 395
string class

StartsWith method 675
ToUpper method 675

string comparison 375
string concatenation 228, 259
string constants 395
string data type 699
string literal 219, 395
string manipulation 311
String method split 422
String object 395, 395, 397

charAt method 395, 397
charCodeAt method 396, 397, 398
fromCharCode method 396, 397,

398
indexOf method 396, 398, 399,

422
lastIndexOf method 396, 398,

400, 422
replace method 396
slice method 396
split method 396
substr method 396
substring method 396
toLowerCase method 396
toUpperCase method 396

String object methods 395
string representation 261
string representation of the number 409
string XML Schema data type 563
string’s length 398
string-concatenation operator (+) 396
stroke method of canvas 482
strokeRect method of canvas 479
strokeStyle attribute of canvas 479
strokeStyle method of canvas 482
strong element 75
Stroustrup, Bjarne 60
structure of a document 38, 138
structured programming 247, 248
Structured Query Language (SQL) 650,

651, 655
style attribute 138, 284
style class 142, 143
style sheet 147, 549
stylesheet start tag 573
sub element 83
sub initializer list 380
submit 473
submit event 468, 473
submit input 93
SubmitChanges method of a LINQ to

SQL DataContext 676, 684

subpath in canvas 480
subscript 83
substr method of the String object

396
substring 401
substring method of the String

object 396
substrings of a string 395
subtraction 233
subtraction operator (-) 232
sum function (XSL) 578
summary attribute of a table element 86
summary element 128, 135
Summation with for 289
sup element 83
superglobal array 714
superscript 83
SVC file 825
svcutil.exe 829
SVG (Scalable Vector Graphics) 530,

566
switch multiple-selection statement

295, 296, 304, 295
symbolic representation (MathML) 568
Synchronized Multimedia Integration

Language (SMIL) 570
synchronous request 605, 809
syntax error 221, 273
SYSTEM keyword in XML 551
System.Linq namespace 667
System.Runtime.Serialization.

Json 839
System.Web.UI namespace 756, 895
System.Web.UI.WebControls

namespace 756, 896

T
tab 224
Tab key 465
tab stop 224
TabContainer Ajax Control Toolkit

control 813
table 650
table body 88
table column heading 292
table data 88
table data cells 88
table element 86, 291

border attribute 86
caption element 86
summary attribute 86

table foot 88
table head 88
table head element 88
table HTML5 element 70
table of event object properties 461
table row 88
tablet computer 59
TabPanel class 814
tagging 51
tagName property of an Element 591
tahoma font 142
tan method 394
tangent 394
target property (FF) of an event object

461, 465
Target property of a HyperLink control

761, 900

iw3htp5_printonlyIX.fm Page 952 Wednesday, November 16, 2011 1:06 PM

Index 953

target property of an event object 461
targetNamespace XML Schema

attribute 562
tbody (table body) element 88
TCP (Transmission Control Protocol) 43
TCP/IP 43
TcX 664
td element 88
technical publications 63
tel input type 118
telephone number as a string 422
terminate a loop 259, 262
termination phase 262
terminator 220
ternary operator 252
TeX software package 566
text analysis 423
Text and Comment methods 592
text area 73, 93
text-decoration property 145
text editor 70
text field 93
text file 579
Text Flasher exercise 539
text input 93
text node-set function 578
Text object 590, 592
text shadow 175
text stroke 185
text-align property 155
textAlignattribute of canvas 507
textarea element 93
textBaseline attribute of canvas 507
TextBox ASP.NET web control 759,

899
TextEdit text editor 70
text-indent property 154
text-only browser 79
text-shadow property 175
text-stroke property 185
tfoot (table foot) element 88
th (table header column) element 88,

292
thead element 88
thick border width 157
thin border width 157
this keyword 630
three-tier web application 48, 642
tier in a multitier application 48, 642,

743, 882
tile an image only horizontally 153
tile an image vertically and horizontally

153
tile the image only vertically 153
tiling no-repeat 153
tiling of the background image 153
time 235
time element 128, 135
time function 723
time input type 118
time manipulation 311
Timeout property of

HttpSessionState class 774, 914
timer 455
times new roman font 142
title bar 72
title bar of a dialog 223
title element 72
title of a document 72

Title property of a Web Form 751, 890
titles table of books database 652, 653
toFixed method of Number object 292
tokenization 401
tokenize a string 401
tokenizing 395
tokens 401, 422
tokens in reverse order 422
toLocaleString 404, 405
toLowerCase 397, 397, 398
toLowerCase method of the String

object 396
Toolbox 751, 890
ToolkitScriptManager control 813
top 261, 267
top margin 150, 153
top tier 49, 642, 744, 883
top-down, stepwise refinement 261, 266,

267
Tortoise and the Hare 390
toString 404, 409
total 259
ToUpper method of class string 675
toUpperCase 397, 397, 398
toUpperCase method of the String

object 396
toUTCString 404, 405
tr (table row) element 88
tracking customers 767, 907
traditional model (events) 457
traditional web application 605
transfer of control 248
transform method of canvas 504
transform property 194, 195, 196
transformation functions 195

rotate 195
scale 196

transformation matrix in canvas 500,
502

transformations in canvas 500
transformations in CSS3 194
transition property 194, 197
transitions in CSS3 194
transition-timing-function 197,

216
translate method of canvas 500, 502
translation 59
translator program 59
Transmission Control Protocol (TCP) 43
transparency 194
traverse an array 380
traversing an XML document using the

XML DOM 580
tree structure 550
tree structure for the document

article.xml of Fig. 14.2 580
trigger of UpdatePanel ASP.NET Ajax

Extensions control 814
trigonometric cosine 394
true 234
true 250
truncate 260
trust 51
truth table 301
truth table for the && logical AND

operator 301
truth table for the || (logical OR)

operator 302

truth table for the logical negation
operator 303

try block 613
try keyword 613
Turtle Graphics 389
tutorials for WebMatrix 646
56-hour clock format 408
Twitter 35, 44, 51, 54, 61

search 411
search operators 411
tweet 54

two-dimensional array
representation of a maze 541

 379, 380
type 141
type attribute 92, 219
type attribute in a processing instruction

572
type casting 701
type conversion 700
type of a variable 231
type property of an event object 461
type XML Schema attribute 562
type-ahead 620

U
ul (unordered list) element 83
unary operator 271, 302, 305

decrement (--) 271
increment (++) 271

unbounded value 563, 563
undefined 232
underline value (text-decoration)

145
underscore (_) SQL wildcard character

657, 658
Unicode 395, 397
Unicode character set 56
Unicode value 397, 398
Uniform Resource Identifier (URI) 45,

554, 638, 742, 881
Uniform Resource Locator (URL) 44, 45,

554, 638, 742, 881
Uniform Resource Name (URN) 554
unique session ID of an ASP.NET client

774, 914
UNIX 39
unload event 473
unnecessary parentheses 234
unordered list 83
unordered list element (ul) 83
UPDATE SQL statement 655, 663
UpdatePanel ASP.NET Ajax

Extensions control 814
UpdatePanel trigger 814
up-down control 114
upper-left corner of a GUI component

477
uppercase letters 221, 226
Uri 837
URI (Uniform Resource Identifier) 45,

554, 638, 742, 881
UriTemplate property of WebGet

attribute 834
URL (Uniform Resource Locator) 44,

45, 554, 638, 638, 742, 881
url input type 119
url(fileLocation) 152

iw3htp5_printonlyIX.fm Page 953 Wednesday, November 16, 2011 1:06 PM

954 Index

URN (Uniform Resource Name) 554
user 143
user account (MySQL) 665
user agent 143
user-defined types in web services 859
user input 90
user interaction 455
user interface 49, 67, 642, 744, 883
user style sheet 164
User style sheet applied with em

measurement 168
User style sheet applied with pt

measurement 167
User style sheet in Internet Explorer 7

166
user styles 165, 166, 167
user-defined types 564
user-generated content 51
using equality and relational operators

235
Using inline styles 139
using PHP’s arithmetic operators 702
Using the break statement in a for

statement 298
Using the continue statement in a for

statement 300
Using the do…while repetition

statement 297
using the string-comparison operators

709
Using the switch multiple-selection

statement 293
using XPath to locate nodes in an XML

document 592, 594
UTC (Coordinated Universal Time) 403,

405, 408

V
valid XML document 546, 556
Validate property of Page class 767,

907
validating XML parser 546
validation 113
validation control 761, 901
validation service 73
validation tools 230

error messages 230
warning messages 230

ValidationExpression property of a
RegularExpressionValidator
control 765, 905

validator 761, 901
validator.w3.org 73
validator.w3.org/#validate-by-

upload 73
ValidatorCalloutExtender control

815
value attribute 93, 116
value of a variable 231
value of an array element 358
value of an attribute 72
value property 377
value property of an Attr object 592
value property of an input element 377
valueOf 404
VALUES SQL clause 662, 662
van Rossum, Guido 61
var keyword 225, 314, 667

variable 225
variable name 225
variable variables 732
variables defined in body of a function

335
various markup languages derived from

XML 570
vendor prefix 180, 183, 183

-moz- 183
-ms- 183
-o- 183
tools 183
-webkit- 183

verdana 142
version attribute (XSL) 573
version in xml declaration 547
vertical and horizontal positioning 153
vertical coordinate 478
vi text editor 70
video element 311, 336, 337

controls attribute 337
video sharing 44
video/mp4 MIME type 337
video/webm MIME type 337
virtual box 150
virtual directory 46, 639, 742, 881
Visible property of an ASP.NET web

control 764, 904
Visual Basic programming language 60
Visual C# programming language 60, 60
Visual C++ programming language 60
visual inheritance 793
Visual Web Developer

WCF Web Service project 826
Visual Web Developer 2010 Express 741,

880
vocabulary (XML) 545
VoiceXML 545, 570

www.voicexml.org 570
void element 79, 89
VoIP (Voice over IP 54

W
W3C (World Wide Web Consortium)

40, 50, 50, 544
W3C home page (www.w3.org) 50
W3C Recommendation 50
wbr element 130
WCF

DataContract attribute 838
DataMember attribute 838
OperationContract attribute 825
ResponseFormat property of the

WebGet attribute 837
Serializable attribute 839
ServiceContract attribute 825
UriTemplate property of WebGet

attribute 834
WebGet attribute 833

WCF REST service to create random
equations based on a specified
operation and difficulty level 862

WCF service class 825
WCF service endpoint 823, 872
WCF web service interface that returns a

welcome message through SOAP
protocol and XML format 826

WCF Web Service project in Visual
Web Developer 826

WCF Web Service project type 825
WCF web service that returns a welcome

message through the SOAP protocol
and XML format 826

Web 1.0 50
Web 2.0 44, 50, 50, 51
web application

Ajax 606
traditional 605

Web application development 741, 880
web control 741, 880
Web Form 741, 748, 769, 775, 880,

887, 909, 915
Init event 755, 894
Load event 766

web page 38
web server 45, 70, 90, 638, 639, 723,

742, 742, 881
web service 52, 53, 822
Web Service Description Language

(WSDL) 829
web service host 823
Web Site Administration Tool 797
web storage 410
Web.config file 825
Web.config ASP.NET configuration

file 755, 895
web-based application 39, 51
WebClient 836

DownloadStringAsync method
837

DownloadStringCompleted event
837

WebGet attribute 833
webHttp Web.config property 835
webHttpBinding Web.config

binding setting 835
WebKit broswers 183
-webkit-box-reflect property 187
WebMatrix 646

install 646
tutorials 646

WebMessageFormat.Json setting of
ResponseFormat property 837, 867

WebMessageFormat.Xml setting of
ResponseFormat property 837

WebTime Modification exercise 789, 929
webtop 609
week control 119
week input type 119
well-formed XML document 546
where clause of a LINQ query 668
WHERE SQL clause 655, 656, 658, 659,

663, 664
while repetition statement 249, 256,

262, 263, 270
while statement 713
white-space character 401, 408, 250, 408
white-space characters in strings 219
width attribute 78
width media feature 162
width property 155
width-to-height ratio 79
Wikipedia 44, 51, 61
window object 223, 230, 445

clearInterval method 445, 450
confirm method 469

iw3htp5_printonlyIX.fm Page 954 Wednesday, November 16, 2011 1:06 PM

Index 955

window object (cont.)
localStorage property 410, 413,

414
sessionStorage property 411,

411, 413, 414
setInterval method 449, 456

window object’s prompt method 227
window.prompt method 293
Windows 57
Windows Communication Foundation

(WCF) 822
Windows operating system 57
Windows Phone 7 57
wire format 824
Wireless Markup Language (WML) 566
WML (Wireless Markup Language) 566
word equivalent of a check amount 425
World Community Grid 36
“World Wide Wait” 605
World Wide Web (WWW) 44
World Wide Web Consortium (W3C)

40, 50, 50, 544
Wozniak, Steve 58
write method of the document object

221
writeln method 220, 221
writing a cookie to the client 725
WSDL (Web Service Description

Language) 829, 831
www.ecma-international.org/

publications/standards/ECMA-
294.htm (ECMAScript standard)
218

www.garshol.priv.no/download/
text/bnf.html 557

www.oasis-open.org 556
www.opengis.org 570
www.rixml.org 570
www.voicexml.org 570
www.w3.org 50
www.w3.org/2001/XMLSchema 562
www.w3.org/AudioVideo 570
www.w3.org/Math 569
www.w3.org/XML/Schema 559
www.w3schools.com/schema/

default.asp 559
www.xml.org 556
www.zend.com 697

X
x-axis 478
x-coordinate 478
x-large relative font size 142
x-small relative font size 142
Xalan XSLT processor 572
XAMPP 665, 697, 719, 727
XBRL (Extensible Business Reporting

Language) 545, 566
Xerox PARC (Palo Alto Research Center)

58
XHR (abbreviation for

XMLHttpRequest) 604
XML 604

attribute 552
attribute value 552
child element 549
container element 549
declaration 547, 550

element 545
empty element 552
end tag 545
markup 547
node 550
parent element 549
prolog 548
root 550
root element 545
start tag 545
vocabulary 545

XML (eXtensible Markup Language) 50,
544, 829

XML document containing book
information 575

XML Document Object Model 579
XML document that describes various

sports 571, 595
XML document using the laptop

element defined in computer.xsd
565

XML DOM 580, 584
XML element name requirements 548
.xml file extension 545
XML instance document 564, 565
xml namespace prefix 553
XML namespaces demonstration 553
XML parser 546
XML Path Language (XPath) 570, 592
XML processor 546
XML Resource Center

(www.deitel.com/XML/) 590
XML Schema 555, 559, 563

complex types 563
simple types 563

XML Schema document defining simple
and complex types 564

XML Schema document for book.xml
560

XML Schema URI (http://
www.w3.org/2001/XMLSchema)
561, 561

XML used to mark up an article 547
XML vocabularies

Chemical Markup Language (CML)
570

Extensible User Interface Language
(XUL) 570

Geography Markup Language
(GML) 570

Research Information Exchange
Markup Language (RIXML) 570

Synchronized Multimedia Integra-
tion Language (SMIL) 570

VoiceXML 570
XML Working Group of the W3C 544
XMLHttpRequest

open method 588
send method 588

XMLHttpRequest object 588, 604, 609,
610, 613, 632, 634
abort method 615
GET method 615
getAllResponseHeaders method

615
getResponseHeader method 615
onReadyStateChange property

614
open method 615
properties and methods 614

readyState property 614
readystatechange property 614
responseText property 614
responseXML property 614
send method 615
setRequestHeader method 615
status property 614
statusText property 614

xmlns attribute in XML 554
XNamespace class 867
XPath 571
XPath (XML Path Language) 570, 592
XPath expression 592
XPathResult object 595
.xsd filename extension 560
XSL (Extensible Stylesheet Language)

547, 555, 570
XSL document that transforms

sorting.xml into XHTML 575
.xsl filename extension 572
XSL-FO (XSL Formatting Objects) 570
XSL Formatting Objects (XSL-FO) 570
XSL style sheet 571, 578
XSL template 574
xsl template element 574
XSL Transformations (XSLT) 570
XSL variable 578
xsl:for-each element 574
xsl:output element 573
xsl:value-of element 574
XSLT (XSL Transformations) 570
XSLT processor 572
XSLT that creates elements and attributes

in an XHTML document 572
XSS 610
XSS (cross-site scripting) 610
XUL (Extensible User Interface

Language) 566, 570
xx-large relative font size 142
xx-small relative font size 142

Y
y-axis 478
y-coordinate 478
Yahoo! 35
YouTube 44, 51, 55
Yukihiro 61

Z
z-index property 150
Zend Engine 697
Zend Technologies (www.zend.com)

697
zeroth element of an array 357
Zynga 38

iw3htp5_printonlyIX.fm Page 955 Wednesday, November 16, 2011 1:06 PM

	Cover
	Title
	Contents
	Preface
	Before You Begin
	1 Introduction to Computers and the Internet
	1.1 Introduction
	1.2 The Internet in Industry and Research
	1.3 HTML5, CSS3, JavaScript, Canvas and jQuery
	1.4 Demos
	1.5 Evolution of the Internet and World Wide Web
	1.6 Web Basics
	1.7 Multitier Application Architecture
	1.8 Client-Side Scripting versus Server-Side Scripting
	1.9 World Wide Web Consortium (W3C)
	1.10 Web 2.0: Going Social
	1.11 Data Hierarchy
	1.12 Operating Systems
	1.12.1 Desktop and Notebook Operating Systems
	1.12.2 Mobile Operating Systems

	1.13 Types of Programming Languages
	1.14 Object Technology
	1.15 Keeping Up-to-Date with Information Technologies

	2 Introduction to HTML5: Part 1
	2.1 Introduction
	2.2 Editing HTML5
	2.3 First HTML5 Example
	2.4 W3C HTML5 Validation Service
	2.5 Headings
	2.6 Linking
	2.7 Images
	2.7.1 alt Attribute
	2.7.2 Void Elements
	2.7.3 Using Images as Hyperlinks

	2.8 Special Characters and Horizontal Rules
	2.9 Lists
	2.10 Tables
	2.11 Forms
	2.12 Internal Linking
	2.13 meta Elements
	2.14 Web Resources

	3 Introduction to HTML5: Part 2
	3.1 Introduction
	3.2 New HTML5 Form input Types
	3.2.1 input Type color
	3.2.2 input Type date
	3.2.3 input Type datetime
	3.2.4 input Type datetime-local
	3.2.5 input Type email
	3.2.6 input Type month
	3.2.7 input Type number
	3.2.8 input Type range
	3.2.9 input Type search
	3.2.10 input Type tel
	3.2.11 input Type time
	3.2.12 input Type url
	3.2.13 input Type week

	3.3 input and datalist Elements and autocomplete Attribute
	3.3.1 input Element autocomplete Attribute
	3.3.2 datalist Element

	3.4 Page-Structure Elements
	3.4.1 header Element
	3.4.2 nav Element
	3.4.3 figure Element and figcaption Element
	3.4.4 article Element
	3.4.5 summary Element and details Element
	3.4.6 section Element
	3.4.7 aside Element
	3.4.8 meter Element
	3.4.9 footer Element
	3.4.10 Text-Level Semantics: mark Element and wbr Element

	4 Introduction to Cascading Style Sheets™(CSS): Part 1
	4.1 Introduction
	4.2 Inline Styles
	4.3 Embedded Style Sheets
	4.4 Conflicting Styles
	4.5 Linking External Style Sheets
	4.6 Positioning Elements: Absolute Positioning, z-index
	4.7 Positioning Elements: Relative Positioning, span
	4.8 Backgrounds
	4.9 Element Dimensions
	4.10 Box Model and Text Flow
	4.11 Media Types and Media Queries
	4.12 Drop-Down Menus
	4.13 (Optional) User Style Sheets
	4.14 Web Resources

	5 Introduction to Cascading Style Sheets™(CSS): Part 2
	5.1 Introduction
	5.2 Text Shadows
	5.3 Rounded Corners
	5.4 Color
	5.5 Box Shadows
	5.6 Linear Gradients; Introducing Vendor Prefixes
	5.7 Radial Gradients
	5.8 (Optional: WebKit Only) Text Stroke
	5.9 Multiple Background Images
	5.10 (Optional: WebKit Only) Reflections
	5.11 Image Borders
	5.12 Animation; Selectors
	5.13 Transitions and Transformations
	5.13.1 transition and transform Properties
	5.13.2 Skew
	5.13.3 Transitioning Between Images

	5.14 Downloading Web Fonts and the @font-face Rule
	5.15 Flexible Box Layout Module and :nth-child Selectors
	5.16 Multicolumn Layout
	5.17 Media Queries
	5.18 Web Resources

	6 JavaScript: Introduction to Scripting
	6.1 Introduction
	6.2 Your First Script: Displaying a Line of Text with JavaScript in a Web Page
	6.3 Modifying Your First Script
	6.4 Obtaining User Input with prompt Dialogs
	6.4.1 Dynamic Welcome Page
	6.4.2 Adding Integers

	6.5 Memory Concepts
	6.6 Arithmetic
	6.7 Decision Making: Equality and Relational Operators
	6.8 Web Resources

	7 JavaScript: Control Statements I
	7.1 Introduction
	7.2 Algorithms
	7.3 Pseudocode
	7.4 Control Statements
	7.5 if Selection Statement
	7.6 if…else Selection Statement
	7.7 while Repetition Statement
	7.8 Formulating Algorithms: Counter-Controlled Repetition
	7.9 Formulating Algorithms: Sentinel-Controlled Repetition
	7.10 Formulating Algorithms: Nested Control Statements
	7.11 Assignment Operators
	7.12 Increment and Decrement Operators
	7.13 Web Resources

	8 JavaScript: Control Statements II
	8.1 Introduction
	8.2 Essentials of Counter-Controlled Repetition
	8.3 for Repetition Statement
	8.4 Examples Using the for Statement
	8.5 switch Multiple-Selection Statement
	8.6 do…while Repetition Statement
	8.7 break and continue Statements
	8.8 Logical Operators
	8.9 Web Resources

	9 JavaScript: Functions
	9.1 Introduction
	9.2 Program Modules in JavaScript
	9.3 Function Definitions
	9.3.1 Programmer-Defined Function square
	9.3.2 Programmer-Defined Function maximum

	9.4 Notes on Programmer-Defined Functions
	9.5 Random Number Generation
	9.5.1 Scaling and Shifting Random Numbers
	9.5.2 Displaying Random Images
	9.5.3 Rolling Dice Repeatedly and Displaying Statistics

	9.6 Example: Game of Chance; Introducing the HTML5audio and video Elements
	9.7 Scope Rules
	9.8 JavaScript Global Functions
	9.9 Recursion
	9.10 Recursion vs. Iteration

	10 JavaScript: Arrays
	10.1 Introduction
	10.2 Arrays
	10.3 Declaring and Allocating Arrays
	10.4 Examples Using Arrays
	10.4.1 Creating, Initializing and Growing Arrays
	10.4.2 Initializing Arrays with Initializer Lists
	10.4.3 Summing the Elements of an Array with for and for…in
	10.4.4 Using the Elements of an Array as Counters

	10.5 Random Image Generator Using Arrays
	10.6 References and Reference Parameters
	10.7 Passing Arrays to Functions
	10.8 Sorting Arrays with Array Method sort
	10.9 Searching Arrays with Array Method indexOf
	10.10 Multidimensional Arrays

	11 JavaScript: Objects
	11.1 Introduction
	11.2 Math Object
	11.3 String Object
	11.3.1 Fundamentals of Characters and Strings
	11.3.2 Methods of the String Object
	11.3.3 Character-Processing Methods
	11.3.4 Searching Methods
	11.3.5 Splitting Strings and Obtaining Substrings

	11.4 Date Object
	11.5 Boolean and Number Objects
	11.6 document Object
	11.7 Favorite Twitter Searches: HTML5 Web Storage
	11.8 Using JSON to Represent Objects

	12 Document Object Model (DOM):Objects and Collections
	12.1 Introduction
	12.2 Modeling a Document: DOM Nodes and Trees
	12.3 Traversing and Modifying a DOM Tree
	12.4 DOM Collections
	12.5 Dynamic Styles
	12.6 Using a Timer and Dynamic Styles to Create Animated Effects

	13 JavaScript Event Handling: A Deeper Look
	13.1 Introduction
	13.2 Reviewing the load Event
	13.3 Event mousemove and the event Object
	13.4 Rollovers with mouseover and mouseout
	13.5 Form Processing with focus and blur
	13.6 More Form Processing with submit and reset
	13.7 Event Bubbling
	13.8 More Events
	13.9 Web Resource

	14 HTML5: Introduction to canvas
	14.1 Introduction
	14.2 canvas Coordinate System
	14.3 Rectangles
	14.4 Using Paths to Draw Lines
	14.5 Drawing Arcs and Circles
	14.6 Shadows
	14.7 Quadratic Curves
	14.8 Bezier Curves
	14.9 Linear Gradients
	14.10 Radial Gradients
	14.11 Images
	14.12 Image Manipulation: Processing the Individual Pixels of a canvas
	14.13 Patterns
	14.14 Transformations
	14.14.1 scale and translate Methods: Drawing Ellipses
	14.14.2 rotate Method: Creating an Animation
	14.14.3 transform Method: Drawing Skewed Rectangles

	14.15 Text
	14.16 Resizing the canvas to Fill the Browser Window
	14.17 Alpha Transparency
	14.18 Compositing
	14.19 Cannon Game
	14.19.1 HTML5 Document
	14.19.2 Instance Variables and Constants
	14.19.3 Function setupGame
	14.19.4 Functions startTimer and stopTimer
	14.19.5 Function resetElements
	14.19.6 Function newGame
	14.19.7 Function updatePositions: Manual Frame-by-FrameAnimation and Simple Collision Detection
	14.19.8 Function fireCannonball
	14.19.9 Function alignCannon
	14.19.10Function draw
	14.19.11Function showGameOverDialog

	14.20 save and restore Methods
	14.21 A Note on SVG
	14.22 A Note on canvas35D

	15 XML
	15.1 Introduction
	15.2 XML Basics
	15.3 Structuring Data
	15.4 XML Namespaces
	15.5 Document Type Definitions (DTDs)
	15.6 W3C XML Schema Documents
	15.7 XML Vocabularies
	15.7.1 MathML™
	15.7.2 Other Markup Languages

	15.8 Extensible Stylesheet Language and XSL Transformations
	15.9 Document Object Model (DOM)
	15.10 Web Resources

	16 Ajax-Enabled Rich Internet Applicationswith XML and JSON
	16.1 Introduction
	16.1.1 Traditional Web Applications vs. Ajax Applications
	16.1.2 Traditional Web Applications
	16.1.3 Ajax Web Applications

	16.2 Rich Internet Applications (RIAs) with Ajax
	16.3 History of Ajax
	16.4 “Raw” Ajax Example Using the XMLHttpRequest Object
	16.4.1 Asynchronous Requests
	16.4.2 Exception Handling
	16.4.3 Callback Functions
	16.4.4 XMLHttpRequest Object Event, Properties and Methods

	16.5 Using XML and the DOM
	16.6 Creating a Full-Scale Ajax-Enabled Application
	16.6.1 Using JSON
	16.6.2 Rich Functionality
	16.6.3 Interacting with a Web Service on the Server
	16.6.4 Parsing JSON Data
	16.6.5 Creating HTML5 Elements and Setting Event Handlers on the Fly
	16.6.6 Implementing Type-Ahead
	16.6.7 Implementing a Form with Asynchronous Validation

	17 Web Servers (Apache and IIS)
	17.1 Introduction
	17.2 HTTP Transactions
	17.3 Multitier Application Architecture
	17.4 Client-Side Scripting versus Server-Side Scripting
	17.5 Accessing Web Servers
	17.6 Apache, MySQL and PHP Installation
	17.6.1 XAMPP Installation
	17.6.2 Running XAMPP
	17.6.3 Testing Your Setup
	17.6.4 Running the Examples Using Apache HTTP Server

	17.7 Microsoft IIS Express and WebMatrix
	17.7.1 Installing and Running IIS Express
	17.7.2 Installing and Running WebMatrix
	17.7.3 Running the Client-Side Examples Using IIS Express
	17.7.4 Running the PHP Examples Using IIS Express

	18 Database: SQL, MySQL, LINQ and Java DB
	18.1 Introduction
	18.2 Relational Databases
	18.3 Relational Database Overview: A books Database
	18.4 SQL
	18.4.1 Basic SELECT Query
	18.4.2 WHERE Clause
	18.4.3 ORDER BY Clause
	18.4.4 Merging Data from Multiple Tables: INNER JOIN
	18.4.5 INSERT Statement
	18.4.6 UPDATE Statement
	18.4.7 DELETE Statement

	18.5 MySQL
	18.5.1 Instructions for Setting Up a MySQL User Account
	18.5.2 Creating Databases in MySQL

	18.6 (Optional) Microsoft Language Integrate Query (LINQ)
	18.6.1 Querying an Array of int Values Using LINQ
	18.6.2 Querying an Array of Employee Objects Using LINQ
	18.6.3 Querying a Generic Collection Using LINQ

	18.7 (Optional) LINQ to SQL
	18.8 (Optional) Querying a Database with LINQ
	18.8.1 Creating LINQ to SQL Classes
	18.8.2 Data Bindings Between Controls and the LINQ to SQL Classes

	18.9 (Optional) Dynamically Binding LINQ to SQL Query Results
	18.9.1 Creating the Display Query Results GUI
	18.9.2 Coding the Display Query Results Application

	18.10 Java DB/Apache Derby

	19 PHP
	19.1 Introduction
	19.2 Simple PHP Program 698
	19.3 Converting Between Data Types
	19.4 Arithmetic Operators
	19.5 Initializing and Manipulating Arrays
	19.6 String Comparisons
	19.7 String Processing with Regular Expressions
	19.7.1 Searching for Expressions
	19.7.2 Representing Patterns
	19.7.3 Finding Matches
	19.7.4 Character Classes
	19.7.5 Finding Multiple Instances of a Pattern

	19.8 Form Processing and Business Logic
	19.8.1 Superglobal Arrays
	19.8.2 Using PHP to Process HTML5 Forms

	19.9 Reading from a Database
	19.10 Using Cookies
	19.11 Dynamic Content
	19.12 Web Resources

	20 Web App Development with ASP.NET in C#
	20.1 Introduction
	20.2 Web Basics
	20.3 Multitier Application Architecture
	20.4 Your First ASP.NET Application
	20.4.1 Building the WebTime Application
	20.4.2 Examining WebTime.aspx’s Code-Behind File

	20.5 Standard Web Controls: Designing a Form
	20.6 Validation Controls
	20.7 Session Tracking
	20.7.1 Cookies
	20.7.2 Session Tracking with HttpSessionState
	20.7.3 Options.aspx: Selecting a Programming Language
	20.7.4 Recommendations.aspx: Displaying Recommendations Basedon Session Values

	20.8 Case Study: Database-Driven ASP.NET Guestbook
	20.8.1 Building a Web Form that Displays Data from a Database
	20.8.2 Modifying the Code-Behind File for the Guestbook Application

	20.9 Case Study Introduction: ASP.NET AJAX
	20.10 Case Study Introduction: Password-Protected Books Database Application

	21 Web App Development with ASP.NET in C#:A Deeper Look
	21.1 Introduction
	21.2 Case Study: Password-Protected Books Database Application
	21.2.1 Examining the ASP.NET Web Site Template
	21.2.2 Test-Driving the Completed Application
	21.2.3 Configuring the Website
	21.2.4 Modifying the Default.aspx and About.aspx Pages
	21.2.5 Creating a Content Page That Only Authenticated Users Can Access
	21.2.6 Linking from the Default.aspx Page to the Books.aspx Page
	21.2.7 Modifying the Master Page (Site.master)
	21.2.8 Customizing the Password-Protected Books.aspx Page

	21.3 ASP.NET Ajax
	21.3.1 Traditional Web Applications
	21.3.2 Ajax Web Applications
	21.3.3 Testing an ASP.NET Ajax Application
	21.3.4 The ASP.NET Ajax Control Toolkit
	21.3.5 Using Controls from the Ajax Control Toolkit

	22 Web Services in C#
	22.1 Introduction
	22.2 WCF Services Basics
	22.3 Simple Object Access Protocol (SOAP)
	22.4 Representational State Transfer (REST)
	22.5 JavaScript Object Notation (JSON)
	22.6 Publishing and Consuming SOAP-Based WCF Web Services
	22.6.1 Creating a WCF Web Service
	22.6.2 Code for the WelcomeSOAPXMLService
	22.6.3 Building a SOAP WCF Web Service
	22.6.4 Deploying the WelcomeSOAPXMLService
	22.6.5 Creating a Client to Consume the WelcomeSOAPXMLService
	22.6.6 Consuming the WelcomeSOAPXMLService

	22.7 Publishing and Consuming REST-Based XML Web Services
	22.7.1 HTTP get and post Requests
	22.7.2 Creating a REST-Based XML WCF Web Service
	22.7.3 Consuming a REST-Based XML WCF Web Service

	22.8 Publishing and Consuming REST-Based JSON Web Services 837
	22.8.1 Creating a REST-Based JSON WCF Web Service
	22.8.2 Consuming a REST-Based JSON WCF Web Service

	22.9 Blackjack Web Service: Using Session Tracking in a SOAP-BasedWCF Web Service
	22.9.1 Creating a Blackjack Web Service
	22.9.2 Consuming the Blackjack Web Service

	22.10 Airline Reservation Web Service: Database Access and Invoking aService from ASP.NET
	22.11 Equation Generator: Returning User-Defined Types
	22.11.1 Creating the REST-Based XML EquationGenerator Web Service
	22.11.2 Consuming the REST-Based XML EquationGeneratorWeb Service
	22.11.3 Creating the REST-Based JSON WCF EquationGeneratorWeb Service
	22.11.4 Consuming the REST-Based JSON WCF EquationGeneratorWeb Service

	22.12 Web Resources

	23 Web App Development with ASP.NET inVisual Basic
	23.1 Introduction
	23.2 Web Basics
	23.3 Multitier Application Architecture
	23.4 Your First ASP.NET Application
	23.4.1 Building the WebTime Application
	23.4.2 Examining WebTime.aspx’s Code-Behind File

	23.5 Standard Web Controls: Designing a Form
	23.6 Validation Controls
	23.7 Session Tracking
	23.7.1 Cookies
	23.7.2 Session Tracking with HttpSessionState
	23.7.3 Options.aspx: Selecting a Programming Language
	23.7.4 Recommendations.aspx: Displaying Recommendations Basedon Session Values

	23.8 Case Study: Database-Driven ASP.NET Guestbook
	23.8.1 Building a Web Form that Displays Data from a Database
	23.8.2 Modifying the Code-Behind File for the Guestbook Application

	23.9 Online Case Study: ASP.NET AJAX
	23.10 Online Case Study: Password-Protected Books Database Application

	A HTML Special Characters
	B HTML Colors
	C JavaScript Operator Precedence Chart
	D ASCII Character Set
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

